Today,a well-devised charging operation scheme is urgently needed by on-site workmen and is critical for building an intelligent blast furnace(BF).Previous research on charging operations always focused on the two-dim...Today,a well-devised charging operation scheme is urgently needed by on-site workmen and is critical for building an intelligent blast furnace(BF).Previous research on charging operations always focused on the two-dimensional shape of the burden surface(i.e.,a single radial profile)while neglecting the unique feature of global dissymmetry,severely restricting the development of precise charging.For this reason,this study proposes an innovative optimization strategy for the charging operation under the three-dimensional burden surface,which is the first attempt in this field.First,a practicable region partitioning scheme is introduced,and the partitioning results are then integrated with the charging mechanism to construct a three-dimensional burden surface prediction model.Next,the intrinsic relationship between the operational parameters and charging volume is revealed based on the law of mass conservation,which forms the basis for defining a novel operational parameter with variable-speed utility,referred to as the neotype charging matrix(NCM).To find the best NCM,a customized NCM optimization strategy,involving a dual constraint handling technique in conjunction with a two-stage hybrid variable differential evolution algorithm,is further developed.The industrial experiment results manifest that the partitioning scheme significantly enhances the accuracy of burden surface description.Moreover,the NCM optimization strategy offers greater flexibility and higher accuracy than current mainstream optimization strategies for the charging matrix(CM).展开更多
Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon c...Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon content (φ), total pressure (p) and total mass flow (F). Taguchi method was used for the experimental design in order to study the combined effects of the four parameters on the properties of as-deposited diamond films. A new figure-of-merit (FOM) was defined to assess their comprehensive performance. It is clarified thatt,φandp all have significant and complicated effects on the performance of the diamond film and the FOM, which also present some differences as compared with the previous studies on CVD diamond films growth on plane or external surfaces. Aiming to deposit HFCVD diamond films with the best comprehensive performance, the key deposition parameters were finally optimized as:t=830 °C,φ=4.5%,p=4000 Pa,F=800 mL/min.展开更多
By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the ...By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the relationship between controlling parameters, weighted factors and types, kinds and characteristics of curve segments and curved surface fragments. A mathematical method is provided for CAGD with abundant connotations, broad covering region, convenience, flexibility and direct simplicity.展开更多
According to the need of popular land surface process models, characteristics and rules of some key land surface process and soil parameters over Gobi in typical arid region of Northwest China are analyzed by using th...According to the need of popular land surface process models, characteristics and rules of some key land surface process and soil parameters over Gobi in typical arid region of Northwest China are analyzed by using the data observed during the intensive observation period of the Dunhuang Land–Surface Process Field Experiment (DLSPFE) (May–June 2000). Using the relative reflection as weighting factor, the weighted mean of the surface albedo over Dunhuang Gobi in typical arid region is calculated and its values are 0.255 ± 0.021. After canceling the interference of the buildings, the mean values of the roughness length averaged with logarithm is 0.0019 ± 0.00071 m. After removing the influence of the oasis, the soil wetness factor computed with data under condition of no precipitation is 0.0045. After removing the influence of the precipitation , the mean values of the soil heat capacity over Dunhuang Gobi in typical arid region is 1.12 × 10<SUP>6</SUP> J m<SUP>−3</SUP>K<SUP>−1</SUP>, a bit smaller than the values observed in HEIFE. But the soil heat diffusivity and conductivity are about one of those observed in HEIFE. The soil water content over Dunhuang Gobi in typical synoptic condition is very little and does not exceed 1% basically.展开更多
The minimum quantity of lubrication(MQL) technique is becoming increasingly more popular due to the safety of environment.Moreover,MQL technique not only leads to economical benefits by way of saving lubricant costs...The minimum quantity of lubrication(MQL) technique is becoming increasingly more popular due to the safety of environment.Moreover,MQL technique not only leads to economical benefits by way of saving lubricant costs but also presents better machinability.However,the effect of MQL parameters on machining is still not clear,which needs to be overcome.In this paper,the effect of different modes of lubrication,i.e.,conventional way using flushing,dry cutting and using the minimum quantity lubrication(MQL) technique on the machinability in end milling of a forged steel(50CrMnMo),is investigated.The influence of MQL parameters on tool wear and surface roughness is also discussed.MQL parameters include nozzle direction in relation to feed direction,nozzle elevation angle,distance from the nozzle tip to the cutting zone,lubricant flow rate and air pressure.The investigation results show that MQL technique lowers the tool wear and surface roughness values compared with that of conventional flood cutting fluid supply and dry cutting conditions.Based on the investigations of chip morphology and color,MQL technique reduces the cutting temperature to some extent.The relative nozzle-feed position at 120°,the angle elevation of 60° and distance from nozzle tip to cutting zone at 20 mm provide the prolonged tool life and reduced surface roughness values.This fact is due to the oil mists can penetrate in the inner zones of the tool edges in a very efficient way.Improvement in tool life and surface finish could be achieved utilizing higher oil flow rate and higher compressed air pressure.Moreover,oil flow rate increased from 43.8 mL?h to 58.4 mL?h leads to a small decrease of flank wear,but it is not very significant.The results obtained in this paper can be used to determine optimal conditions for milling of forged steel under MQL conditions.展开更多
