In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) d...In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) data assimilation scheme, a smoothing term, equivalent to a penalty term, is introduced into the cost function to serve as a means of troubleshooting. A theoretical analysis is first performed to figure out what on earth results in the issue of "bull-eye", and then the meaning of such smoothing term is elucidated and the uniqueness of solution of the multigrid 3DVAR with the smoothing term added is discussed through the theoretical deduction for one-dimensional (1D) case, and two idealized data assimilation experiments (one- and two-dimensional (2D) cases). By exploring the relationship between the smoothing term and the recursive filter theoretically and practically, it is revealed why satisfied analysis results can be achieved by using such proposed solution for the issue of the multigrid 3DVAR.展开更多
In order to improve the efficiency of the Ocean Variational Assimilation System (OVALS), which has been widely used in various applications, an improved OVALS (OVALS2) is developed based on the recursive filter ...In order to improve the efficiency of the Ocean Variational Assimilation System (OVALS), which has been widely used in various applications, an improved OVALS (OVALS2) is developed based on the recursive filter (RF) algorithm. The first advantage of OVALS2 is that memory storage can be substantially reduced in practice because it implicitly computes the background error covariance matrix; the second advantage is that there is no inversion of the background error covariance by preconditioning the control variable. For comparing the effectiveness between OVALS2 and OVALS, a set of experiments was implemented by assimilating expendable bathythermograph (XBT) and ARGO data into the Tropical Pacific circulation model. The results show that the efficiency of OVALS2 is much higher than that of OVALS. The computational time and the computer storage in the assimilation process were reduced by 83% and 77%, respectively. Additionally, the corresponding results produced by the RF are almost as good as those obtained by OVALS. These results prove that OVALS2 is suitable for operational numerical oceanic forecasting.展开更多
Satellite altimetry missions at high latitude have opened new avenues for understanding the changes occurring over the ice-covered region.By incorporating Arctic satellite remote sensing data-including sea surface tem...Satellite altimetry missions at high latitude have opened new avenues for understanding the changes occurring over the ice-covered region.By incorporating Arctic satellite remote sensing data-including sea surface temperature(SST),sea surface height anomaly(SSHA),and sea surface salinity(SSS).This study employs a variational method to reconstruct the three-dimensional thermohaline structure of the Arctic Ocean.Compared to the Regional Arctic Reanalysis(RARE),the reconstruction well captures both the horizontal and vertical temperature and salinity structures in the Arctic.It demonstrates superior skill over RARE,when compared with Argo profiles and Ice-Tethered Profiler(ITP)observations.The reconstruction is particularly effective in ice-covered regions,where it more accurately captures the transition from Pacific water to Atlantic water compared to RARE.These findings underscore the potential of applying Arctic satellite data to reconstruct vertical thermohaline structures in the Arctic,particularly in areas due to lack of the subsurface observation reanalysis data exhibit significant biases.As Arctic satellite observations continue to advance,the applications of this method are becoming increasingly promising,which is useful for monitoring the ice-covered region environment and can be applied to oceanographic research.展开更多
A large number of observational analyses have shown that lightning data can be used to indicate areas of deep convection. It is important to assimilate observed lightning data into numerical models, so that more small...A large number of observational analyses have shown that lightning data can be used to indicate areas of deep convection. It is important to assimilate observed lightning data into numerical models, so that more small-scale information can be incorporated to improve the quality of the initial condition and the subsequent forecasts. In this study, the empirical relationship between flash rate, water vapor mixing ratio, and graupel mixing ratio was used to adjust the model relative humidity, which was then assimilated by using the three-dimensional variational data assimilation system of the Weather Research and Forecasting model in cycling mode at 10-min intervals. To find the appropriate assimilation time-window length that yielded significant improvement in both the initial conditions and subsequent forecasts, four experiments with different assimilation time-window lengths were conducted for a squall line case that occurred on 10 July 2007 in North China. It was found that 60 min was the appropriate assimilation time-window length for this case, and longer assimilation window length was unnecessary since no further improvement was present. Forecasts of 1-h accumulated precipitation during the assimilation period and the subsequent 3-h accumulated precipitation were significantly improved compared with the control experiment without lightning data assimilation. The simulated reflectivity was optimal after 30 min of the forecast, it remained optimal during the following 42 min, and the positive effect from lightning data assimilation began to diminish after 72 min of the forecast. Overall,the improvement from lightning data assimilation can be maintained for about 3 h.展开更多
Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems....Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems.Therefore,there is an urgent need to develop advanced tools to characterize the spatio-temporal variations of three-dimensional(3D)DO.To address this challenge,this study introduces the Light Gradient Boosting Machine(Light-GBM),combining satellite remote sensing and reanalysis data with Biogeochemical Argo data to accurately reconstruct the 3D DO structure in the Mediterranean Sea from 2010 to 2022.Various environmental parameters are incorporated as inputs,including spatiotemporal features,meteorological characteristics,and ocean color properties.The LightGBM model demonstrates excellent performance on the testing dataset with R^(2) of 0.958.The modeled DO agrees better with in-situ measurements than products from numerical models.Using the Shapley Additive exPlanations method,the contributions of input features are assessed.Sea surface temperatures provide a correlation with DO at the sea surface,while spatial coordinates supplement the view of the ocean interior.Based on the reconstructed 3D DO structure,we identify an oxygen minimum zone in the western Mediterranean that expands continuously,reaching depths of approximately 300–800 m.The western Mediterranean exhibits a significant declining trend.This study enhances marine environmental evidence by proposing a precise and cost-effective approach for reconstructing 3D DO,thereby offering insights into the dynamics of DO variations under changing climatic conditions.展开更多
In this paper,a scheme of dual-Doppler radar wind analysis based on a three-dimensional variational method is proposed and performed in two steps.First,the horizontal wind field is simultaneously recovered through min...In this paper,a scheme of dual-Doppler radar wind analysis based on a three-dimensional variational method is proposed and performed in two steps.First,the horizontal wind field is simultaneously recovered through minimizing a cost function defined as a radial observation term with the standard conjugate gradient method,avoiding a weighting parameter specification step.Compared with conventional dual-Doppler wind synthesis approaches,this variational method minimizes errors caused by interpolation from radar observation to analysis grid in the iterative solution process,which is one of the main sources of errors.Then,through the accelerated Liebmann method,the vertical velocity is further reestimated as an extra step by solving the Poisson equation with impermeable conditions imposed at the ground and near the tropopause.The Poisson equation defined by the second derivative of the vertical velocity is derived from the mass continuity equation.Compared with the method proposed by O’Brien,this method is less sensitive to the uncertainty of the boundary conditions and has better stability and reliability.Furthermore,the method proposed in this paper is applied to Doppler radar observation of a squall line process.It is shown that the retrieved vertical wind profile agrees well with the vertical profile obtained with the velocity–azimuth display(VAD)method,and the retrieved radial velocity as well as the analyzed positive and negative velocity centers and horizontal wind shear of the squall line are in accord with radar observations.There is a good correspondence between the divergence field of the derived wind field and the vertical velocity.And,the horizontal and vertical circulations within and around the squall line,as well as strong updrafts,the associated downdrafts,and associated rear inflow of the bow echo,are analyzed well.It is worth mentioning that the variational method in this paper can be applied to simultaneously synthesize the three-dimensional wind field from multiple-Doppler radar observations.展开更多
The scientific design and preliminary results of the data assimilation component of the Global-Regional Prediction and Assimilation System (GRAPES) recently developed in China Meteorological Administration (CMA) are p...The scientific design and preliminary results of the data assimilation component of the Global-Regional Prediction and Assimilation System (GRAPES) recently developed in China Meteorological Administration (CMA) are presented in this paper. This is a three-dimensional variational (3DVar) assimilation system set up on global and regional grid meshes favorable for direct assimilation of the space-based remote sensing data and matching the frame work of the prediction model GRAPES. The state variables are assumed to decompose balanced and unbalanced components. By introducing a simple transformation from the state variables to the control variables with a recursive or spectral filter, the convergence rate of iteration for minimization of the cost function in 3DVar is greatly accelerated. The definition of dynamical balance depends on the characteristic scale of the circulation considered. The ratio of the balanced to the unbalanced parts is controlled by the prescribed statistics of background errors. Idealized trials produce the same results as the analytic solution. The results of real data case studies show the capability of the system to improve analysis compared to the traditional schemes. Finally, further development of the system is discussed.展开更多
