期刊文献+
共找到258篇文章
< 1 2 13 >
每页显示 20 50 100
GLOBAL CONVERGENCE RESULTS OF A THREE TERM MEMORY GRADIENT METHOD WITH A NON-MONOTONE LINE SEARCH TECHNIQUE 被引量:12
1
作者 孙清滢 《Acta Mathematica Scientia》 SCIE CSCD 2005年第1期170-178,共9页
In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Comb... In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient. 展开更多
关键词 Non-linear programming three term memory gradient method convergence non-monotone line search technique numerical experiment
在线阅读 下载PDF
Compressive mechanical properties and shape memory effect of NiTi gradient lattice structures fabricated by laser powder bed fusion 被引量:11
2
作者 Wei Chen Dongdong Gu +3 位作者 Jiankai Yang Qin Yang Jie Chen Xianfeng Shen 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期189-205,共17页
Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanica... Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanical equipment application fields. In this study, we designed four gradient lattice structures (GLSs) using the topology optimization method, including the unidirectional GLS, the bi-directional increasing GLS, the bi-directional decreasing GLS and the none-GLS. All GLSs were manufactureed by laser powder bed fusion (LPBF). The uniaxial compression tests and finite element analysis were conducted to investigate the influence of gradient distribution features on deformation modes and energy absorption performance of GLSs. The results showed that, compared with the 45° shear fracture characteristic of the none-GLS, the unidirectional GLS, the bi-directional increasing GLS and the bi-directional decreasing GLS had the characteristics of the layer-by-layer fracture, showing considerably improved energy absorption capacity. The bi-directional increasing GLS showed a unique combination of shear fracture and layer-by-layer fracture, having the optimal energy absorption performance with energy absorption and specific energy absorption of 235.6 J and 9.5 J g-1 at 0.5 strain, respectively. Combined with the shape memory effect of NiTi alloy, multiple compression-heat recovery experiments were carried out to verify the shape memory function of LPBF-processed NiTi GLSs. These findings have potential value for the future design of GLSs and the realization of shape memory function of NiTi components through laser AM. 展开更多
关键词 additive manufacturing laser powder bed fusion gradient lattice structures deformation behavior shape memory effect
在线阅读 下载PDF
Non-negligible role of gradient porous structure in superelasticity deterioration and improvement of NiTi shape memory alloys 被引量:5
3
作者 Yintao Zhang Daixiu Wei +5 位作者 Yang Chen Lechun Xie Liqiang Wang Lai-Chang Zhang Weijie Lu Guang Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第19期48-63,共16页
Bone-mimicking gradient porous NiTi shape memory alloys(SMAs)are promising for orthopedic im-plants due to their distinctive superelastic functional properties.However,premature plastic deformation in weak areas such ... Bone-mimicking gradient porous NiTi shape memory alloys(SMAs)are promising for orthopedic im-plants due to their distinctive superelastic functional properties.However,premature plastic deformation in weak areas such as thinner struts,nodes,and sharp corners severely deteriorates the superelasticity of gradient porous NiTi SMAs.In this work,we prepared gradient porous NiTi SMAs with a porosity of 50%by additive manufacturing(AM)and achieved a remarkable improvement of superelasticity by a simple solution treatment regime.After solution treatment,phase transformation temperatures dropped signif-icantly,the dislocation density decreased,and partial intergranular Ti-rich precipitates were transferred into the grain.Compared to as-built samples,the strain recovery rate of solution-treated samples was nearly doubled at a