The relationships between sea surface roughness z 0 and wind-wave parameters are analyzed,and spurious self-correlations are found in all of the parameterization schemes.Sea surface drag coefficient C D is fitted by f...The relationships between sea surface roughness z 0 and wind-wave parameters are analyzed,and spurious self-correlations are found in all of the parameterization schemes.Sea surface drag coefficient C D is fitted by four wind-wave parameters that are wave age,wave steepness,windsea Reynolds number R B and R H ,and the analyzed data are divided into laboratory,field and combined data sets respectively.Comparison and analysis of dependence of C D on wind-wave parameters show that R B can fit the C D most appropriately.Wave age and wave steepness are not suitable to fit C D with a narrow range data set.When the value of wave age has a board range,R H is not suitable to fit C D either.Three relationships between C D and R B are integrated into the bulk algorithm COARE to calculate the observational friction velocity,and the results show that the relationship between C D and R B which is fitted with field data set can describe the momentum transfer in the open ocean,under low-moderate wind speed condition,most appropriately.展开更多
The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface inject...The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS.展开更多
The reticulate unsmoothed surfaces on HD die steel, which imitate the surface of soil-burrowing animals (such as the dung beetle, earthworm, pangolin, and ant) are produced with various laser parameters. The charact...The reticulate unsmoothed surfaces on HD die steel, which imitate the surface of soil-burrowing animals (such as the dung beetle, earthworm, pangolin, and ant) are produced with various laser parameters. The characteristics (including width, depth, area ratio, and volume), microstructure, and hardness of the unsmoothed units are studied. At the same time, the wear resistance of the material with an unsmoothed surface is measured. The results show that the width and volume of the unit increase, the microstructure becomes coarser, the hardness decreases, and the wear resistance improves with the increase of the current intensity and pulse duration within a certain range. However, there is little difference between the extent to which the wear resistance of the material increases and the unsmoothed surface, when the current intensity and pulse duration increase to some extent. The wear resistance of the unsmoothed material under 300 A or 20 ms is better in the experiments. The improving extent of the wear resistance lies in a combination of the characteristics, microstructure, and hardness of the unsmoothed unit. An unsmoothed material with better properties can be processed if the laser parameters are well matched.展开更多
The effects of acid surface dissolution on the flotation kinetics of ilmenite(IL)and its common accompanied gangue minerals including olivine-pyroxene(Ol-Px),tremolite-clinochlore(Tr-Cch)and quartz were investigated.T...The effects of acid surface dissolution on the flotation kinetics of ilmenite(IL)and its common accompanied gangue minerals including olivine-pyroxene(Ol-Px),tremolite-clinochlore(Tr-Cch)and quartz were investigated.The results show that through the surface dissolution the adsorption rate constant for ilmenite increases from 5.272 to 8.441 mol/(g·min)while it decreases for Ol-Px,Tr-Cch and quartz from 6.332,7.309 and 7.774 mol/(g·min)to 5.034,6.223 and 7.371 mol/(g·min),respectively.Also,the flotation experiments on a binary mixture of minerals indicate that after surface dissolution the values of modified rate constant for ilmenite flotation from Ol-Px,Tr-Cch and quartz are enhanced from 36.15,36.52 and 47.86 min-1 to 41.72,45.78 and 56.24 min-1,respectively.This results in the improvement of kinetic selectivity index(SI)in the separation of treated ilmenite from gangue minerals.As evidenced by ICP-MS analysis,the decrease of kinetic parameters for gangue minerals can be due to the removal of Fe^2+,Ca^2+and Mg^2+ions from their surfaces,which results in the lack of enough active sites to interact with collector species.As confirmed by contact angle measurements,this prevents the formation of a stable hydrophobic layer on the minerals surfaces for creating stable attachments between minerals and bubbles.Generally,the improvement of ilmenite flotation kinetics has a negative correlation with the iron content in its accompanied gangue minerals.展开更多
Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is a...Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is applicable to the 3D case. In this paper, a simple Monte Carlo random simulation method is proposed to identify the 3D critical slip surface. Assuming the initial slip to be the lower part of a slip ellipsoid, the 3D critical slip surface is located by means of a minimized 3D safety factor. A column-based 3D slope stability analysis model is used to calculate this factor. In this study, some practical cases of known minimum safety factors and critical slip surfaces in 2D analysis are extended to 3D slope problems to locate the critical slip surfaces. Compared with the 2D result, the resulting 3D critical slip surface has no apparent difference in terms of only cross section, but the associated 3D safety factor is definitely higher.展开更多
