期刊文献+
共找到57,471篇文章
< 1 2 250 >
每页显示 20 50 100
Application of Three-Dimensional Simulation Model of Bioactive Ceramic Degrading Process in vivo
1
作者 CHEN Zuo bing 1, ZHOU Ai fang, YU Xin ming, YAN Yu hua, LI Shi pu1 Wuhan University of Technology, Wuhan 430070, China 《Chinese Journal of Biomedical Engineering(English Edition)》 2003年第1期17-21,共5页
This paper describes the method of constructing three dimensional model of bioactive ceramic to simulate the degrading process in vivo. Based on the construction of three dimensional simulation model and realizing it ... This paper describes the method of constructing three dimensional model of bioactive ceramic to simulate the degrading process in vivo. Based on the construction of three dimensional simulation model and realizing it by computer programming, it proves that the three dimensional stimulant model can correctly represent the real degrading process, and thus verifies its feasibility. 展开更多
关键词 THREE DIMENSIONAL simulation model DEGRADATION MCS
暂未订购
Assessment of shear wave velocity models in the Southeast Qinghai-Xizang Plateau with full-wave simulation
2
作者 Wenpei Miao Guoliang Li +2 位作者 Fenglin Niu Kai Tao Yonghua Li 《Earthquake Science》 2025年第3期159-171,共13页
Various velocity models have been built for Southeast Qinghai-Xizang Plateau with the purpose of revealing the internal dynamics and estimating local seismic hazards.In this study,we use a 3-D full-waveform modeling p... Various velocity models have been built for Southeast Qinghai-Xizang Plateau with the purpose of revealing the internal dynamics and estimating local seismic hazards.In this study,we use a 3-D full-waveform modeling package to systematically validate three published continental-scale velocity models,that is,Shen2016,FWEA18,and USTClitho1.0,leveraging the ample datasets in Southeast Qinghai-Xizang Plateau region.Travel time residuals and waveform similarities are measured between observed empirical Green’s functions and synthetic waveforms.The results show that the Shen2016 model,derived from traditional surface wave tomography,performs best in fitting Rayleigh waves in the Southeast Qinghai-Xizang Plateau,followed by FWEA18,built from full-waveform inversion of long-period body and surface waves.The USTClitho1.0 model,although inverted from body wave datasets,is comparable with FWEA18 in fitting Rayleigh waves.The results also show that all the models are faster than the ground-truth model and show relatively large travel-time residuals and poor waveform similarities at shorter period bands,possibly caused by small-scale structural heterogeneities in the shallower crust.We further invert the time residuals for spatial velocity residuals and reveal that all three models underestimate the amplitudes of high-and low-velocity anomalies.The underestimated amplitude is up to 4%,which is non-negligible considering that the overall amplitude of anomalies is only 5%−10%in the crust.These results suggest that datasets and the inversion method are both essential to building accurate models and further refinements of these models are necessary. 展开更多
关键词 Qinghai-Xizang Plateau tomography models fullwave simulation model validation
在线阅读 下载PDF
Model Design and Simulation of an 80 kW Capacitor Coupled Substation Derived from a 132 kV Transmission Line
3
作者 Sinqobile Wiseman Nene Bolanle Tolulope Abe Agha Francis Nnachi 《Open Journal of Modelling and Simulation》 2025年第1期1-19,共19页
The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, li... The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods. 展开更多
关键词 Capacitor-Coupled Substation Transmission Line-linked Capacitor-Coupled Substation Capacitor-Coupled Substation simulation MICROGRIDS Rural Electrification Power System modeling
在线阅读 下载PDF
Three-Dimensional Prospectivity Modeling of Jinshan Ag-Au Deposit,Southern China by Weights-of-Evidence
4
作者 Fan Xiao Qiuming Cheng +1 位作者 Weisheng Hou Frederik P.Agterberg 《Journal of Earth Science》 2025年第5期2038-2057,共20页
To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets ... To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets of concealed ore bodies,three-dimensional Mineral Prospectivity Modeling(MPM)of the deposit has been conducted using the weights-of-evidence(WofE)method.Conditional independence between evidence layers was tested,and the outline results using the prediction-volume(P-V)and Student's t-statistic methods for delineating favorable mineralization areas from continuous posterior probability map were critically compared.Four exploration targets delineated ultimately by the Student's t-statistic method for the discovery of minable ore bodies in each of the target areas were discussed in detail.The main conclusions include:(1)three-dimensional modeling of a deposit using multi-source reconnaissance data is useful for MPM in interpreting their relationships with known ore bodies;(2)WofE modeling can be used as a straightforward tool for integrating deposit model and reconnaissance data in MPM;(3)the Student's t-statistic method is more applicable in binarizing the continuous prospectivity map for exploration targeting than the PV approach;and(4)two target areas within high potential to find undiscovered ore bodies were diagnosed to guide future near-mine exploration activities of the Jinshan deposit. 展开更多