pre-strain of 6%(up to 90%),and all obtained a stable recoverable strain of more than 4%.The remarkable superelasticity improvement was attributed to lower phase transformation tem-peratures,fewer dislocations,and the synergistic strengthening effect of intragranular multi-scale Ti-Ni precipitates.Notably,the gradient porous structure played a non-negligible role in both superelasticity deterioration and improvement.The microstructure evolution of the solution-treated central strut after constant 10 cycles and the origin of the stable superelastic response of gradient porous NiTi SMAs were revealed.This work provides an accessible strategy for improving the superelastic performance of gra-dient porous NiTi SMAs and proposes a key strategy for achieving such high-performance architectured materials. 展开更多
关键词 Shape memory alloys SUPERELASTICITY gradient porous structure Solution treatment Stable recoverable strain
原文传递
Effect of Texture on the Grain-Size-Dependent Functional Properties of NiTi Shape Memory Alloys and Texture Gradient Design:A Phase Field Study 被引量:1
4
作者 Bo Xu Beihai Huang +1 位作者 Chong Wang Qingyuan Wang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第1期10-32,共23页
Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys(SMAs),and the textured nanocrystalline NiTi has been extensively employed in engineering.However,the effect of texture,and the... Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys(SMAs),and the textured nanocrystalline NiTi has been extensively employed in engineering.However,the effect of texture,and the joint effect of grain size(GS)and texture on the functional properties of NiTi SMAs and the corresponding microscopic mechanisms have not been clearly understood yet.In this work,based on the phase field method,the effect of texture on the GS-dependent functional properties of NiTi SMAs,including super-elasticity(SE),one-way shape memory effect(OWSME),and stress-assisted two-way shape memory effect(SATWSME),is investigated,and the corresponding microscopic mechanisms are revealed.Moreover,the samples with discrete geometrical gradients and/or texture gradients are designed to achieve graded functional properties.The simulation results indicate that the dependence of functional properties on texture is due to the effect of crystallographic orientation on martensite transformation and reorientation,which can lead to different inelastic strains.In the designed samples with texture gradients,the stress–strain responses of sheets with various textures are different,allowing for the coordination of overall deformation of the sample by combining such sheets,with varying inelastic deformation degrees.Thus,the overall response of the sample differs from that without texture gradient,leading to the achievement of graded functional properties.The simulation results and new findings in this work contribute to a deeper understanding of the effects of texture,GS,and their interaction on the functional properties of SMAs,and provide valuable reference for the design and development of SMA-based devices with desired functional properties. 展开更多
关键词 Phase field NiTi shape memory alloy TEXTURE Grain size Functional property Texture gradient
原文传递
Inverse gradient nanostructure through gradient cold rolling demonstrated with superelasticity improvement in Ti-50.3Ni shape memory alloy
5
作者 Jian Zhang Ke Liu +6 位作者 Tong Chen Chen Xu Chen Chen Dingshun Yan Ann-Christin Dippel Jun Sun Xiangdong Ding 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第18期233-244,共12页