This study was conducted to investigate the influence of pulse parameters on the surface morphology and crystal orientation of the tungsten coatings electrodeposited on pure copper substrates. The deposited coatings w...This study was conducted to investigate the influence of pulse parameters on the surface morphology and crystal orientation of the tungsten coatings electrodeposited on pure copper substrates. The deposited coatings were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS). SEM analysis indicates that pulse parameters have significant influences on the surface morphology of the deposited coatings. Meanwhile, the change in grain size of the tungsten coatings demonstrates that the change in frequency and duty cycle could cause the variation of nucleation rate and grain growth of deposits. Moreover, no obvious diffusion layer at the coating/substrate interface is found by line analysis of EDS. XRD results reveal that tungsten coatings are of bcc structure and the preferred orientation of the deposits varies with duty cycle and period.展开更多
The motion of gas bubbles beneath a free surface will lead to a spike of fluid on the free surface. The distance of the bubbles to the free surface is the key factor to different phenomena. When the inception distance...The motion of gas bubbles beneath a free surface will lead to a spike of fluid on the free surface. The distance of the bubbles to the free surface is the key factor to different phenomena. When the inception distance varies in some range, crown phenomenon would happen after the impact of weak buoyancy bubbles, so this kind of spike is defined as crown spike in the present paper. Based on potential flow theory, a three-dimensional numerical model is established to simulate the motion of the free-surface spike generated by one bubble or a horizontal line of two in-phase bubbles. After the downward jet formed near the end of the collapse phase, the simulation of the free surface is performed to study the crown spike without regard to the toroidal bubble's effect. Calculations about the interaction between one bubble and free surface agree well with the experimental results conducted with a high-speed camera, and relative error is within 15%. Crown spike in both single- and two-bubble cases are simulated numerically. Different features and laws of the motion of crown spike, depending on the bubble-boundary distances and the inter-bubble distances, have been investigated.展开更多
A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream su...A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.展开更多
The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy–Forchheimer porous medium. A bidirectional nonlinear stretching surface genera...The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy–Forchheimer porous medium. A bidirectional nonlinear stretching surface generates the flow. Convective surface condition of heat transfer is taken into consideration. Further the zero nanoparticles mass flux condition is imposed at the boundary. Effects of thermophoresis and Brownian diffusion are considered. Assumption of boundary layer has been employed in the problem formulation. Convergent series solutions for the nonlinear governing system are established through the optimal homotopy analysis method(OHAM). Graphs have been sketched in order to analyze that how the velocity, temperature and concentration distributions are affected by distinct emerging flow parameters. Skin friction coefficients and local Nusselt number are also computed and discussed.展开更多
The biomechanical changes during functional loading and unloading of the human gastrointestinal (GI) tract are not fully understood. GI function is usually studled by introducing probes in the GI lumen. Computer mod...The biomechanical changes during functional loading and unloading of the human gastrointestinal (GI) tract are not fully understood. GI function is usually studled by introducing probes in the GI lumen. Computer modeling offers a promising alternative approach in this regard, with the additional ability to predict regional stresses and strains in inaccessible locations. The tension and stress distributions in the GI tract are related to distensibility (tension-strain relationship) and smooth muscle tone. lore knowledge on the tension and stress on the GI tract are needed to improve diagnosis of patients with gastrointestinal disorders. A modeling framework that can be used to integrate the physiological, anatomical and medical knowledge of the GI system has recently been developed. The 3-D anatomical model was constructed from digital images using ultrasonography, computer tomography (CT) or magnetic resonance imaging (IRI). Different mathematical algorithms were developed for surface analysis based on thin-walled structure and the finite element method was applied for the mucosa-folded three layered esophageal model analysis. The tools may be useful for studying the geometry and biomechanical properties of these organs in health and disease. These studies will serve to test the structurefunction hypothesis of geometrically complex organs.展开更多
Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyze...Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyzed the fracture surface characteristics induced by supercritical carbon dioxide(SC-CO_(2))and water in open-hole and perforation completion conditions under triaxial stresses.A simple calculation method was proposed to quantitatively analyze the fracture surface area and roughness in macro-level based on three-dimensional(3D)scanning data.In micro-level,scanning electron micrograph(SEM)was used to analyze the features of fracture surface.The results showed that the surface area of the induced fracture increases with perforation angle for both SC-CO_(2)and water fracturing,and the surface area of SC-CO_(2)-induced fracture is 6.49%e58.57%larger than that of water-induced fracture.The fractal dimension and surface roughness of water-induced fractures increase with the increase in perforation angle,while those of SC-CO_(2)-induced fractures decrease with the increasing perforation angle.A considerable number of microcracks and particle peeling pits can be observed on SC-CO_(2)-induced fracture surface while there are more flat particle surfaces in water-induced fracture surface through SEM images,indicating that fractures tend to propagate along the boundary of the particle for SC-CO_(2)fracturing while water-induced fractures prefer to cut through particles.These findings are of great significance for analyzing fracture mechanism and evaluating fracturing stimulation performance.展开更多
The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant norma...The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.展开更多
A three-dimensional conjugate tooth surface design method for Harmonic Drive with a double-circular-arc tooth profle is proposed. The radial deformation function of the fexspline (FS), obtained through Finite Element ...A three-dimensional conjugate tooth surface design method for Harmonic Drive with a double-circular-arc tooth profle is proposed. The radial deformation function of the fexspline (FS), obtained through Finite Element (FE) analysis, is incorporated into the kinematics model. By analyzing the FS tooth enveloping process, the optimization of the overlapping conjugate tooth profle is achieved. By utilizing the hobbing process, the three-dimensional machinable tooth surface of FS can be acquired. Utilizing the coning deformation of the FS, simulations are conducted to analyze the multi-section assembly and meshing motion of the machinable tooth surface. The FE method is utilized to analyze and compare the loaded contact characteristics. Results demonstrate that the proposed design method can achieve an internal gear pair consisting of a circular spline with a spur gear tooth surface and the FS with a machinable tooth surface. With the rated torque, approximately 24% of the FS teeth are engaged in meshing, and more than 4/5 of the tooth surface in the axial direction carries the load. The contact patterns, maximum contact pressure, and transmission error of the machinable tooth surface are 227.2%, 40.67%, and 71.24% of those on the spur gear tooth surface, respectively. It clearly demonstrates exceptional transmission performance.展开更多
The relationships between the surface quality of a single crystal copper ingot and the process parameters of heated mould continuous casting method were studied experimentally using our own design of horizontal heated...The relationships between the surface quality of a single crystal copper ingot and the process parameters of heated mould continuous casting method were studied experimentally using our own design of horizontal heated mould continuous casting apparatus, and the mechanism by which process parameters affect the surface quality of a single crystal copper ingot is analyzed in the present paper. The results show that the process parameters affect the surface quality of a pure copper ingot by affecting the position of the liquid-solid interface in the mould. The position of the liquid-solid interface in the mould must be controlled carefully within an appropriate range, which is determined through a series of experiments, in order to gain a single crystal copper ingot with good surface quality.展开更多
Spatial variation in soil surface CO2 efflux was measured in a stand of Populus euphratica in the Ejina Oasis of desert riparian forest in the extreme arid region in northwestern China from April 2007 through October ...Spatial variation in soil surface CO2 efflux was measured in a stand of Populus euphratica in the Ejina Oasis of desert riparian forest in the extreme arid region in northwestern China from April 2007 through October 2007.Measurements were taken with a gas-exchange analyzer linked to a soil-respiration chamber.The mean soil CO2 efflux in the stand was 2.71 μmol/(m2·s) during the growing season and 1.38 μmol/(m2·s) in the nongrowing season.The seasonal maximum (end of May through early June) andminimum (October) CO2 efflux were 3.38 and 0.69 μmol/(m2·s),respectively.The diurnal fluctuation of CO2 efflux was relatively small (< 20 percent),with theminimum appearing around 05:00 and the maximum around 15:00.Linear regression analysis showed soil-surface CO2 efflux to be most highly correlated with soil temperature (R2=0.435) and soil moisture (R2=0.213).When all variables were considered simultaneously,only soil temperature (R2=0.378),soil moisture (R2=0.147),and root volume density (R2=0.021) explained a significant amount of variance in soil surface CO2 efflux.Stand volumes were not correlated with soil CO2 efflux on our sites.展开更多
基金supported in part by the Science and Technology Innovation Program of Hunan Province(2024RC1007)the Young Scientists Fund of the National Natural Science Foundation of China(62303491)+2 种基金the Major Program of Xiangjiang Laboratory(22XJ01005)the Young Scientists Fund of the National Natural Science Foundation of China(62203473)Central South University Post-Graduate Independent Exploration and Innovation Project(2024ZZTS0451).
