期刊文献+
共找到251篇文章
< 1 2 13 >
每页显示 20 50 100
Non-negligible role of gradient porous structure in superelasticity deterioration and improvement of NiTi shape memory alloys 被引量:2
1
作者 Yintao Zhang Daixiu Wei +5 位作者 Yang Chen Lechun Xie Liqiang Wang Lai-Chang Zhang Weijie Lu Guang Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第19期48-63,共16页
Bone-mimicking gradient porous NiTi shape memory alloys(SMAs)are promising for orthopedic im-plants due to their distinctive superelastic functional properties.However,premature plastic deformation in weak areas such ... Bone-mimicking gradient porous NiTi shape memory alloys(SMAs)are promising for orthopedic im-plants due to their distinctive superelastic functional properties.However,premature plastic deformation in weak areas such as thinner struts,nodes,and sharp corners severely deteriorates the superelasticity of gradient porous NiTi SMAs.In this work,we prepared gradient porous NiTi SMAs with a porosity of 50%by additive manufacturing(AM)and achieved a remarkable improvement of superelasticity by a simple solution treatment regime.After solution treatment,phase transformation temperatures dropped signif-icantly,the dislocation density decreased,and partial intergranular Ti-rich precipitates were transferred into the grain.Compared to as-built samples,the strain recovery rate of solution-treated samples was nearly doubled at a pre-strain of 6%(up to 90%),and all obtained a stable recoverable strain of more than 4%.The remarkable superelasticity improvement was attributed to lower phase transformation tem-peratures,fewer dislocations,and the synergistic strengthening effect of intragranular multi-scale Ti-Ni precipitates.Notably,the gradient porous structure played a non-negligible role in both superelasticity deterioration and improvement.The microstructure evolution of the solution-treated central strut after constant 10 cycles and the origin of the stable superelastic response of gradient porous NiTi SMAs were revealed.This work provides an accessible strategy for improving the superelastic performance of gra-dient porous NiTi SMAs and proposes a key strategy for achieving such high-performance architectured materials. 展开更多
关键词 Shape memory alloys SUPERELASTICITY gradient porous structure Solution treatment Stable recoverable strain
原文传递
Effect of Texture on the Grain-Size-Dependent Functional Properties of NiTi Shape Memory Alloys and Texture Gradient Design:A Phase Field Study 被引量:1
2
作者 Bo Xu Beihai Huang +1 位作者 Chong Wang Qingyuan Wang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第1期10-32,共23页
Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys(SMAs),and the textured nanocrystalline NiTi has been extensively employed in engineering.However,the effect of texture,and the... Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys(SMAs),and the textured nanocrystalline NiTi has been extensively employed in engineering.However,the effect of texture,and the joint effect of grain size(GS)and texture on the functional properties of NiTi SMAs and the corresponding microscopic mechanisms have not been clearly understood yet.In this work,based on the phase field method,the effect of texture on the GS-dependent functional properties of NiTi SMAs,including super-elasticity(SE),one-way shape memory effect(OWSME),and stress-assisted two-way shape memory effect(SATWSME),is investigated,and the corresponding microscopic mechanisms are revealed.Moreover,the samples with discrete geometrical gradients and/or texture gradients are designed to achieve graded functional properties.The simulation results indicate that the dependence of functional properties on texture is due to the effect of crystallographic orientation on martensite transformation and reorientation,which can lead to different inelastic strains.In the designed samples with texture gradients,the stress–strain responses of sheets with various textures are different,allowing for the coordination of overall deformation of the sample by combining such sheets,with varying inelastic deformation degrees.Thus,the overall response of the sample differs from that without texture gradient,leading to the achievement of graded functional properties.The simulation results and new findings in this work contribute to a deeper understanding of the effects of texture,GS,and their interaction on the functional properties of SMAs,and provide valuable reference for the design and development of SMA-based devices with desired functional properties. 展开更多
关键词 Phase field NiTi shape memory alloy TEXTURE Grain size Functional property Texture gradient
原文传递
Inverse gradient nanostructure through gradient cold rolling demonstrated with superelasticity improvement in Ti-50.3Ni shape memory alloy
3
作者 Jian Zhang Ke Liu +6 位作者 Tong Chen Chen Xu Chen Chen Dingshun Yan Ann-Christin Dippel Jun Sun Xiangdong Ding 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第18期233-244,共12页
Gradient nanostructured(GNS)metallic materials are commonly achieved by gradient severe plastic de-formation with a gradient of nano-to micro-sized structural units from the surface/boundaries to the center.Certainly,... Gradient nanostructured(GNS)metallic materials are commonly achieved by gradient severe plastic de-formation with a gradient of nano-to micro-sized structural units from the surface/boundaries to the center.Certainly,such GNS can be inversely positioned,which however has not yet been reported.The present work reports a facile method in deformation gradient control to attain inverse gradient nanostructured(iGNS),i.e.,tailoring the cross-section shape,successfully demonstrated in Ti-50.3Ni shape memory alloy(SMA)wire through cold rolling.The microstructure of the rolled wire is characterized by a macroscopic inverse gradient from boundaries