The dynamical constrains in three-dimensional variational data assimilation are discussed when considering the impact of stream divergence and convergence on the pressure and wind fields. For the analysis of severe tr...The dynamical constrains in three-dimensional variational data assimilation are discussed when considering the impact of stream divergence and convergence on the pressure and wind fields. For the analysis of severe tropical cyclone, frontal structures, and other rapidly changing structures, the geostrophic balance and linear balance cannot properly represent the relationship between wind and pressure fields. However, the nonlinear balance incremental equation takes into account the information of flow-dependent background, and makes response to the flow-dependent background covariance in the 3D-Var system. Results indicate that the application of the nonlinear balance equation to 3D-Var system improves the quality of severe tropical cyclone assimilation system, which has some positive effects on intensity prediction of tropical cyclones.展开更多
By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is propose...By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.展开更多
This work addresses the problem of estimating the states of nonlinear dynamic systems with sparse observations.We present a hybrid three-dimensional variation(3DVar) and particle piltering(PF) method,which combine...This work addresses the problem of estimating the states of nonlinear dynamic systems with sparse observations.We present a hybrid three-dimensional variation(3DVar) and particle piltering(PF) method,which combines the advantages of 3DVar and particle-based filters.By minimizing the cost function,this approach will produce a better proposal distribution of the state.Afterwards the stochastic resampling step in standard PF can be avoided through a deterministic scheme.The simulation results show that the performance of the new method is superior to the traditional ensemble Kalman filtering(EnKF) and the standard PF,especially in highly nonlinear systems.展开更多
The three-dimensional structure and the seasonal variation of the North Pacific meridional overturning circulation (NPMOC) are analyzed based on the Simple Ocean Data Assimilation data and Argo profiling float data....The three-dimensional structure and the seasonal variation of the North Pacific meridional overturning circulation (NPMOC) are analyzed based on the Simple Ocean Data Assimilation data and Argo profiling float data. The NPMOC displays a multi-cell structure with four cells in the North Pacific altogether. The TC and the STC are a strong clockwise meridional cell in the low latitude ocean and a weaker clockwise meridional cell between 7°N and 18°N, respectively, while the DTC and the subpolar cell are a weaker anticlockwise meridional cell between 3°N and 15°N and a weakest anticlockwise meridional cell between 35°N and 50°N, respectively. The DTC, the TC and the STC are all of very strong seasonal variations. As to the DTC, the southward transport is strongest in fall and weakest in spring. For the TC, the northward transport is strongest in winter and weakest in spring, while the southward transport is strongest in fall and weakest in spring, which is associated with the strong southward fiow of the DTC in fall. As the STC, the northward transport is strongest in winter and weakest in summer, while the southward transport is strongest in summer and weakest in spring. This seasonal difference may be associated with the DTC. The zonal wind stress and the east-west slope of sea level play important roles in the seasonal variations of the TC, the STC and the DTC.展开更多
As in-situ observations are sparse,targeted observations of a specific mesoscale eddy are rare.Therefore,it is difficult to study the three-dimensional structure of moving mesoscale eddies.From April to September 2014...As in-situ observations are sparse,targeted observations of a specific mesoscale eddy are rare.Therefore,it is difficult to study the three-dimensional structure of moving mesoscale eddies.From April to September 2014,an anticyclonic eddy located at 135°E-155°E,26°N-42°N was observed using 17 rapidsampling Argo floats,and the spatiotemporal variations in the three-dimensional structure were studied.The results are as follows:(1)the eddy was identified and tracked using satellite altimeter data.It had a lifetime of 269 days and an average radius of 91.5 km.The lifetime of the eddy can be divided into three phases,i.e.,the initiation,maturity,and termination phases.The depth of its influence reached 1000 m;(2)the Argo profiles were divided into seven periods(approximately 20 days in each)for composite analysis,and the composite Argo profiles and CARS2009(CSIRO Atlas of Regional Seas)climatology data were merged following the data-interpolating variational analysis(DIVA)method to reconstruct the three-dimensional structure.The temperature and salinity anomaly cores of the anticyclonic mesoscale eddy are located from 400 to 600 m.From 800 to 900 m,there is an area of low salinity at the center of the eddy.A high concentration anomaly of dissolved oxygen was located at approximately 250 m;(3)to better understand the features of the eddy and its interaction with the surroundings,we calculated the anomalous velocity of the geostrophic flow and the heat,salt,dissolved oxygen transport anomaly,and discussed the eddy's origin and its adjustments to topography.The maximum heat,salt,and oxygen transport caused by eddy were 9.37×10^11 W,3.08×10^3 kg/s,and 2.70×10^2 kg/s,which all occurred during the termination phase.This study highlights the applicability of using Argo floats to understand the three-dimensional structure thermohaline features of eddies in the North Pacific.展开更多