关键词 three-dimensional modeling mineral prospectivity mapping exploration targeting WEIGHTS-OF-EVIDENCE C-V fractal model Jinshan Ag-Au deposit mineral deposits economic geology
原文传递
Mixed integer programming modeling for the satellite three-dimensional component assignment and layout optimization problem
5
作者 Yufeng XIA Xianqi CHEN +3 位作者 Zhijia LIU Weien ZHOU Wen YAO Zhongneng ZHANG 《Chinese Journal of Aeronautics》 2025年第6期427-447,共21页
Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en... Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications. 展开更多
关键词 Mixed integer programming modeling three-dimensional component assignment Layout optimization Phi-function Finite-rectangle method
原文传递
Numerical simulation of 3D supersonic asymmetric truncated nozzle based on k-kL algebraic stress model
6
作者 Gang WANG Shuai ZHANG +1 位作者 Jifa ZHANG Yao ZHENG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第3期238-251,共14页
The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbule... The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbulence models struggle to make accurate predictions for subsonic and supersonic flows in nozzles.In this study,we explored a novel model,the algebraic stress model k-kL-ARSM+J,to enhance the accuracy of turbulence numerical simulations.This new model was used to conduct numerical simulations of the design and off-design performance of a 3D supersonic asymmetric truncated nozzle designed in our laboratory,with the aim of providing a realistic pattern of changes.The research indicates that,compared to linear eddy viscosity turbulence models such as k-kL and shear stress transport(SST),the k-kL-ARSM+J algebraic stress model shows better accuracy in predicting the performance of supersonic nozzles.Its predictions were identical to the experimental values,enabling precise calculations of the nozzle.The performance trends of the nozzle are as follows:as the inlet Mach number increases,both thrust and pitching moment increase,but the rate of increase slows down.Lift peaks near the design Mach number and then rapidly decreases.With increasing inlet pressure,the nozzle thrust,lift,and pitching moment all show linear growth.As the flight altitude rises,the internal flow field within the nozzle remains relatively consistent due to the same supersonic nozzle inlet flow conditions.However,external to the nozzle,the change in external flow pressure results in the nozzle exit transitioning from over-expanded to under-expanded,leading to a shear layer behind the nozzle that initially converges towards the nozzle center and then diverges. 展开更多
关键词 Supersonic nozzle Turbulence model Numerical simulation Performance analysis
原文传递
Tropical Cyclone Simulations:The Impact of Model Top/Damping Layer and the Role of Stratospheric Gravity Waves
7
作者 Xu WANG Yuan WANG +2 位作者 Lifeng ZHANG Yun ZHANG Jiping GUAN 《Advances in Atmospheric Sciences》 2025年第11期2290-2304,共15页
This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,wh... This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,which propagate upward and outward into the stratosphere.These SGWs can reach the damping layer,which is a consequence of the numerical scheme employed,where they can affect the tangential circulation through the dragging and forcing processes.In models with a higher top boundary,this tangential circulation develops far from the TC and has minimal direct impact on TC intensity.By comparison,in models with a lower top(e.g.,20 km),the damping layer is located just above the top of the TC.The SGW dragging in the damping layer and the consequent tangential force can thus induce ascent outside the eyewall,promote latent heat release,tilt the eyewall,and enlarge the inner-core radius.This process will reduce inner-core vorticity advection within the boundary layer,and eventually inhibits the intensification of the TC.This suggests that when the thickness of the damping layer is 5 km,the TC numerical model top height should be at least higher than 20 km to generate more accurate simulations. 展开更多
关键词 gravity waves STRATOSPHERE tropical cyclones numerical simulations damping layer model top
在线阅读 下载PDF
Multi-scale Numerical Simulations for Crack Propagation in NiTi Shape Memory Alloys by Molecular Dynamics-based Cohesive Zone Model
8
作者 LI Yunfei WANG Yuancen HE Qinshu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期599-609,共11页
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ... The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity. 展开更多
关键词 NiTi shape memory alloys multi-scale numerical simulation crack propagation the cohesive zone model molecular dynamics simulation
原文传递