to the center—the average sizes of grain and martensite domain evolve from micrometer to nanometer scale.The iGNS leads to a gradient martensitic transforma-tion upon stress,which has been proved to be effectively reversible via in-situ bending scanning electron microscopy(SEM)observations.The iGNS Ti-50.3Ni SMA exhibits quasi-linear superelasticity(SE)in a wide temperature range from 173 to 423 K.Compared to uniform cold rolling,the gradient cold rolling with less overall plasticity further improves SE strain(up to 4.8%)and SE efficiency.In-situ tensiling synchrotron X-ray diffraction(SXRD)analysis reveals the underlying mechanisms of the unique SE in the iGNS SMAs.It provides a new design strategy to realize excellent SE in SMAs and sheds light on the advanced GNS metallic materials. 展开更多
关键词 Inverse gradient nanostructured metallics gradient cold rolling Shape memory alloys gradient martensitic transformation SUPERELASTICITY
原文传递
Steel Surface Defect Detection Using Learnable Memory Vision Transformer
4
作者 Syed Tasnimul Karim Ayon Farhan Md.Siraj Jia Uddin 《Computers, Materials & Continua》 SCIE EI 2025年第1期499-520,共22页
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o... This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems. 展开更多
关键词 Learnable memory Vision Transformer(LMViT) Convolutional Neural Networks(CNN) metal surface defect detection deep learning computer vision image classification learnable memory gradient clipping label smoothing t-SNE visualization
在线阅读 下载PDF
GLOBAL CONVERGENCE RESULTS OF A THREE TERM MEMORY GRADIENT METHOD WITH A NON-MONOTONE LINE SEARCH TECHNIQUE 被引量:12
5
作者 孙清滢 《Acta Mathematica Scientia》 SCIE CSCD 2005年第1期170-178,共9页
In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Comb... In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient. 展开更多
关键词 Non-linear programming three term memory gradient method convergence non-monotone line search technique numerical experiment
在线阅读 下载PDF
Compressive mechanical properties and shape memory effect of NiTi gradient lattice structures fabricated by laser powder bed fusion 被引量:11
6
作者 Wei Chen Dongdong Gu +3 位作者 Jiankai Yang Qin Yang Jie Chen Xianfeng Shen 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期189-205,共17页
Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanica... Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanical equipment application fields. In this study, we designed four gradient lattice structures (GLSs) using the topology optimization method, including the unidirectional GLS, the bi-directional increasing GLS, the bi-directional decreasing GLS and the none-GLS. All GLSs were manufactureed by laser powder bed fusion (LPBF). The uniaxial compression tests and finite element analysis were conducted to investigate the influence of gradient distribution features on deformation modes and energy absorption performance of GLSs. The results