Gradient nanostructured(GNS)metallic materials are commonly achieved by gradient severe plastic de-formation with a gradient of nano-to micro-sized structural units from the surface/boundaries to the center.Certainly,... Gradient nanostructured(GNS)metallic materials are commonly achieved by gradient severe plastic de-formation with a gradient of nano-to micro-sized structural units from the surface/boundaries to the center.Certainly,such GNS can be inversely positioned,which however has not yet been reported.The present work reports a facile method in deformation gradient control to attain inverse gradient nanostructured(iGNS),i.e.,tailoring the cross-section shape,successfully demonstrated in Ti-50.3Ni shape memory alloy(SMA)wire through cold rolling.The microstructure of the rolled wire is characterized by a macroscopic inverse gradient from boundaries to the center—the average sizes of grain and martensite domain evolve from micrometer to nanometer scale.The iGNS leads to a gradient martensitic transforma-tion upon stress,which has been proved to be effectively reversible via in-situ bending scanning electron microscopy(SEM)observations.The iGNS Ti-50.3Ni SMA exhibits quasi-linear superelasticity(SE)in a wide temperature range from 173 to 423 K.Compared to uniform cold rolling,the gradient cold rolling with less overall plasticity further improves SE strain(up to 4.8%)and SE efficiency.In-situ tensiling synchrotron X-ray diffraction(SXRD)analysis reveals the underlying mechanisms of the unique SE in the iGNS SMAs.It provides a new design strategy to realize excellent SE in SMAs and sheds light on the advanced GNS metallic materials. 展开更多
关键词 Inverse gradient nanostructured metallics gradient cold rolling Shape memory alloys gradient martensitic transformation SUPERELASTICITY
原文传递
Steel Surface Defect Detection Using Learnable Memory Vision Transformer
6
作者 Syed Tasnimul Karim Ayon Farhan Md.Siraj Jia Uddin 《Computers, Materials & Continua》 SCIE EI 2025年第1期499-520,共22页
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o... This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems. 展开更多
关键词 Learnable memory Vision Transformer(LMViT) Convolutional Neural Networks(CNN) metal surface defect detection deep learning computer vision image classification learnable memory gradient clipping label smoothing t-SNE visualization
在线阅读 下载PDF
基于交叉梯度结构约束的可控源电磁法反演研究
7
作者 安红颖 岳云宝 +3 位作者 郭长安 陈楚桐 李阳铭 王堃鹏 《物探化探计算技术》 2026年第1期107-116,共10页
可控源电磁法在地质勘探中发挥着重要作用,然而其探测效果仍然具有一定的局限性。为增加可控源电磁法对于地下异常体的结构约束,可以引入更多结构信息约束反演过程,从而降低可控源电磁法的多解性。笔者基于交叉梯度法引入了在可控源电... 可控源电磁法在地质勘探中发挥着重要作用,然而其探测效果仍然具有一定的局限性。为增加可控源电磁法对于地下异常体的结构约束,可以引入更多结构信息约束反演过程,从而降低可控源电磁法的多解性。笔者基于交叉梯度法引入了在可控源电磁法反演过程中加入速度模型进行结构约束的方法。为了验证方法的有效性,笔者首先建立两个简单理论模型,对其进行三维正反演研究,选择有限内存拟牛顿法(LBFGS)对模型的合成数据进行可控源电磁法的常规反演和交叉梯度反演对比研究。其次,笔者利用甘肃花牛山某铅锌矿电性模型进一步开展了复杂结构的约束反演。笔者的研究表明,基于交叉梯度结构约束的可控源反演方法能够提高地下异常体可靠性,验证了该方法在复杂地下地质情况的有效性。 展开更多
关键词 可控源电磁法 交叉梯度 速度结构 有限内存拟牛顿法(LBFGS) 三维正反演
在线阅读 下载PDF
Robust power amplifier predistorter by using memory polynomials 被引量:4
8
作者 Li Bo Ge Jianhua Ai Bo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期700-705,共6页
In memory polynomial predistorter design, the coefficient estimation algorithm based on normalized least mean square is sensitive to initialization parameters. A predistorter based on generalized normalized gradient d... In memory polynomial predistorter design, the coefficient estimation algorithm based on normalized least mean square is sensitive to initialization parameters. A predistorter based on generalized normalized gradient descent algorithm is proposed. The merit of the GNGD algorithm is that its learning rate provides compensation for the independent assumptions in the derivation of NLMS, thus its stability is improved. Computer simulation shows that the proposed predistorter is very robust. It can overcome the sensitivity of initialization parameters and get a better linearization performance. 展开更多
关键词 power amplifier predistortion memory polynomial generalized normalized gradient descent orthogonal frequency division multiplexing.