Evaluation of three-dimensional structure modeling of key enzymes in endogenous catabolism of polyamines
9
作者 GUO Baolin XUE Qian +1 位作者 WANG Bing ZHAO Yuan 《化学研究》 2025年第3期268-277,共10页
The acetylpolyamine oxidase(APAO),spermine oxidase(SMO),and spermidine/spermine N1-acetyltransferase(SSAT)are pivotal enzymes in polyamine metabolism,exerting direct influence on polyamine homeostasis regulation.Dysfu... The acetylpolyamine oxidase(APAO),spermine oxidase(SMO),and spermidine/spermine N1-acetyltransferase(SSAT)are pivotal enzymes in polyamine metabolism,exerting direct influence on polyamine homeostasis regulation.Dysfunctions in these enzymes are intricately linked to inflammatory diseases and cancers.Establishing their three-dimensional structures is essential for exploring enzymatic catalytic mechanisms and designing inhibitors at the atomic level.This article primarily assesses the precision of AlphaFold2 and molecular dynamics simulations in determining the three-dimensional structures of these enzymes,utilizing protein conformation rationality assessment,residue correlation matrix,and other techniques.This provides robust models for subsequent polyamine catabolic metabolism calculations and offers valuable insights for modeling proteins that have yet to acquire crystal structures. 展开更多
关键词 AlphaFold2 molecular dynamics simulation polyamine metabolism ENZYME structure modeling
在线阅读 下载PDF
A prediction model for guiding tumor microwave ablation surgery based on simulation
10
作者 Lu Qian Yamin Yang +4 位作者 Pan Chen Jia Liu Xiaofei Jin Zhiyu Qian Chunxiao Chen 《Journal of Innovative Optical Health Sciences》 2025年第1期85-99,共15页
Purpose:The major limitation of tumor microwave ablation(MWA)operation is the lack of predictability of the ablation zone before surgery.Operators rely on their individual experience to select a treatment plan,which i... Purpose:The major limitation of tumor microwave ablation(MWA)operation is the lack of predictability of the ablation zone before surgery.Operators rely on their individual experience to select a treatment plan,which is prone to either inadequate or excessive ablation.This paper aims to establish an ablation prediction model that guides MWA tumor surgical planning.Methods:An MWA process was first simulated by incorporating electromagnetic radiation equations,thermal equations,and optimized biological tissue parameters(dynamic dielectric and thermophysical parameters).The temperature distributions(the short/long diameters,and the total volume of the ablation zone)were then generated and verified by 60 cases ex vivo porcine liver experiments.Subsequently,a series of data were obtained from the simulated temperature distributions and to further fit the novel ablation coagulated area prediction model(ACAPM),thus rendering the ablation-dose table for the guiding surgical plan.The MWA clinical patient data and clinical devices suggested data were used to validate the accuracy and practicability of the established predicted model.Results:The 60 cases ex vivo porcine liver experiments demonstrated the accuracy of the simulated temperature distributions.Compared to traditional simulation methods,our approach reduces the long-diameter error of the ablation zone from 1.1 cm to 0.29 cm,achieving a 74%reduction in error.Further,the clinical data including the patients'operation results and devices provided values were consistent well with our predicated data,indicating the great potential of ACAPM to assist preoperative planning. 展开更多
关键词 Microwave ablation ablation simulation microwave prediction model dynamic tissue parameter
原文传递
Differential adsorption characteristics in the composite model of deep marine shale:Implication from molecular dynamics simulations
11
作者 Yu-Ying Wang Jun-Qing Chen +8 位作者 Fu-Jie Jiang Xiao-Bin Yang Xiao Zhang Hong Pang Dong-Xia Chen Bing-Yao Li Xin-Yi Niu Gui-Li Ma Kan-Yuan Shi 《Petroleum Science》 2025年第6期2247-2261,共15页
Shale gas serves as a significant strategic successor resource for future oil and gas reserves and production in China.Thus,a profound understanding of the adsorption mechanism of shale gas in shale reservoirs is cruc... Shale gas serves as a significant strategic successor resource for future oil and gas reserves and production in China.Thus,a profound understanding of the adsorption mechanism of shale gas in shale reservoirs is crucial to accurately predict and evaluate shale gas reserves.In this study,we utilized two simulation methods,molecular dynamics simulation and Giant Canonical Monte Carlo simulation to examine the adsorption characteristics of kerogen under varying temperature and pressure conditions.We compared the results under identical temperature and pressure conditions for different mineral-kerogen composite models.Moreover,we examined the effects of temperature,pressure,and mineral species on the kerogen adsorption mechanism.The results indicate that shale formations with high organic matter content and a substantial proportion of non-clay inorganic minerals,as well as those subjected to higher temperature and pressure conditions than the shallow layer,possess a greater capacity to accommodate shale gas.This study examined the adsorption mechanism of methane in shale gas using different mineral-kerogen composite models.The findings of this study provide more accurate guidance and support for efficient development of shale gas. 展开更多