文摘Today,a well-devised charging operation scheme is urgently needed by on-site workmen and is critical for building an intelligent blast furnace(BF).Previous research on charging operations always focused on the two-dimensional shape of the burden surface(i.e.,a single radial profile)while neglecting the unique feature of global dissymmetry,severely restricting the development of precise charging.For this reason,this study proposes an innovative optimization strategy for the charging operation under the three-dimensional burden surface,which is the first attempt in this field.First,a practicable region partitioning scheme is introduced,and the partitioning results are then integrated with the charging mechanism to construct a three-dimensional burden surface prediction model.Next,the intrinsic relationship between the operational parameters and charging volume is revealed based on the law of mass conservation,which forms the basis for defining a novel operational parameter with variable-speed utility,referred to as the neotype charging matrix(NCM).To find the best NCM,a customized NCM optimization strategy,involving a dual constraint handling technique in conjunction with a two-stage hybrid variable differential evolution algorithm,is further developed.The industrial experiment results manifest that the partitioning scheme significantly enhances the accuracy of burden surface description.Moreover,the NCM optimization strategy offers greater flexibility and higher accuracy than current mainstream optimization strategies for the charging matrix(CM).
基金Projects(51275302,51005154)supported by the National Natural Science Foundation of China
文摘Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon content (φ), total pressure (p) and total mass flow (F). Taguchi method was used for the experimental design in order to study the combined effects of the four parameters on the properties of as-deposited diamond films. A new figure-of-merit (FOM) was defined to assess their comprehensive performance. It is clarified thatt,φandp all have significant and complicated effects on the performance of the diamond film and the FOM, which also present some differences as compared with the previous studies on CVD diamond films growth on plane or external surfaces. Aiming to deposit HFCVD diamond films with the best comprehensive performance, the key deposition parameters were finally optimized as:t=830 °C,φ=4.5%,p=4000 Pa,F=800 mL/min.
文摘By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the relationship between controlling parameters, weighted factors and types, kinds and characteristics of curve segments and curved surface fragments. A mathematical method is provided for CAGD with abundant connotations, broad covering region, convenience, flexibility and direct simplicity.
基金This research was sponsored by the National Key Program for Developing Basic Sciences Research on the Formation Mechanism and Pr
文摘According to the need of popular land surface process models, characteristics and rules of some key land surface process and soil parameters over Gobi in typical arid region of Northwest China are analyzed by using the data observed during the intensive observation period of the Dunhuang Land–Surface Process Field Experiment (DLSPFE) (May–June 2000). Using the relative reflection as weighting factor, the weighted mean of the surface albedo over Dunhuang Gobi in typical arid region is calculated and its values are 0.255 ± 0.021. After canceling the interference of the buildings, the mean values of the roughness length averaged with logarithm is 0.0019 ± 0.00071 m. After removing the influence of the oasis, the soil wetness factor computed with data under condition of no precipitation is 0.0045. After removing the influence of the precipitation , the mean values of the soil heat capacity over Dunhuang Gobi in typical arid region is 1.12 × 10<SUP>6</SUP> J m<SUP>−3</SUP>K<SUP>−1</SUP>, a bit smaller than the values observed in HEIFE. But the soil heat diffusivity and conductivity are about one of those observed in HEIFE. The soil water content over Dunhuang Gobi in typical synoptic condition is very little and does not exceed 1% basically.