在线阅读 下载PDF
Study on behaviors of functionally graded shape memory alloy cylinder 被引量:3
9
作者 Bingfei Liu Qingfei Wang +3 位作者 Rui Zhou Chunzhi Du Yanan Zhang Pan Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第6期608-617,共10页
For better controllability in actuations,it is desirable to create Functionally Graded Shape Memory Alloys(FG-SMAs)in the actuation direction.It can be achieved by applying different heat treatment processes to crea... For better controllability in actuations,it is desirable to create Functionally Graded Shape Memory Alloys(FG-SMAs)in the actuation direction.It can be achieved by applying different heat treatment processes to create the gradient along the radius of a SMA cylinder.Analytical solutions are derived to predict the macroscopic behaviors of such a functionally graded SMA cylinder.The Tresca yield criterion and linear hardening are used to describe the different phase transformations with different gradient parameters.The numerical results for an example of the model exhibit different pseudo-elastic behaviors from the non-gradient case,as well as a variational hysteresis loop for the transformation,providing a mechanism for easy actuation control.When the gradient disappears,the model can degenerate to the non-gradient case. 展开更多
关键词 Shape memory alloy gradient Constitutive model Cylinder Internal pressure
原文传递
Application of empirical mode decomposition in early diagnosis of magnetic memory signal 被引量:2
10
作者 冷建成 徐敏强 张嘉钟 《Journal of Central South University》 SCIE EI CAS 2010年第3期549-553,共5页
In order to eliminate noise interference of metal magnetic memory signal in early diagnosis of stress concentration zones and metal defects, the empirical mode decomposition method combined with the magnetic field gra... In order to eliminate noise interference of metal magnetic memory signal in early diagnosis of stress concentration zones and metal defects, the empirical mode decomposition method combined with the magnetic field gradient characteristic was proposed. A compressive force periodically acting upon a casing pipe led to appreciable deformation, and magnetic signals were measured by a magnetic indicator TSC-1M-4. The raw magnetic memory signal was first decomposed into different intrinsic mode functions and a residue, and the magnetic field gradient distribution of the subsequent reconstructed signal was obtained. The experimental results show that the gradient around 350 mm represents the maximum value ignoring the marginal effect, and there is a good correlation between the real maximum field gradient and the stress concentration zone. The wavelet transform associated with envelop analysis also exhibits this gradient characteristic, indicating that the proposed method is effective for early identifying critical zones. 展开更多
关键词 metal magnetic memory noise interference early diagnosis empirical mode decomposition magnetic field gradient stress concentration ZONES envelop analysis