关键词 Adsorption mechanisms Kerogen model Longmaxi Formation Marine shale molecular simulation Shale gas
原文传递
PM_(10) dust emission in the Erenhot-Huailai zone of northern China based on model simulation
12
作者 WANG Yong YAN Ping +3 位作者 WU Wei WANG Yijiao HU Chanjuan LI Shuangquan 《Journal of Arid Land》 2025年第3期324-336,共13页
The Erenhot-Huailai zone, as an important dust emission source area in northern China, affects the air quality of Beijing City, Tianjin City, and Hebei Province and human activities in this zone have a profound impact... The Erenhot-Huailai zone, as an important dust emission source area in northern China, affects the air quality of Beijing City, Tianjin City, and Hebei Province and human activities in this zone have a profound impact on surface dust emission. In order to explore the main source areas of surface dust emission and quantify the impacts of human activities on surface dust emission, we investigated the surface dust emission of different land types on the Erenhot-Huailai zone by model simulation, field observation, and comparative analysis. The results showed that the average annual inhalable atmospheric particles(PM_(10)) dust emission fluxes in arid grassland, Hunshandake Sandy Land, semi-arid grassland,semi-arid agro-pastoral area, dry sub-humid agro-pastoral area, and semi-humid agro-pastoral area were 4.41, 0.71, 3.64, 1.94, 0.24, and 0.14 t/hm^(2), respectively, and dust emission in these lands occurred mainly from April to May. Due to the influence of human activities on surface dust emission, dust emission fluxes from different land types were 1.66–4.41 times greater than those of their background areas, and dust emission fluxes from the main dust source areas were 1.66–3.89 times greater than those of their background areas. According to calculation, the amount of PM_(10) dust emission influenced by human disturbance accounted for up to 58.00% of the total dust emission in the study area. In addition, the comparative analysis of model simulation and field observation results showed that the simulated and observed dust emission fluxes were relatively close to each other, with differences ranging from 0.01 to 0.21 t/hm^(2) in different months, which indicated that the community land model version 4.5(CLM4.5) had a high accuracy. In conclusion, model simulation results have important reference significance for identifying dust source areas and quantifying the contribution of human activities to surface dust emission. 展开更多
关键词 northern China classification of land type model simulation dust emission human disturbance
在线阅读 下载PDF
Dynamic modeling of a three-dimensional braided composite thin plate considering braiding directions
13
作者 Chentong GAO Huiyu SUN +1 位作者 Jianping GU W.M.HUANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期123-138,共16页
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone... Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications. 展开更多
关键词 three-dimensional(3D)braided composite braiding direction composite thin plate large overall motion dynamic model
在线阅读 下载PDF
A Connectivity Model for the Numerical Simulation of Microgel Flooding in Low-Permeability Reservoirs
14
作者 Tao Wang Haiyang Yu +5 位作者 Jie Gao Fei Wang Xinlong Zhang Hao Yang Guirong Di Pengrun Wang 《Fluid Dynamics & Materials Processing》 2025年第5期1191-1200,共10页
Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques desig... Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques designed for tertiary oil recovery have garnered significant attention,with microgel flooding emerging as a particularly prominent area of research.Despite its promise,the complex mechanisms underlying microgel flooding have been rarely investigated numerically.This study aims to address these gaps by characterizing the distribution of microgel concentration and viscosity within different pore structures.To enhance the accuracy of these characterizations,the viscosity of microgels is adjusted to account for the shear effects induced by flow rate and the swelling effects driven by salinity variations.The absolute permeability of the rock and the relative permeability of both oil and microgel are also analyzed to elucidate the mechanisms of microgel flooding.Additionally,a connectivity model is employed to achieve a quantitative representation of fluid flow capacity.The proposed model is validated through conceptual examples and applied to real oilfield blocks,demonstrating its accuracy and practical applicability. 展开更多
关键词 Connectivity model chemical enhanced oil recovery microgel flooding numerical reservoir simulation fractured reservoirs