基金supported by the Major National Science and Technology Special Projects (Grant No. 2010ZX04014-052)the Fundamental Research Funds for the Central Universities of China
文摘The minimum quantity of lubrication(MQL) technique is becoming increasingly more popular due to the safety of environment.Moreover,MQL technique not only leads to economical benefits by way of saving lubricant costs but also presents better machinability.However,the effect of MQL parameters on machining is still not clear,which needs to be overcome.In this paper,the effect of different modes of lubrication,i.e.,conventional way using flushing,dry cutting and using the minimum quantity lubrication(MQL) technique on the machinability in end milling of a forged steel(50CrMnMo),is investigated.The influence of MQL parameters on tool wear and surface roughness is also discussed.MQL parameters include nozzle direction in relation to feed direction,nozzle elevation angle,distance from the nozzle tip to the cutting zone,lubricant flow rate and air pressure.The investigation results show that MQL technique lowers the tool wear and surface roughness values compared with that of conventional flood cutting fluid supply and dry cutting conditions.Based on the investigations of chip morphology and color,MQL technique reduces the cutting temperature to some extent.The relative nozzle-feed position at 120°,the angle elevation of 60° and distance from nozzle tip to cutting zone at 20 mm provide the prolonged tool life and reduced surface roughness values.This fact is due to the oil mists can penetrate in the inner zones of the tool edges in a very efficient way.Improvement in tool life and surface finish could be achieved utilizing higher oil flow rate and higher compressed air pressure.Moreover,oil flow rate increased from 43.8 mL?h to 58.4 mL?h leads to a small decrease of flank wear,but it is not very significant.The results obtained in this paper can be used to determine optimal conditions for milling of forged steel under MQL conditions.
基金The National Natural Science Foundation of China under Grant Nos 40675056 41076074National Key Basic Research Development Program under Grant No.2007CB411805the Basic Theory Foundation of Institute of Meteorology, PLA University of Science and Technology
文摘The relationships between sea surface roughness z 0 and wind-wave parameters are analyzed,and spurious self-correlations are found in all of the parameterization schemes.Sea surface drag coefficient C D is fitted by four wind-wave parameters that are wave age,wave steepness,windsea Reynolds number R B and R H ,and the analyzed data are divided into laboratory,field and combined data sets respectively.Comparison and analysis of dependence of C D on wind-wave parameters show that R B can fit the C D most appropriately.Wave age and wave steepness are not suitable to fit C D with a narrow range data set.When the value of wave age has a board range,R H is not suitable to fit C D either.Three relationships between C D and R B are integrated into the bulk algorithm COARE to calculate the observational friction velocity,and the results show that the relationship between C D and R B which is fitted with field data set can describe the momentum transfer in the open ocean,under low-moderate wind speed condition,most appropriately.
基金the National Natural Science Foundation of China,grant numbers 51704253 and 52474084.
文摘The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS.
基金National Natural Science Foundation of China (50635030)
文摘The reticulate unsmoothed surfaces on HD die steel, which imitate the surface of soil-burrowing animals (such as the dung beetle, earthworm, pangolin, and ant) are produced with various laser parameters. The characteristics (including width, depth, area ratio, and volume), microstructure, and hardness of the unsmoothed units are studied. At the same time, the wear resistance of the material with an unsmoothed surface is measured. The results show that the width and volume of the unit increase, the microstructure becomes coarser, the hardness decreases, and the wear resistance improves with the increase of the current intensity and pulse duration within a certain range. However, there is little difference between the extent to which the wear resistance of the material increases and the unsmoothed surface, when the current intensity and pulse duration increase to some extent. The wear resistance of the unsmoothed material under 300 A or 20 ms is better in the experiments. The improving extent of the wear resistance lies in a combination of the characteristics, microstructure, and hardness of the unsmoothed unit. An unsmoothed material with better properties can be processed if the laser parameters are well matched.
文摘The effects of acid surface dissolution on the flotation kinetics of ilmenite(IL)and its common accompanied gangue minerals including olivine-pyroxene(Ol-Px),tremolite-clinochlore(Tr-Cch)and quartz were investigated.The results show that through the surface dissolution the adsorption rate constant for ilmenite increases from 5.272 to 8.441 mol/(g·min)while it decreases for Ol-Px,Tr-Cch and quartz from 6.332,7.309 and 7.774 mol/(g·min)to 5.034,6.223 and 7.371 mol/(g·min),respectively.Also,the flotation experiments on a binary mixture of minerals indicate that after surface dissolution the values of modified rate constant for ilmenite flotation from Ol-Px,Tr-Cch and quartz are enhanced from 36.15,36.52 and 47.86 min-1 to 41.72,45.78 and 56.24 min-1,respectively.This results in the improvement of kinetic selectivity index(SI)in the separation of treated ilmenite from gangue minerals.As evidenced by ICP-MS analysis,the decrease of kinetic parameters for gangue minerals can be due to the removal of Fe^2+,Ca^2+and Mg^2+ions from their surfaces,which results in the lack of enough active sites to interact with collector species.As confirmed by contact angle measurements,this prevents the formation of a stable hydrophobic layer on the minerals surfaces for creating stable attachments between minerals and bubbles.Generally,the improvement of ilmenite flotation kinetics has a negative correlation with the iron content in its accompanied gangue minerals.