在线阅读 下载PDF
SINGLE CRYSTAL GROWTH OF Cu BASED SHAPE MEMORYALLOYANDITSTHERMODYNAMICANALYSIS
11
作者 Shusong Tan (1) Huibin Xu (2) Ngal Leo Tangwai (3) 《Journal of Central South University》 SCIE EI CAS 1994年第1期29-34,共6页
SINGLECRYSTALGROWTHOFCuBASEDSHAPEMEMORYALLOYANDITSTHERMODYNAMICANALYSISSINGLECRYSTALGROWTHOFCuBASEDSHAPEMEMO... SINGLECRYSTALGROWTHOFCuBASEDSHAPEMEMORYALLOYANDITSTHERMODYNAMICANALYSISSINGLECRYSTALGROWTHOFCuBASEDSHAPEMEMORYALLOYANDITSTHER... 展开更多
关键词 SHAPE memory ALLOY SINGLE CRYSTAL temperature gradient
在线阅读 下载PDF
Toward tunable shape memory effect of NiTi alloy by grain size engineering:A phase field study
12
作者 Bo Xu Chong Wang Qingyuan Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第1期276-289,共14页
The inelastic deformations of shape memory alloys(SMAs)always show poor controllability due to the avalanche-like martensite transformation,and the effective control for the deformation of precision de-vices has been ... The inelastic deformations of shape memory alloys(SMAs)always show poor controllability due to the avalanche-like martensite transformation,and the effective control for the deformation of precision de-vices has been not yet mature.In this work,the phase field method was used to investigate the shape memory effects(SMEs)of NiTi SMAs undergoing grain size(GS)engineering,to obtain tunable one-way and stress-assisted two-way SMEs(OWSME and SATWSME).The OWSME and SATWSME of the systems with various gradient-nanograin structures and bimodal grain structure,as well as that with geometric gradients were simulated.The simulated results indicate that due to the GS dependences of martensite transformation and reorientation,the occurrence and expansion of martensite reorientation,martensite transformation and its reverse can be efficaciously controlled via the GS engineering.When combining the GS engineering and geometric gradient design,since the effects of GS and stress gradient can be su-perimposed or competing,and the responses of martensite reorientation,martensite transformation and its reverse to this are different,the OWSME and SATWSME of the geometrically graded systems with various nanograin structures can exhibit different improvements in controllability.In short,the reorienta-tion hardening modulus during OWSME is increased and the transformation temperature window during SATWSME is widened by GS engineering,indicating the improved controllability of SMEs.The optimal GS engineering schemes revealed in this work provide the basic reference and guidance for designing tun-able SMEs and producing NiTi-based driving devices catering to desired functional performance in various engineering fields. 展开更多
关键词 Phase field NITI Shape memory effect Grain size engineering Geometric gradient
原文传递
Rate Constitutive Theories of Orders n and 1n for Internal Polar Non-Classical Thermofluids without Memory
13