showed that, compared with the 45° shear fracture characteristic of the none-GLS, the unidirectional GLS, the bi-directional increasing GLS and the bi-directional decreasing GLS had the characteristics of the layer-by-layer fracture, showing considerably improved energy absorption capacity. The bi-directional increasing GLS showed a unique combination of shear fracture and layer-by-layer fracture, having the optimal energy absorption performance with energy absorption and specific energy absorption of 235.6 J and 9.5 J g-1 at 0.5 strain, respectively. Combined with the shape memory effect of NiTi alloy, multiple compression-heat recovery experiments were carried out to verify the shape memory function of LPBF-processed NiTi GLSs. These findings have potential value for the future design of GLSs and the realization of shape memory function of NiTi components through laser AM. 展开更多
关键词 additive manufacturing laser powder bed fusion gradient lattice structures deformation behavior shape memory effect
在线阅读 下载PDF
Toward tunable shape memory effect of NiTi alloy by grain size engineering:A phase field study
7
作者 Bo Xu Chong Wang Qingyuan Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第1期276-289,共14页
The inelastic deformations of shape memory alloys(SMAs)always show poor controllability due to the avalanche-like martensite transformation,and the effective control for the deformation of precision de-vices has been ... The inelastic deformations of shape memory alloys(SMAs)always show poor controllability due to the avalanche-like martensite transformation,and the effective control for the deformation of precision de-vices has been not yet mature.In this work,the phase field method was used to investigate the shape memory effects(SMEs)of NiTi SMAs undergoing grain size(GS)engineering,to obtain tunable one-way and stress-assisted two-way SMEs(OWSME and SATWSME).The OWSME and SATWSME of the systems with various gradient-nanograin structures and bimodal grain structure,as well as that with geometric gradients were simulated.The simulated results indicate that due to the GS dependences of martensite transformation and reorientation,the occurrence and expansion of martensite reorientation,martensite transformation and its reverse can be efficaciously controlled via the GS engineering.When combining the GS engineering and geometric gradient design,since the effects of GS and stress gradient can be su-perimposed or competing,and the responses of martensite reorientation,martensite transformation and its reverse to this are different,the OWSME and SATWSME of the geometrically graded systems with various nanograin structures can exhibit different improvements in controllability.In short,the reorienta-tion hardening modulus during OWSME is increased and the transformation temperature window during SATWSME is widened by GS engineering,indicating the improved controllability of SMEs.The optimal GS engineering schemes revealed in this work provide the basic reference and guidance for designing tun-able SMEs and producing NiTi-based driving devices catering to desired functional performance in various engineering fields. 展开更多