文摘Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is applicable to the 3D case. In this paper, a simple Monte Carlo random simulation method is proposed to identify the 3D critical slip surface. Assuming the initial slip to be the lower part of a slip ellipsoid, the 3D critical slip surface is located by means of a minimized 3D safety factor. A column-based 3D slope stability analysis model is used to calculate this factor. In this study, some practical cases of known minimum safety factors and critical slip surfaces in 2D analysis are extended to 3D slope problems to locate the critical slip surfaces. Compared with the 2D result, the resulting 3D critical slip surface has no apparent difference in terms of only cross section, but the associated 3D safety factor is definitely higher.
基金financially supported by the National Magnetic Confinement Fusion Program of China (No. 2015GB109003)National Natural Science Foundation of China (Nos. 51171006 and 51471015)
文摘This study was conducted to investigate the influence of pulse parameters on the surface morphology and crystal orientation of the tungsten coatings electrodeposited on pure copper substrates. The deposited coatings were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS). SEM analysis indicates that pulse parameters have significant influences on the surface morphology of the deposited coatings. Meanwhile, the change in grain size of the tungsten coatings demonstrates that the change in frequency and duty cycle could cause the variation of nucleation rate and grain growth of deposits. Moreover, no obvious diffusion layer at the coating/substrate interface is found by line analysis of EDS. XRD results reveal that tungsten coatings are of bcc structure and the preferred orientation of the deposits varies with duty cycle and period.
基金Project supported by the Major Basic Research Project of National Security of China(Grant No.613157)the Excellent Young Scientists Fund of China(Grant No.51222904)
文摘The motion of gas bubbles beneath a free surface will lead to a spike of fluid on the free surface. The distance of the bubbles to the free surface is the key factor to different phenomena. When the inception distance varies in some range, crown phenomenon would happen after the impact of weak buoyancy bubbles, so this kind of spike is defined as crown spike in the present paper. Based on potential flow theory, a three-dimensional numerical model is established to simulate the motion of the free-surface spike generated by one bubble or a horizontal line of two in-phase bubbles. After the downward jet formed near the end of the collapse phase, the simulation of the free surface is performed to study the crown spike without regard to the toroidal bubble's effect. Calculations about the interaction between one bubble and free surface agree well with the experimental results conducted with a high-speed camera, and relative error is within 15%. Crown spike in both single- and two-bubble cases are simulated numerically. Different features and laws of the motion of crown spike, depending on the bubble-boundary distances and the inter-bubble distances, have been investigated.
基金Sponsored by National Natural Science Foundation of China(50175095)Provincial Natural Science Foundation of Hebei of China(502173)
文摘A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.
文摘The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy–Forchheimer porous medium. A bidirectional nonlinear stretching surface generates the flow. Convective surface condition of heat transfer is taken into consideration. Further the zero nanoparticles mass flux condition is imposed at the boundary. Effects of thermophoresis and Brownian diffusion are considered. Assumption of boundary layer has been employed in the problem formulation. Convergent series solutions for the nonlinear governing system are established through the optimal homotopy analysis method(OHAM). Graphs have been sketched in order to analyze that how the velocity, temperature and concentration distributions are affected by distinct emerging flow parameters. Skin friction coefficients and local Nusselt number are also computed and discussed.
文摘The biomechanical changes during functional loading and unloading of the human gastrointestinal (GI) tract are not fully understood. GI function is usually studled by introducing probes in the GI lumen. Computer modeling offers a promising alternative approach in this regard, with the additional ability to predict regional stresses and strains in inaccessible locations. The tension and stress distributions in the GI tract are related to distensibility (tension-strain relationship) and smooth muscle tone. lore knowledge on the tension and stress on the GI tract are needed to improve diagnosis of patients with gastrointestinal disorders. A modeling framework that can be used to integrate the physiological, anatomical and medical knowledge of the GI system has recently been developed. The 3-D anatomical model was constructed from digital images using ultrasonography, computer tomography (CT) or magnetic resonance imaging (IRI). Different mathematical algorithms were developed for surface analysis based on thin-walled structure and the finite element method was applied for the mucosa-folded three layered esophageal model analysis. The tools may be useful for studying the geometry and biomechanical properties of these organs in health and disease. These studies will serve to test the structurefunction hypothesis of geometrically complex organs.
基金National Natural Science Foundation of China(Grant No.51804318)the China Postdoctoral Science Foundation Founded Project(Grant No.2019M650963)National Key Basic Research and Development Program of China(Grant No.2014CB239203).