In the framework of upper bound theorem of limit analysis, the progressive collapse of shallow rectangular tunnels with double-layer rock mass has been theoretically analyzed based on the three-dimensional (3D) veloci...In the framework of upper bound theorem of limit analysis, the progressive collapse of shallow rectangular tunnels with double-layer rock mass has been theoretically analyzed based on the three-dimensional (3D) velocity discontinuity surfaces. According to the virtual work principle, the difference theorem and the variation method, the collapse surface of double-layer rock mass is determined based on the Hoek-Brown failure criterion. The formula can be degenerated to a single-layer rock collapsing problem when the rock mass is homogeneous. To estimate the validity of the result, the numerical simulation software PLAXIS 3D is used to simulate the collapse of shallow tunnels with double-layer rock mass, and the comparative analysis shows that numerical results are in good agreement with upper-bound solutions. According to the results of parametric analysis, the potential range of collapse of a double-layer rock mass above a shallow cavity decreases with a decrease in A1/A2,σci1/σci2 and σtm1/σtm2 and an increase in B1/B2,γ1/γ2. The range will decrease with a decrease in support pressure q and increase with a decrease in surface overload σs. Therefore, reinforced supporting is beneficial to improve the stability of the cavity during actual construction.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
In this paper,an advanced satellite navigation filter design,referred to as the Variational Bayesian Maximum Correntropy Extended Kalman Filter(VBMCEKF),is introduced to enhance robustness and adaptability in scenario...In this paper,an advanced satellite navigation filter design,referred to as the Variational Bayesian Maximum Correntropy Extended Kalman Filter(VBMCEKF),is introduced to enhance robustness and adaptability in scenarios with non-Gaussian noise and heavy-tailed outliers.The proposed design modifies the extended Kalman filter(EKF)for the global navigation satellite system(GNSS),integrating the maximum correntropy criterion(MCC)and the variational Bayesian(VB)method.This adaptive algorithm effectively reduces non-line-of-sight(NLOS)reception contamination and improves estimation accuracy,particularly in time-varying GNSS measurements.Experimental results show that the proposed method significantly outperforms conventional approaches in estimation accuracy under heavy-tailed outliers and non-Gaussian noise.By combining MCC with VB approximation for real-time noise covariance estimation using fixed-point iteration,the VBMCEKF achieves superior filtering performance in challenging GNSS conditions.The method’s adaptability and precision make it ideal for improving satellite navigation performance in stochastic environments.展开更多
A tolerance modeling method of geometric variations within three-dimensional(3D) tolerance domain is proposed.According to the classification method of feature variations and classes of invariance or symmetry in the n...A tolerance modeling method of geometric variations within three-dimensional(3D) tolerance domain is proposed.According to the classification method of feature variations and classes of invariance or symmetry in the new generation Geometrical Product Specifications(GPS) system,the proposed method is based on the Small Displacement Torsor(SDT) concept,and SDT is used to represent the geometric deviations between the nominal feature and the fitting feature. Furthermore,the variation zones of several kinds complex or irregular geometric features are constructed,and the corresponding tolerance modeling methods are discussed respectively. Finally,an example is presented to verify the efficiency of the presented method for modeling 3D dimensional and geometrical tolerances.The proposed modeling method based on the complete mathematical foundation conforms with the design philosophy and principle of the new generation GPS standards system.展开更多
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr...The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.展开更多
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ...Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.展开更多
The purpose of this article is to introduce a new method with a self-adaptive stepsize for approximating a common solution of monotone inclusion problems and variational inequality problems in reflexive Banach spaces....The purpose of this article is to introduce a new method with a self-adaptive stepsize for approximating a common solution of monotone inclusion problems and variational inequality problems in reflexive Banach spaces.The strong convergence result for our method is established under some standard assumptions without any requirement of the knowledge of the Lipschitz constant of the mapping.Several numerical experiments are provided to verify the advantages and efficiency of proposed algorithms.展开更多
基金The National Basic Research Program of China under contract No. 2013CB430304the National High-Tech R&D Program of China under contract No. 2013AA09A505the National Natural Science Foundation of China under contract Nos 41030854,40906015,40906016,41106005 and 41176003
文摘In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) data assimilation scheme, a smoothing term, equivalent to a penalty term, is introduced into the cost function to serve as a means of troubleshooting. A theoretical analysis is first performed to figure out what on earth results in the issue of "bull-eye", and then the meaning of such smoothing term is elucidated and the uniqueness of solution of the multigrid 3DVAR with the smoothing term added is discussed through the theoretical deduction for one-dimensional (1D) case, and two idealized data assimilation experiments (one- and two-dimensional (2D) cases). By exploring the relationship between the smoothing term and the recursive filter theoretically and practically, it is revealed why satisfied analysis results can be achieved by using such proposed solution for the issue of the multigrid 3DVAR.