关键词 Phase field NITI Shape memory effect Grain size engineering Geometric gradient
原文传递
基于LSTM-DDPG的再入制导方法
8
作者 闫循良 王宽 +1 位作者 张子剑 王培臣 《系统工程与电子技术》 北大核心 2025年第1期268-279,共12页
针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LST... 针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LSTM-DDPG)的再入制导方法。该方法采用纵、侧向制导解耦设计思想,在纵向制导方面,首先针对再入制导问题构建强化学习所需的状态、动作空间;其次,确定决策点和制导周期内的指令计算策略,并设计考虑综合性能的奖励函数;然后,引入LSTM网络构建强化学习训练网络,进而通过在线更新策略提升算法的多任务适用性;侧向制导则采用基于横程误差的动态倾侧反转方法,获得倾侧角符号。以美国超音速通用飞行器(common aero vehicle-hypersonic,CAV-H)再入滑翔为例进行仿真,结果表明:与传统数值预测-校正方法相比,所提制导方法具有相当的终端精度和更高的计算效率优势;与现有基于DDPG算法的再入制导方法相比,所提制导方法具有相当的计算效率以及更高的终端精度和鲁棒性。 展开更多
关键词 再入滑翔制导 强化学习 深度确定性策略梯度 长短期记忆网络
在线阅读 下载PDF
结合注意力机制和IPSO的石油化工过程变量预测方法
9
作者 杨琛 周宁 孔立新 《安全与环境学报》 北大核心 2025年第6期2179-2188,共10页
在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional... 在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional Long Short-Term Memory, BiLSTM)神经网络的预测模型,并特别引入注意力机制,以强化关键信息的表达。以北京市某化工企业初馏塔为研究对象,首先利用皮尔逊相关系数、最大信息系数筛选高相关性变量;同时,利用极端梯度提升(eXtreme Gradient Boosting, XGBoost)树构造关键衍生特征,增强输入变量的有效性。其次,采用BiLSTM建模,捕捉关键变量前后时序依赖性;同时结合IPSO优化隐藏层节点数、学习率、L2正则化系数和学习率调整因子,以获得最优超参数组合,实现对初馏塔换热终温的精确预测。试验结果表明,所提出的模型具有较强泛化能力,在预测准确率和稳定性方面均优于传统模型,不仅能有效避免陷入局部最优解,还能精准捕捉关键变量的变化趋势,可为实现石油化工过程关键变量的预测提供参考。 展开更多
关键词 安全工程 双向长短期记忆神经网络 注意力机制 极端梯度提升树 改进粒子群优化算法
原文传递
基于磁记忆检测方法的便携式钻杆检测设备 被引量:1
10
作者 蒋浩 张来斌 樊建春 《石油机械》 北大核心 2025年第1期119-124,共6页
当钻杆在井下出现穿刺渗漏、断裂等失效问题时,会因钻杆破裂而停止工作,对钻井施工造成严重损失,严重者可能会发生重大事故。为实现快速高效的钻杆表面缺陷检测,简单介绍了磁记忆检测方法检测金属缺陷的机理,在此基础上,介绍了一种搭载... 当钻杆在井下出现穿刺渗漏、断裂等失效问题时,会因钻杆破裂而停止工作,对钻井施工造成严重损失,严重者可能会发生重大事故。为实现快速高效的钻杆表面缺陷检测,简单介绍了磁记忆检测方法检测金属缺陷的机理,在此基础上,介绍了一种搭载磁记忆探头的便携式钻杆表面损伤检测装置。该装置可以高速、稳定地采集多种尺寸的钻杆表面磁记忆信号,并结合钻杆损伤磁记忆检测软件进行分析,实现对钻杆表面缺陷的可视化分析。通过开展相关试验,对钻杆带伤表面进行检测及数据分析,结果表明,该检测系统能够准确可靠地检测出钻杆表面各种缺陷,验证了磁记忆检测方法的可行性。所得结果可为钻杆表面缺陷检测提供一种有效的检测方法。 展开更多
关键词 钻柱 无损检测 磁记忆检测 检测装置 梯度信号 分析软件
在线阅读 下载PDF
基于CGAN和CNN-SE-BiLSTM的极端天气光伏功率超短期预测
11
作者 唐岚 黄力文 王成磊 《电气传动》 2025年第8期58-69,共12页
针对因极端天气出现概率较低导致的光伏发电数据不平衡的问题,提出一种K-means聚类算法和基于Wasserstein距离含梯度惩罚项的条件生成对抗网络实现极端天气数据的分类扩充,并提出了一种结合双向长短期记忆网络与卷积神经网络并融入通道... 针对因极端天气出现概率较低导致的光伏发电数据不平衡的问题,提出一种K-means聚类算法和基于Wasserstein距离含梯度惩罚项的条件生成对抗网络实现极端天气数据的分类扩充,并提出了一种结合双向长短期记忆网络与卷积神经网络并融入通道注意力机制的预测方法,旨在通过整合时空特征和动态调节特征通道重要性来提升光伏功率预测性能。首先,使用相关性分析和K-means算法对多种环境因素进行筛选,并对其进行划分以及添加标签。其次,选择聚类后数量较少的极端天气标签,使用CWGAN-GP对其进行样本扩充。最后,将扩充后的数据集作为训练集训练CNN-SE-BiLSTM预测模型,实现极端天气的光伏功率预测。以某光伏电站数据进行仿真建模,结果表明:使用CGAN-GP对原始极端天气训练集进行扩充有助于提高模型的预测精度。同时,CNN-SE-BiLSTM在五类天气中的预测误差较其他传统模型有更高的预测进度,说明所提方法适用于光伏功率超短期预测。 展开更多
关键词 光伏功率预测 极端天气生成 双向长短期记忆神经网络 Wasserstein距离含梯度惩罚项的条件生成对抗网络 K-MEANS聚类算法
在线阅读 下载PDF
融合nmODE的术后肺部并发症预测模型
12
作者 熊立鹏 徐修远 +2 位作者 牛颢 陈楠 章毅 《智能系统学报》 北大核心 2025年第1期198-205,共8页