文摘Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyzed the fracture surface characteristics induced by supercritical carbon dioxide(SC-CO_(2))and water in open-hole and perforation completion conditions under triaxial stresses.A simple calculation method was proposed to quantitatively analyze the fracture surface area and roughness in macro-level based on three-dimensional(3D)scanning data.In micro-level,scanning electron micrograph(SEM)was used to analyze the features of fracture surface.The results showed that the surface area of the induced fracture increases with perforation angle for both SC-CO_(2)and water fracturing,and the surface area of SC-CO_(2)-induced fracture is 6.49%e58.57%larger than that of water-induced fracture.The fractal dimension and surface roughness of water-induced fractures increase with the increase in perforation angle,while those of SC-CO_(2)-induced fractures decrease with the increasing perforation angle.A considerable number of microcracks and particle peeling pits can be observed on SC-CO_(2)-induced fracture surface while there are more flat particle surfaces in water-induced fracture surface through SEM images,indicating that fractures tend to propagate along the boundary of the particle for SC-CO_(2)fracturing while water-induced fractures prefer to cut through particles.These findings are of great significance for analyzing fracture mechanism and evaluating fracturing stimulation performance.
基金Project(41130742)supported by the Key Program of National Natural Science Foundation of ChinaProject(2014CB046904)supportedby the National Basic Research Program of China+1 种基金Project(2011CDA119)supported by Natural Science Foundation of Hubei Province,ChinaProject(40972178)supported by the General Program of National Natural Science Foundation of China
文摘The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.
基金Supported by Guangdong Provincial Key-Area Research and Development Program(Grant No.2019B090917002).
文摘A three-dimensional conjugate tooth surface design method for Harmonic Drive with a double-circular-arc tooth profle is proposed. The radial deformation function of the fexspline (FS), obtained through Finite Element (FE) analysis, is incorporated into the kinematics model. By analyzing the FS tooth enveloping process, the optimization of the overlapping conjugate tooth profle is achieved. By utilizing the hobbing process, the three-dimensional machinable tooth surface of FS can be acquired. Utilizing the coning deformation of the FS, simulations are conducted to analyze the multi-section assembly and meshing motion of the machinable tooth surface. The FE method is utilized to analyze and compare the loaded contact characteristics. Results demonstrate that the proposed design method can achieve an internal gear pair consisting of a circular spline with a spur gear tooth surface and the FS with a machinable tooth surface. With the rated torque, approximately 24% of the FS teeth are engaged in meshing, and more than 4/5 of the tooth surface in the axial direction carries the load. The contact patterns, maximum contact pressure, and transmission error of the machinable tooth surface are 227.2%, 40.67%, and 71.24% of those on the spur gear tooth surface, respectively. It clearly demonstrates exceptional transmission performance.
文摘The relationships between the surface quality of a single crystal copper ingot and the process parameters of heated mould continuous casting method were studied experimentally using our own design of horizontal heated mould continuous casting apparatus, and the mechanism by which process parameters affect the surface quality of a single crystal copper ingot is analyzed in the present paper. The results show that the process parameters affect the surface quality of a pure copper ingot by affecting the position of the liquid-solid interface in the mould. The position of the liquid-solid interface in the mould must be controlled carefully within an appropriate range, which is determined through a series of experiments, in order to gain a single crystal copper ingot with good surface quality.
基金supported by National Natural Science Foundation of China (40801001,40671010,40701054)National Key Technologies R&D Program of China during the 11th Five-Year Plan Period (2007BAD46B01)
文摘Spatial variation in soil surface CO2 efflux was measured in a stand of Populus euphratica in the Ejina Oasis of desert riparian forest in the extreme arid region in northwestern China from April 2007 through October 2007.Measurements were taken with a gas-exchange analyzer linked to a soil-respiration chamber.The mean soil CO2 efflux in the stand was 2.71 μmol/(m2·s) during the growing season and 1.38 μmol/(m2·s) in the nongrowing season.The seasonal maximum (end of May through early June) andminimum (October) CO2 efflux were 3.38 and 0.69 μmol/(m2·s),respectively.The diurnal fluctuation of CO2 efflux was relatively small (< 20 percent),with theminimum appearing around 05:00 and the maximum around 15:00.Linear regression analysis showed soil-surface CO2 efflux to be most highly correlated with soil temperature (R2=0.435) and soil moisture (R2=0.213).When all variables were considered simultaneously,only soil temperature (R2=0.378),soil moisture (R2=0.147),and root volume density (R2=0.021) explained a significant amount of variance in soil surface CO2 efflux.Stand volumes were not correlated with soil CO2 efflux on our sites.