基金supported by the Chinese Academy of Science(Contract No. KZCX2-YW-202)the 973 Pro-gram (Grant No. 2006CB403606)the National Natural Science Foundation of China (Grant Nos. 40606008,40776011)
文摘In order to improve the efficiency of the Ocean Variational Assimilation System (OVALS), which has been widely used in various applications, an improved OVALS (OVALS2) is developed based on the recursive filter (RF) algorithm. The first advantage of OVALS2 is that memory storage can be substantially reduced in practice because it implicitly computes the background error covariance matrix; the second advantage is that there is no inversion of the background error covariance by preconditioning the control variable. For comparing the effectiveness between OVALS2 and OVALS, a set of experiments was implemented by assimilating expendable bathythermograph (XBT) and ARGO data into the Tropical Pacific circulation model. The results show that the efficiency of OVALS2 is much higher than that of OVALS. The computational time and the computer storage in the assimilation process were reduced by 83% and 77%, respectively. Additionally, the corresponding results produced by the RF are almost as good as those obtained by OVALS. These results prove that OVALS2 is suitable for operational numerical oceanic forecasting.
基金The National Key R&D Program of China under contract No.2022YFE0106400the China Scholarship Council under contract No.202206710071+2 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province under contract No.KYCX23_0657the Special Founds for Creative Research under contract No.2022C61540the Opening Project of the Key Laboratory of Marine Environmental Information Technology under contract No.521037412.
文摘Satellite altimetry missions at high latitude have opened new avenues for understanding the changes occurring over the ice-covered region.By incorporating Arctic satellite remote sensing data-including sea surface temperature(SST),sea surface height anomaly(SSHA),and sea surface salinity(SSS).This study employs a variational method to reconstruct the three-dimensional thermohaline structure of the Arctic Ocean.Compared to the Regional Arctic Reanalysis(RARE),the reconstruction well captures both the horizontal and vertical temperature and salinity structures in the Arctic.It demonstrates superior skill over RARE,when compared with Argo profiles and Ice-Tethered Profiler(ITP)observations.The reconstruction is particularly effective in ice-covered regions,where it more accurately captures the transition from Pacific water to Atlantic water compared to RARE.These findings underscore the potential of applying Arctic satellite data to reconstruct vertical thermohaline structures in the Arctic,particularly in areas due to lack of the subsurface observation reanalysis data exhibit significant biases.As Arctic satellite observations continue to advance,the applications of this method are becoming increasingly promising,which is useful for monitoring the ice-covered region environment and can be applied to oceanographic research.
基金National Key Basic Research and Development(973)Program of China(2014CB441406)National Natural Science Foundation of China(91537209 and 41675001)Basic Research Fund of Chinese Academy of Meteorological Sciences(2016Z002and 2016Y008)
文摘A large number of observational analyses have shown that lightning data can be used to indicate areas of deep convection. It is important to assimilate observed lightning data into numerical models, so that more small-scale information can be incorporated to improve the quality of the initial condition and the subsequent forecasts. In this study, the empirical relationship between flash rate, water vapor mixing ratio, and graupel mixing ratio was used to adjust the model relative humidity, which was then assimilated by using the three-dimensional variational data assimilation system of the Weather Research and Forecasting model in cycling mode at 10-min intervals. To find the appropriate assimilation time-window length that yielded significant improvement in both the initial conditions and subsequent forecasts, four experiments with different assimilation time-window lengths were conducted for a squall line case that occurred on 10 July 2007 in North China. It was found that 60 min was the appropriate assimilation time-window length for this case, and longer assimilation window length was unnecessary since no further improvement was present. Forecasts of 1-h accumulated precipitation during the assimilation period and the subsequent 3-h accumulated precipitation were significantly improved compared with the control experiment without lightning data assimilation. The simulated reflectivity was optimal after 30 min of the forecast, it remained optimal during the following 42 min, and the positive effect from lightning data assimilation began to diminish after 72 min of the forecast. Overall,the improvement from lightning data assimilation can be maintained for about 3 h.