为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码... 为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码,并提取其特征重要性。然后,使用长短时记忆神经网络对数据的相关特征依赖性进行分析,并提取处理后的特征。最后,利用nmODE的记忆和学习能力,对提取的特征进行深入分析,并得出最终的预测结果。通过实验评估,在肺部术后并发症数据集中,证明了提出模型的效果优于现有模型,同时可以为预测肺部手术后并发症的发生提供更准确的结果。 展开更多
关键词 疾病预测 异构表格数据 神经记忆常微分方程 极限梯度提升 长短时记忆神经网络 合成少数过采样技术 类别不平衡 病人预后
在线阅读 下载PDF
基于机器学习模型的河道水位预测方法及其应用
13
作者 陈国灿 卢建强 +5 位作者 邱超 赵兰兰 孙逸群 宋波 徐丹丹 石朋 《水电能源科学》 北大核心 2025年第6期15-18,共4页
鉴于准确的洪水预报结果对于降低洪涝灾害影响具有重要作用,以钱塘江下游曹娥江流域为例,构建了基于长短时记忆网络(LSTM)和梯度提升决策树(GBDT)的水位预测方法,利用23场实测降雨径流洪水数据进行方法训练及验证,并在此基础上分析了训... 鉴于准确的洪水预报结果对于降低洪涝灾害影响具有重要作用,以钱塘江下游曹娥江流域为例,构建了基于长短时记忆网络(LSTM)和梯度提升决策树(GBDT)的水位预测方法,利用23场实测降雨径流洪水数据进行方法训练及验证,并在此基础上分析了训练洪水场次对方法效果的影响。结果表明,构建的2种水位预测方法均具有较高的预测精度,当分别使用80%、20%数据进行训练和测试时(18场洪水训练,5场洪水测试),LSTM模型和GBDT模型在测试期和训练期的Nash-Sutcliffe系数(NNSE)均超过0.9,LSTM模型总体表现更好;用于训练模型的洪水场次显著影响实际水位预测效果,2种方法的预测效果均随着训练数据量的增加而增加,其中GBDT模型的测试期表现更好,可见GBDT更适用于数据有限的实际河道水位预测作业。 展开更多
关键词 机器学习 水位预测 长短期记忆神经网络 梯度提升决策树 曹娥江流域
原文传递
基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型
14
作者 师国东 胡明茂 +3 位作者 宫爱红 龚青山 郭庆贺 谭浩 《计算机集成制造系统》 北大核心 2025年第9期3467-3484,共18页
为有效预测车辆油耗,提高燃油经济性,促进节能减排,提出一种基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型。该模型首先采用极端梯度提升树(XGBoost)算法提取车辆油耗特征,以优化模型的输入变量,提高模型的泛化性和鲁棒性。然后,利用... 为有效预测车辆油耗,提高燃油经济性,促进节能减排,提出一种基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型。该模型首先采用极端梯度提升树(XGBoost)算法提取车辆油耗特征,以优化模型的输入变量,提高模型的泛化性和鲁棒性。然后,利用多策略改进的鲸鱼优化算法(MSIWOA)对长短期记忆神经网络(LSTM)中的超参数进行自适应寻优,并将优化后的超参数代入LSTM中对车辆油耗进行建模预测。结合实际车辆油耗算例进行对比实验,结果表明,相对于其他对比模型,XGBoost-MSIWOA-LSTM预测模型预测精度更高,对降低车辆油耗具有一定的指导意义。 展开更多
关键词 油耗预测 极端梯度提升树 多策略改进的鲸鱼优化算法 长短期记忆神经网络 自适应寻优
在线阅读 下载PDF
SlimGC:面向分布式深度学习的梯度压缩优化策略
15
作者 白哲 于恩达 董德尊 《计算机学报》 北大核心 2025年第5期1168-1187,共20页
梯度压缩是缓解分布式深度学习中通信瓶颈的关键技术。然而,通过梯度压缩实现显著的性能改进仍然具有挑战性。在实际应用中,梯度压缩面临着以下几个挑战:(1)不能有效优化小规模张量通信的启动开销;(2)压缩操作可能会与张量计算竞争GPU资... 梯度压缩是缓解分布式深度学习中通信瓶颈的关键技术。然而,通过梯度压缩实现显著的性能改进仍然具有挑战性。在实际应用中,梯度压缩面临着以下几个挑战:(1)不能有效优化小规模张量通信的启动开销;(2)压缩操作可能会与张量计算竞争GPU资源,从而延迟梯度传输的启动时机;(3)它可能引发需要谨慎处理的模型精度问题。为了最大限度地发挥梯度压缩的优势并应对这些挑战,本文设计了SlimGC策略来用于通用梯度压缩增强。此外,为了避免对GPU算力和内存资源的争用,SlimGC将压缩操作卸载给CPU,并采用模型备份技术,该技术解除了工作节点间对模型参数的读取依赖,从而隐藏CPU压缩成本和部分通信开销。本文的实验是在一个拥有16个V100 GPU的集群上进行的。实验评估表明,对于典型的分布式深度学习训练任务,SlimGC将1bit和2bit压缩算法的训练吞吐量分别最高提高了74.3%和75.9%。此外,它实现了1.1%~2.3%的收敛精度提高,并减少了10.3%的GPU内存消耗。 展开更多
关键词 分布式深度学习 梯度压缩 分布式通信优化 压缩卸载 内存消耗
在线阅读 下载PDF
基于轻量级梯度提升机的锂离子电池状态联合估计
16
作者 庞松岩 肖传亮 +3 位作者 彭克 周强 陈佳佳 张新慧 《电力系统自动化》 北大核心 2025年第20期200-207,共8页
锂离子电池作为储能系统的重要组成部分,其荷电状态(SOC)和健康状态(SOH)的准确估计对提高电池的使用效率和安全性至关重要。为实现对锂电池SOC和SOH的精确估计,文中提出一种将轻量级梯度提升机(LightGBM)、卷积神经网络(CNN)与双向长... 锂离子电池作为储能系统的重要组成部分,其荷电状态(SOC)和健康状态(SOH)的准确估计对提高电池的使用效率和安全性至关重要。为实现对锂电池SOC和SOH的精确估计,文中提出一种将轻量级梯度提升机(LightGBM)、卷积神经网络(CNN)与双向长短期记忆(BiLSTM)网络相结合的锂离子电池SOC与SOH联合估计方法。首先,基于锂电池充电电压、充电时间以及电池表面温度等参数,提出了基于肯德尔相关系数的健康因子提取方法。其次,提出了CNN与BiLSTM网络相结合的SOH时序估计方法,通过局部特征提取与双向时序建模的结合提高了SOH的估计精度。再次,文中将SOH估计值作为SOC估计的输入特征,针对储能系统中锂离子电池大规模数据的处理需求,采用基于梯度提升框架的LightGBM算法实现SOC与SOH的联合估计,提升了估计的计算效率与响应速度。最后,基于实际电池数据集对所提联合估计模型进行验证,结果表明其具有较高的计算精度和较快的计算速度。 展开更多