作者 Karan S. Surana Stephen W. Long J. N. Reddy 《Applied Mathematics》 2016年第16期2033-2077,共45页
In recent papers, Surana et al. presented internal polar non-classical Continuum theory in which velocity gradient tensor in its entirety was incorporated in the conservation and balance laws. Thus, this theory incorp... In recent papers, Surana et al. presented internal polar non-classical Continuum theory in which velocity gradient tensor in its entirety was incorporated in the conservation and balance laws. Thus, this theory incorporated symmetric part of the velocity gradient tensor (as done in classical theories) as well as skew symmetric part representing varying internal rotation rates between material points which when resisted by deforming continua result in dissipation (and/or storage) of mechanical work. This physics referred as internal polar physics is neglected in classical continuum theories but can be quite significant for some materials. In another recent paper Surana et al. presented ordered rate constitutive theories for internal polar non-classical fluent continua without memory derived using deviatoric Cauchy stress tensor and conjugate strain rate tensors of up to orders n and Cauchy moment tensor and its conjugate symmetric part of the first convected derivative of the rotation gradient tensor. In this constitutive theory higher order convected derivatives of the symmetric part of the rotation gradient tensor are assumed not to contribute to dissipation. Secondly, the skew symmetric part of the velocity gradient tensor is used as rotation rates to determine rate of rotation gradient tensor. This is an approximation to true convected time derivatives of the rotation gradient tensor. The resulting constitutive theory: (1) is incomplete as it neglects the second and higher order convected time derivatives of the symmetric part of the rotation gradient tensor;(2) first convected derivative of the symmetric part of the rotation gradient tensor as used by Surana et al. is only approximate;(3) has inconsistent treatment of dissipation due to Cauchy moment tensor when compared with the dissipation mechanism due to deviatoric part of symmetric Cauchy stress tensor in which convected time derivatives of up to order n are considered in the theory. The purpose of this paper is to present ordered rate constitutive theories for deviatoric Cauchy strain tensor, moment tensor and heat vector for thermofluids without memory in which convected time derivatives of strain tensors up to order n are conjugate with the Cauchy stress tensor and the convected time derivatives of the symmetric part of the rotation gradient tensor up to orders 1n are conjugate with the moment tensor. Conservation and balance laws are used to determine the choice of dependent variables in the constitutive theories: Helmholtz free energy density Φ, entropy density η, Cauchy stress tensor, moment tensor and heat vector. Stress tensor is decomposed into