基金supported by the Central Guiding Local Science and Technology Development Fund of Shandong-Yellow River Basin(No.YDZX2023019)Shandong Natural Science Foundation of China(Nos.ZR2020QF067 and ZR2023QD073)+6 种基金the Discipline Cluster Research Project of Qingdao University“Deep mining and intelligent prediction of multimodal big data for marine ecological disasters”(No.20240604)sourced from the International Argo Program and the national programs that contribute to it(https://argo.ucsd.edu)the CMEMS(http://marine.copernicus.eu/)the CDS(https://cds.climate.copernicus.eu/)the EMODnet(https://www.emodnet-chemistry.eu/)obtained from the ERA5(https://www.ecmwf.int)derived from the Glob Colour Project(http://globcolour.info).
文摘Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems.Therefore,there is an urgent need to develop advanced tools to characterize the spatio-temporal variations of three-dimensional(3D)DO.To address this challenge,this study introduces the Light Gradient Boosting Machine(Light-GBM),combining satellite remote sensing and reanalysis data with Biogeochemical Argo data to accurately reconstruct the 3D DO structure in the Mediterranean Sea from 2010 to 2022.Various environmental parameters are incorporated as inputs,including spatiotemporal features,meteorological characteristics,and ocean color properties.The LightGBM model demonstrates excellent performance on the testing dataset with R^(2) of 0.958.The modeled DO agrees better with in-situ measurements than products from numerical models.Using the Shapley Additive exPlanations method,the contributions of input features are assessed.Sea surface temperatures provide a correlation with DO at the sea surface,while spatial coordinates supplement the view of the ocean interior.Based on the reconstructed 3D DO structure,we identify an oxygen minimum zone in the western Mediterranean that expands continuously,reaching depths of approximately 300–800 m.The western Mediterranean exhibits a significant declining trend.This study enhances marine environmental evidence by proposing a precise and cost-effective approach for reconstructing 3D DO,thereby offering insights into the dynamics of DO variations under changing climatic conditions.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1510400)the National Natural Science Foundation of China(Grant Nos.41975054 and 41930967)the Special Fund for Forecasters of China Meteorological Administration(Grant No.CMAYBY2018-040)。
文摘In this paper,a scheme of dual-Doppler radar wind analysis based on a three-dimensional variational method is proposed and performed in two steps.First,the horizontal wind field is simultaneously recovered through minimizing a cost function defined as a radial observation term with the standard conjugate gradient method,avoiding a weighting parameter specification step.Compared with conventional dual-Doppler wind synthesis approaches,this variational method minimizes errors caused by interpolation from radar observation to analysis grid in the iterative solution process,which is one of the main sources of errors.Then,through the accelerated Liebmann method,the vertical velocity is further reestimated as an extra step by solving the Poisson equation with impermeable conditions imposed at the ground and near the tropopause.The Poisson equation defined by the second derivative of the vertical velocity is derived from the mass continuity equation.Compared with the method proposed by O’Brien,this method is less sensitive to the uncertainty of the boundary conditions and has better stability and reliability.Furthermore,the method proposed in this paper is applied to Doppler radar observation of a squall line process.It is shown that the retrieved vertical wind profile agrees well with the vertical profile obtained with the velocity–azimuth display(VAD)method,and the retrieved radial velocity as well as the analyzed positive and negative velocity centers and horizontal wind shear of the squall line are in accord with radar observations.There is a good correspondence between the divergence field of the derived wind field and the vertical velocity.And,the horizontal and vertical circulations within and around the squall line,as well as strong updrafts,the associated downdrafts,and associated rear inflow of the bow echo,are analyzed well.It is worth mentioning that the variational method in this paper can be applied to simultaneously synthesize the three-dimensional wind field from multiple-Doppler radar observations.
基金Key Technologies Research and Development Program (Grant No. 2001BA607B and 2001BA607B02)National Natural Science Foundation of China (Grant No. 40518001)
文摘The scientific design and preliminary results of the data assimilation component of the Global-Regional Prediction and Assimilation System (GRAPES) recently developed in China Meteorological Administration (CMA) are presented in this paper. This is a three-dimensional variational (3DVar) assimilation system set up on global and regional grid meshes favorable for direct assimilation of the space-based remote sensing data and matching the frame work of the prediction model GRAPES. The state variables are assumed to decompose balanced and unbalanced components. By introducing a simple transformation from the state variables to the control variables with a recursive or spectral filter, the convergence rate of iteration for minimization of the cost function in 3DVar is greatly accelerated. The definition of dynamical balance depends on the characteristic scale of the circulation considered. The ratio of the balanced to the unbalanced parts is controlled by the prescribed statistics of background errors. Idealized trials produce the same results as the analytic solution. The results of real data case studies show the capability of the system to improve analysis compared to the traditional schemes. Finally, further development of the system is discussed.