关键词 锂离子电池 荷电状态 健康状态 状态估计 轻量级梯度提升机 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
基于增量学习的船舶能耗预测模型
17
作者 向鹏 陈辉 《武汉理工大学学报》 2025年第5期52-58,共7页
针对船舶能耗预测模型在复杂航行环境中因新数据流导致精度下降的问题,提出了一种基于增量学习的GEM-CNN-LSTM模型。首先构建CNN-LSTM模型,通过融合卷积神经网络与长短期记忆网络,验证了其在船舶能耗预测中的可行性。随后引入梯度记忆片... 针对船舶能耗预测模型在复杂航行环境中因新数据流导致精度下降的问题,提出了一种基于增量学习的GEM-CNN-LSTM模型。首先构建CNN-LSTM模型,通过融合卷积神经网络与长短期记忆网络,验证了其在船舶能耗预测中的可行性。随后引入梯度记忆片段(GEM)算法,使模型具备动态更新能力,既能适应新数据流,又能抑制模型更新对历史数据的遗忘。实验表明,GEM-CNN-LSTM模型在原始数据集上的决定系数(R2)从0.991稳定维持在0.993,未出现显著遗忘;在新增的4个任务中,预测精度显著提升,R2分别从0.927、0.911、0.933、0.884提高到0.979、0.989、0.981、0.980,有效增强了模型在变化环境中的适应性和预测准确性,为船舶能耗动态预测提供了更可靠的解决方案。 展开更多
关键词 能耗预测 增量学习 多变航行环境 梯度记忆片段
原文传递
基于LSTM-DDPG算法的四翼变掠角飞行器主动变形决策
18
作者 彭余萧 何真 仇靖雯 《北京航空航天大学学报》 北大核心 2025年第10期3504-3514,共11页
针对变体飞行器主动变形控制问题,提出一种基于长短期记忆(LSTM)网络深度确定性策略梯度(DDPG)算法的智能变形控制方法;以一种串置翼构型的四翼变掠角飞行器为研究对象,利用OPENVSP软件计算其几何模型和气动参数,并建立了飞行器动力学模... 针对变体飞行器主动变形控制问题,提出一种基于长短期记忆(LSTM)网络深度确定性策略梯度(DDPG)算法的智能变形控制方法;以一种串置翼构型的四翼变掠角飞行器为研究对象,利用OPENVSP软件计算其几何模型和气动参数,并建立了飞行器动力学模型;针对四翼变掠角飞行器的加速爬升过程,设计了基于LSTM-DDPG算法学习框架,并在对称变形条件下,针对纵向轨迹跟踪进行主动变形决策训练。仿真结果表明:应用于主动变形控制过程中的LSTMDDPG算法可以快速收敛并达到更高的平均奖励,且训练获得的主动变形控制器在四翼变掠角飞行器的轨迹跟踪任务中具有良好的控制效果。 展开更多
关键词 变体飞行器 飞行控制 深度强化学习 深度确定性策略梯度 长短期记忆递归神经网络
原文传递
基于自主探索的移动机器人路径规划研究 被引量:3
19
作者 陈浩 陈珺 刘飞 《计算机工程》 北大核心 2025年第1期60-70,共11页
移动机器人在路径规划过程中,当面对未知且动态变化的环境时,会存在与障碍物碰撞率高、易陷入局部最优等问题。针对这些问题,提出一种基于双延迟深度确定性策略梯度(TD3)算法的改进算法TD3pro,以提高移动机器人在未知动态环境下的路径... 移动机器人在路径规划过程中,当面对未知且动态变化的环境时,会存在与障碍物碰撞率高、易陷入局部最优等问题。针对这些问题,提出一种基于双延迟深度确定性策略梯度(TD3)算法的改进算法TD3pro,以提高移动机器人在未知动态环境下的路径规划性能。首先,引入长短期记忆(LSTM)神经网络并与TD3算法相结合,通过门结构筛选历史状态信息,并感知探测范围内障碍物的状态变化,帮助机器人更好地理解环境的动态变化和障碍物的移动模式,使移动机器人能够准确预测和响应动态障碍物的行为,从而降低与障碍物的碰撞率。其次,加入OU (Ornstein-Uhlenbeck)探索噪声,帮助移动机器人持续探索周围环境,增强移动机器人的探索能力和随机性。在此基础上,将单个经验池设置为成功、失败和临时3个经验池,以此提高有效经验样本的采样效率,进而减少训练时间。最后,在2个不同的动、静态障碍物混合场景中进行路径规划实验仿真。实验结果表明:场景1中该算法相较于深度确定性策略梯度(DDPG)算法以及TD3算法,模型收敛的回合数减少了100~200个,路径长度缩短了0.5~0.8,规划时间减少了1~4 s;场景2中该算法相较于TD3算法,模型收敛的回合数减少了100~300个,路径长度缩短了1~3,规划时间减少了4~8 s, DDPG算法失败,移动机器人无法成功抵达终点。由此可见,改进的算法具有更好的路径规划性能。 展开更多
关键词 移动机器人 路径规划 双延迟深度确定性策略梯度算法 长短期记忆神经网络 OU探索噪声
在线阅读 下载PDF
基于生成对抗网络和NGO-BiLSTM的少样本光伏功率短期预测
20
作者 邵欣洋 杨毅 鲁一宵 《昆明理工大学学报(自然科学版)》 北大核心 2025年第4期142-152,共11页
基于诸多光伏发电站存在数据完备性不足、数据样本质量不佳,导致光伏功率预测准确性受限的问题.提出了一种光伏功率超短期组合预测模型,该模型融合了基于梯度惩罚Wasserstein生成对抗网络(Wasserstein Generative Adversarial Network w... 基于诸多光伏发电站存在数据完备性不足、数据样本质量不佳,导致光伏功率预测准确性受限的问题.提出了一种光伏功率超短期组合预测模型,该模型融合了基于梯度惩罚Wasserstein生成对抗网络(Wasserstein Generative Adversarial Network with Gradient Penalty,WGAN-GP)模型及双向长短期记忆(Bidirectional Long Short-Term Memory Network,BiLSTM)模型的技术特点.首先,对光伏发电功率与不同天气变量间的相关性进行分析,选取辐射度、温度和风速这三个对光伏发电功率影响较大的天气变量作为特征输入,以提升模型的预测精度;其次,采用WGAN-GP模型来挖掘光伏出力实际数据集的内在结构及与其密切相关的环境和气象因素之间的深层次关联,利用生成的高质量数据样本扩充原有数据集,有效提升预测模型的泛化能力;最后,采用北方苍鹰优化算法(Northern Goshawk Optimization,NGO)对BiLSTM预测模型进行参数寻优,进一步提了高光伏发电功率的预测精度.实验结果表明:经过数据增强后NGO-BiLSTM模型的预测精度可有效提升. 展开更多
关键词 光伏功率预测 生成对抗网络 北方苍鹰算法 双向长短期记忆网络
原文传递
上一页 1 2 13 下一页 到第
使用帮助 返回顶部