symmetric and skew symmetric parts and the symmetric part of the stress tensor and the moment tensor are further decomposed into equilibrium and deviatoric tensors. It is established through conjugate pairs in entropy inequality that the constitutive theories only need to be derived for symmetric stress tensor, moment tensor and heat vector. Density in the current configuration, convected time derivatives of the strain tensor up to order n, convected time derivatives of the symmetric part of the rotation gradient tensor up to orders 1n, temperature gradient tensor and temperature are considered as argument tensors of all dependent variables in the constitutive theories based on entropy inequality and principle of equipresence. The constitutive theories are derived in contravariant and covariant bases as well as using Jaumann rates. The nth and 1nth order rate constitutive theories for internal polar non-classical thermofluids without memory are specialized for n = 1 and 1n = 1 to demonstrate fundamental differences in the constitutive theories presented here and those used presently for classical thermofluids without memory and those published by Surana et al. for internal polar non-classical incompressible thermofluids. 展开更多
关键词 Rate Constitutive Theories Non-Classical Thermofluids Without memory Convected Time Derivatives Internal Rotation gradient Tensor Generators and Invariants Cauchy Moment Tensor
在线阅读 下载PDF
基于快速阻抗谱可解释性增强的锂离子电池健康状态估计
14
作者 陈轲娜 刘小江 +3 位作者 卜祥航 潘禹昊 李祎婧 孟锦豪 《储能科学与技术》 北大核心 2025年第12期4709-4720,共12页
直流备用电源是变电站安全稳定运行的重要保证,厂站中目前常用的铅酸蓄电池存在着寿命低、温度性能差的问题。锂离子电池的长循环寿命、高能量密度等特点,近年随着技术不断成熟,有望成为替代方案。电池健康状态(state of health,SOH)是... 直流备用电源是变电站安全稳定运行的重要保证,厂站中目前常用的铅酸蓄电池存在着寿命低、温度性能差的问题。锂离子电池的长循环寿命、高能量密度等特点,近年随着技术不断成熟,有望成为替代方案。电池健康状态(state of health,SOH)是锂离子电池储能系统可靠运行所需的核心参数,而电化学阻抗谱(electrochemical impedance spectroscopy,EIS)作为一种无损检测的方法,可用来评估电池的SOH并分析其老化的主要机制。针对静态EIS在电池工作情况下获取困难、带直流偏置的快速EIS可解释性不足的问题,本研究提出了一种基于快速阻抗谱可解释性增强的锂离子电池健康状态估计方法,在基本不影响直流电源工作的情况下快速完成电池老化预测与老化机制分析。首先,利用卷积-长短期记忆网络模型实现了动态到静态的EIS预测,卷积网络提取关键特征,长短期记忆神经网络捕捉序列间依赖关系,以实现电池老化机理解析;其次,提出了一种基于极限梯度提升算法及EIS的电池SOH估计方法,捕捉静态EIS与SOH之间的高度非线性映射关系,完成了电池SOH的在线评估,并依靠特征分裂增益量化不同频域特征的贡献以分析EIS的不同形式在预测结果中的重要性。实验表明,所提静态EIS预测方法的平均绝对误差(mean absolute error,MAE)为1.75×10-5;电池SOH估计结果的MAE仅为2.43%,电解液损失是所用电池老化的主要原因。 展开更多
关键词 快速阻抗谱 电池健康状态预测 老化机制分析 卷积-长短期记忆网络 极限梯度提升算法
在线阅读 下载PDF
基于LSTM-DDPG的再入制导方法
15
作者 闫循良 王宽 +1 位作者 张子剑 王培臣 《系统工程与电子技术》 北大核心 2025年第1期268-279,共12页
针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LST... 针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LSTM-DDPG)的再入制导方法。该方法采用纵、侧向制导解耦设计思想,在纵向制导方面,首先针对再入制导问题构建强化学习所需的状态、动作空间;其次,确定决策点和制导周期内的指令计算策略,并设计考虑综合性能的奖励函数;然后,引入LSTM网络构建强化学习训练网络,进而通过在线更新策略提升算法的多任务适用性;侧向制导则采用基于横程误差的动态倾侧反转方法,获得倾侧角符号。以美国超音速通用飞行器(common aero vehicle-hypersonic,CAV-H)再入滑翔为例进行仿真,结果表明:与传统数值预测-校正方法相比,所提制导方法具有相当的终端精度和更高的计算效率优势;与现有基于DDPG算法的再入制导方法相比,所提制导方法具有相当的计算效率以及更高的终端精度和鲁棒性。 展开更多
关键词 再入滑翔制导 强化学习 深度确定性策略梯度 长短期记忆网络
在线阅读 下载PDF