基金Support by the National Natural Science Foundation of China under No.40175028 and the Key Technologies R & D Programme under No.2004BA607B.
文摘The dynamical constrains in three-dimensional variational data assimilation are discussed when considering the impact of stream divergence and convergence on the pressure and wind fields. For the analysis of severe tropical cyclone, frontal structures, and other rapidly changing structures, the geostrophic balance and linear balance cannot properly represent the relationship between wind and pressure fields. However, the nonlinear balance incremental equation takes into account the information of flow-dependent background, and makes response to the flow-dependent background covariance in the 3D-Var system. Results indicate that the application of the nonlinear balance equation to 3D-Var system improves the quality of severe tropical cyclone assimilation system, which has some positive effects on intensity prediction of tropical cyclones.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY20A010021,LY19A010002,LY20G030025)the Natural Science Founda-tion of Ningbo City,China(Grant Nos.2021J147,2021J235).
文摘By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.
基金Project supported by the National Natural Science Foundation of China (Grant No. 41105063)
文摘This work addresses the problem of estimating the states of nonlinear dynamic systems with sparse observations.We present a hybrid three-dimensional variation(3DVar) and particle piltering(PF) method,which combines the advantages of 3DVar and particle-based filters.By minimizing the cost function,this approach will produce a better proposal distribution of the state.Afterwards the stochastic resampling step in standard PF can be avoided through a deterministic scheme.The simulation results show that the performance of the new method is superior to the traditional ensemble Kalman filtering(EnKF) and the standard PF,especially in highly nonlinear systems.
基金Supported by the National Basic Research Development Program of China(973 Program)under contract Nos 2007CB816002,2007CB816005the innovative key project of Chinese Academy of Sciences under contract No.KZCXZ-YW-201
文摘The three-dimensional structure and the seasonal variation of the North Pacific meridional overturning circulation (NPMOC) are analyzed based on the Simple Ocean Data Assimilation data and Argo profiling float data. The NPMOC displays a multi-cell structure with four cells in the North Pacific altogether. The TC and the STC are a strong clockwise meridional cell in the low latitude ocean and a weaker clockwise meridional cell between 7°N and 18°N, respectively, while the DTC and the subpolar cell are a weaker anticlockwise meridional cell between 3°N and 15°N and a weakest anticlockwise meridional cell between 35°N and 50°N, respectively. The DTC, the TC and the STC are all of very strong seasonal variations. As to the DTC, the southward transport is strongest in fall and weakest in spring. For the TC, the northward transport is strongest in winter and weakest in spring, while the southward transport is strongest in fall and weakest in spring, which is associated with the strong southward fiow of the DTC in fall. As the STC, the northward transport is strongest in winter and weakest in summer, while the southward transport is strongest in summer and weakest in spring. This seasonal difference may be associated with the DTC. The zonal wind stress and the east-west slope of sea level play important roles in the seasonal variations of the TC, the STC and the DTC.
基金Supported by the National Key R&D Program of China(No.2018YFC1406202)the National Natural Science Foundation of China(Nos.41830964,41976188,41605051)。
文摘As in-situ observations are sparse,targeted observations of a specific mesoscale eddy are rare.Therefore,it is difficult to study the three-dimensional structure of moving mesoscale eddies.From April to September 2014,an anticyclonic eddy located at 135°E-155°E,26°N-42°N was observed using 17 rapidsampling Argo floats,and the spatiotemporal variations in the three-dimensional structure were studied.The results are as follows:(1)the eddy was identified and tracked using satellite altimeter data.It had a lifetime of 269 days and an average radius of 91.5 km.The lifetime of the eddy can be divided into three phases,i.e.,the initiation,maturity,and termination phases.The depth of its influence reached 1000 m;(2)the Argo profiles were divided into seven periods(approximately 20 days in each)for composite analysis,and the composite Argo profiles and CARS2009(CSIRO Atlas of Regional Seas)climatology data were merged following the data-interpolating variational analysis(DIVA)method to reconstruct the three-dimensional structure.The temperature and salinity anomaly cores of the anticyclonic mesoscale eddy are located from 400 to 600 m.From 800 to 900 m,there is an area of low salinity at the center of the eddy.A high concentration anomaly of dissolved oxygen was located at approximately 250 m;(3)to better understand the features of the eddy and its interaction with the surroundings,we calculated the anomalous velocity of the geostrophic flow and the heat,salt,dissolved oxygen transport anomaly,and discussed the eddy's origin and its adjustments to topography.The maximum heat,salt,and oxygen transport caused by eddy were 9.37×10^11 W,3.08×10^3 kg/s,and 2.70×10^2 kg/s,which all occurred during the termination phase.This study highlights the applicability of using Argo floats to understand the three-dimensional structure thermohaline features of eddies in the North Pacific.