结合注意力机制和IPSO的石油化工过程变量预测方法
16
作者 杨琛 周宁 孔立新 《安全与环境学报》 北大核心 2025年第6期2179-2188,共10页
在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional... 在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional Long Short-Term Memory, BiLSTM)神经网络的预测模型,并特别引入注意力机制,以强化关键信息的表达。以北京市某化工企业初馏塔为研究对象,首先利用皮尔逊相关系数、最大信息系数筛选高相关性变量;同时,利用极端梯度提升(eXtreme Gradient Boosting, XGBoost)树构造关键衍生特征,增强输入变量的有效性。其次,采用BiLSTM建模,捕捉关键变量前后时序依赖性;同时结合IPSO优化隐藏层节点数、学习率、L2正则化系数和学习率调整因子,以获得最优超参数组合,实现对初馏塔换热终温的精确预测。试验结果表明,所提出的模型具有较强泛化能力,在预测准确率和稳定性方面均优于传统模型,不仅能有效避免陷入局部最优解,还能精准捕捉关键变量的变化趋势,可为实现石油化工过程关键变量的预测提供参考。 展开更多
关键词 安全工程 双向长短期记忆神经网络 注意力机制 极端梯度提升树 改进粒子群优化算法
原文传递
基于磁记忆检测方法的便携式钻杆检测设备 被引量:1
17
作者 蒋浩 张来斌 樊建春 《石油机械》 北大核心 2025年第1期119-124,共6页
当钻杆在井下出现穿刺渗漏、断裂等失效问题时,会因钻杆破裂而停止工作,对钻井施工造成严重损失,严重者可能会发生重大事故。为实现快速高效的钻杆表面缺陷检测,简单介绍了磁记忆检测方法检测金属缺陷的机理,在此基础上,介绍了一种搭载... 当钻杆在井下出现穿刺渗漏、断裂等失效问题时,会因钻杆破裂而停止工作,对钻井施工造成严重损失,严重者可能会发生重大事故。为实现快速高效的钻杆表面缺陷检测,简单介绍了磁记忆检测方法检测金属缺陷的机理,在此基础上,介绍了一种搭载磁记忆探头的便携式钻杆表面损伤检测装置。该装置可以高速、稳定地采集多种尺寸的钻杆表面磁记忆信号,并结合钻杆损伤磁记忆检测软件进行分析,实现对钻杆表面缺陷的可视化分析。通过开展相关试验,对钻杆带伤表面进行检测及数据分析,结果表明,该检测系统能够准确可靠地检测出钻杆表面各种缺陷,验证了磁记忆检测方法的可行性。所得结果可为钻杆表面缺陷检测提供一种有效的检测方法。 展开更多
关键词 钻柱 无损检测 磁记忆检测 检测装置 梯度信号 分析软件
在线阅读 下载PDF
基于CGAN和CNN-SE-BiLSTM的极端天气光伏功率超短期预测
18
作者 唐岚 黄力文 王成磊 《电气传动》 2025年第8期58-69,共12页
针对因极端天气出现概率较低导致的光伏发电数据不平衡的问题,提出一种K-means聚类算法和基于Wasserstein距离含梯度惩罚项的条件生成对抗网络实现极端天气数据的分类扩充,并提出了一种结合双向长短期记忆网络与卷积神经网络并融入通道... 针对因极端天气出现概率较低导致的光伏发电数据不平衡的问题,提出一种K-means聚类算法和基于Wasserstein距离含梯度惩罚项的条件生成对抗网络实现极端天气数据的分类扩充,并提出了一种结合双向长短期记忆网络与卷积神经网络并融入通道注意力机制的预测方法,旨在通过整合时空特征和动态调节特征通道重要性来提升光伏功率预测性能。首先,使用相关性分析和K-means算法对多种环境因素进行筛选,并对其进行划分以及添加标签。其次,选择聚类后数量较少的极端天气标签,使用CWGAN-GP对其进行样本扩充。最后,将扩充后的数据集作为训练集训练CNN-SE-BiLSTM预测模型,实现极端天气的光伏功率预测。以某光伏电站数据进行仿真建模,结果表明:使用CGAN-GP对原始极端天气训练集进行扩充有助于提高模型的预测精度。同时,CNN-SE-BiLSTM在五类天气中的预测误差较其他传统模型有更高的预测进度,说明所提方法适用于光伏功率超短期预测。 展开更多
关键词 光伏功率预测 极端天气生成 双向长短期记忆神经网络 Wasserstein距离含梯度惩罚项的条件生成对抗网络 K-MEANS聚类算法
在线阅读 下载PDF
融合nmODE的术后肺部并发症预测模型
19
作者 熊立鹏 徐修远 +2 位作者 牛颢 陈楠 章毅 《智能系统学报》 北大核心 2025年第1期198-205,共8页
为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码... 为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码,并提取其特征重要性。然后,使用长短时记忆神经网络对数据的相关特征依赖性进行分析,并提取处理后的特征。最后,利用nmODE的记忆和学习能力,对提取的特征进行深入分析,并得出最终的预测结果。通过实验评估,在肺部术后并发症数据集中,证明了提出模型的效果优于现有模型,同时可以为预测肺部手术后并发症的发生提供更准确的结果。 展开更多
关键词 疾病预测 异构表格数据 神经记忆常微分方程 极限梯度提升 长短时记忆神经网络 合成少数过采样技术 类别不平衡 病人预后
在线阅读 下载PDF
基于机器学习模型的河道水位预测方法及其应用
20
作者 陈国灿 卢建强 +5 位作者 邱超 赵兰兰 孙逸群 宋波 徐丹丹 石朋 《水电能源科学》 北大核心 2025年第6期15-18,共4页
鉴于准确的洪水预报结果对于降低洪涝灾害影响具有重要作用,以钱塘江下游曹娥江流域为例,构建了基于长短时记忆网络(LSTM)和梯度提升决策树(GBDT)的水位预测方法,利用23场实测降雨径流洪水数据进行方法训练及验证,并在此基础上分析了训... 鉴于准确的洪水预报结果对于降低洪涝灾害影响具有重要作用,以钱塘江下游曹娥江流域为例,构建了基于长短时记忆网络(LSTM)和梯度提升决策树(GBDT)的水位预测方法,利用23场实测降雨径流洪水数据进行方法训练及验证,并在此基础上分析了训练洪水场次对方法效果的影响。结果表明,构建的2种水位预测方法均具有较高的预测精度,当分别使用80%、20%数据进行训练和测试时(18场洪水训练,5场洪水测试),LSTM模型和GBDT模型在测试期和训练期的Nash-Sutcliffe系数(NNSE)均超过0.9,LSTM模型总体表现更好;用于训练模型的洪水场次显著影响实际水位预测效果,2种方法的预测效果均随着训练数据量的增加而增加,其中GBDT模型的测试期表现更好,可见GBDT更适用于数据有限的实际河道水位预测作业。 展开更多
关键词 机器学习 水位预测 长短期记忆神经网络 梯度提升决策树 曹娥江流域
原文传递
上一页 1 2 13 下一页 到第
使用帮助 返回顶部