基金Projects(51478477,51878074)supported by the National Natural Science Foundation of ChinaProject(2017-123-033)supported by the Guizhou Provincial Department of Transportation Foundation,ChinaProjects(2018zzts663,2018zzts656)supported by the Fundamental Research Funds for the Central Universities,China
文摘In the framework of upper bound theorem of limit analysis, the progressive collapse of shallow rectangular tunnels with double-layer rock mass has been theoretically analyzed based on the three-dimensional (3D) velocity discontinuity surfaces. According to the virtual work principle, the difference theorem and the variation method, the collapse surface of double-layer rock mass is determined based on the Hoek-Brown failure criterion. The formula can be degenerated to a single-layer rock collapsing problem when the rock mass is homogeneous. To estimate the validity of the result, the numerical simulation software PLAXIS 3D is used to simulate the collapse of shallow tunnels with double-layer rock mass, and the comparative analysis shows that numerical results are in good agreement with upper-bound solutions. According to the results of parametric analysis, the potential range of collapse of a double-layer rock mass above a shallow cavity decreases with a decrease in A1/A2,σci1/σci2 and σtm1/σtm2 and an increase in B1/B2,γ1/γ2. The range will decrease with a decrease in support pressure q and increase with a decrease in surface overload σs. Therefore, reinforced supporting is beneficial to improve the stability of the cavity during actual construction.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
基金supported by the National Science and Technology Council,Taiwan under grants NSTC 111-2221-E-019-047 and NSTC 112-2221-E-019-030.
文摘In this paper,an advanced satellite navigation filter design,referred to as the Variational Bayesian Maximum Correntropy Extended Kalman Filter(VBMCEKF),is introduced to enhance robustness and adaptability in scenarios with non-Gaussian noise and heavy-tailed outliers.The proposed design modifies the extended Kalman filter(EKF)for the global navigation satellite system(GNSS),integrating the maximum correntropy criterion(MCC)and the variational Bayesian(VB)method.This adaptive algorithm effectively reduces non-line-of-sight(NLOS)reception contamination and improves estimation accuracy,particularly in time-varying GNSS measurements.Experimental results show that the proposed method significantly outperforms conventional approaches in estimation accuracy under heavy-tailed outliers and non-Gaussian noise.By combining MCC with VB approximation for real-time noise covariance estimation using fixed-point iteration,the VBMCEKF achieves superior filtering performance in challenging GNSS conditions.The method’s adaptability and precision make it ideal for improving satellite navigation performance in stochastic environments.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51575235)
文摘A tolerance modeling method of geometric variations within three-dimensional(3D) tolerance domain is proposed.According to the classification method of feature variations and classes of invariance or symmetry in the new generation Geometrical Product Specifications(GPS) system,the proposed method is based on the Small Displacement Torsor(SDT) concept,and SDT is used to represent the geometric deviations between the nominal feature and the fitting feature. Furthermore,the variation zones of several kinds complex or irregular geometric features are constructed,and the corresponding tolerance modeling methods are discussed respectively. Finally,an example is presented to verify the efficiency of the presented method for modeling 3D dimensional and geometrical tolerances.The proposed modeling method based on the complete mathematical foundation conforms with the design philosophy and principle of the new generation GPS standards system.
基金supported by the National Science Foundation of China(Grant Nos.42374205 and 41974179)the Specialized Research Fund of the National Space Science Center,Chinese Academy of Sciences(Grant No.E4PD3010)supported by the Specialized Research Fund for State Key Laboratories.
文摘The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.
文摘Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.
基金Supported by NSFC(No.12171062)the Natural Science Foundation of Chongqing(No.CSTB2022NSCQ-JQX0004)+1 种基金the Chongqing Talent Support Program(No.cstc2024ycjh-bgzxm0121)Science and Technology Project of Chongqing Education Committee(No.KJZD-M202300503)。
文摘The purpose of this article is to introduce a new method with a self-adaptive stepsize for approximating a common solution of monotone inclusion problems and variational inequality problems in reflexive Banach spaces.The strong convergence result for our method is established under some standard assumptions without any requirement of the knowledge of the Lipschitz constant of the mapping.Several numerical experiments are provided to verify the advantages and efficiency of proposed algorithms.