在线阅读 下载PDF
UAF-based integration of design and simulation model for system-of-systems
15
作者 FENG Yimin GE Ping +2 位作者 SHAO Yanli ZOU Qiang LIU Yusheng 《Journal of Systems Engineering and Electronics》 2025年第1期108-126,共19页
Model-based system-of-systems(SOS)engineering(MBSoSE)is becoming a promising solution for the design of SoS with increasing complexity.However,bridging the models from the design phase to the simulation phase poses si... Model-based system-of-systems(SOS)engineering(MBSoSE)is becoming a promising solution for the design of SoS with increasing complexity.However,bridging the models from the design phase to the simulation phase poses significant challenges and requires an integrated approach.In this study,a unified requirement modeling approach is proposed based on unified architecture framework(UAF).Theoretical models are proposed which compose formalized descriptions from both topdown and bottom-up perspectives.Based on the description,the UAF profile is proposed to represent the SoS mission and constituent systems(CS)goal.Moreover,the agent-based simulation information is also described based on the overview,design concepts,and details(ODD)protocol as the complement part of the SoS profile,which can be transformed into different simulation platforms based on the eXtensible markup language(XML)technology and model-to-text method.In this way,the design of the SoS is simulated automatically in the early design stage.Finally,the method is implemented and an example is given to illustrate the whole process. 展开更多
关键词 model-based systems engineering unified architecture framework(UAF) system-of-systems engineering model transformation simulation
在线阅读 下载PDF
Real-time model updating and prediction of three-dimensional timevarying consolidation settlement using machine learning
16
作者 Huaming Tian Yu Wang Danni Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5954-5969,共16页
The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying ge... The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches. 展开更多
关键词 Digital twin three-dimensional(3D)finite element method(FEM) Time-varying 3D settlement Real-time model update Sparse dictionary learning(SDL)
在线阅读 下载PDF
A conductivity model for hydrogen based on ab initio simulations
17
作者 Uwe Kleinschmidt Ronald Redmer 《Matter and Radiation at Extremes》 2025年第4期58-69,共12页
We calculate the electrical and thermal conductivity of hydrogen for a wide range of densities and temperatures by using molecular dynamics simulations informed by density functional theory.On the basis of the corresp... We calculate the electrical and thermal conductivity of hydrogen for a wide range of densities and temperatures by using molecular dynamics simulations informed by density functional theory.On the basis of the corresponding extended ab initio data set,we construct interpolation formulas covering the range from low-density,high-temperature to high-density,low-temperature plasmas.Our conductivity model repro-duces the well-known limits of the Spitzer and Ziman theory.We compare with available experimental data andfind very good agreement.The new conductivity model can be applied,for example,in dynamo simulations for magneticfield generation in gas giant planets,brown dwarfs,and stellar envelopes. 展开更多
关键词 molecular dynamics simulations electrical thermal conductivity CONDUCTIVITY density functional theoryon interpolation formulas conductivity model extended ab initio data setwe spitzer ziman theorywe
在线阅读 下载PDF
Enhanced quasi-three-dimensional transient simulation technique incorporating component volume effects for aero engine
18
作者 Yuchen DAI Manxiang SONG +1 位作者 Donghai JIN Xingmin GUI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期325-346,共22页
Current transient analysis predominantly relies on zero-dimensional/one-dimensional tools,proficient at capturing aerothermodynamic variations across critical engine stations but insufficient for analyzing the interna... Current transient analysis predominantly relies on zero-dimensional/one-dimensional tools,proficient at capturing aerothermodynamic variations across critical engine stations but insufficient for analyzing the internal flow field evolution during transients.Addressing this gap,the study presents an enhanced quasi-three dimensional(quasi-3D)transient simulation technique that integrates component volume effects,offering a significant leap from the preceding quasi-3D transient simulation method based on quasi-steady assumption.By embedding the component volume effects on density,momentum,and energy within the physical temporal dimension of the Navier-Stokes equations,the refined quasi-3D transient model achieves a closer representation of physical phenomena.Validation against a single-shaft turbofan engine’s experimental data confirms the model’s accuracy.Average errors for key performance indicators,including shaft speed,thrust,mass flow rate,and critical component exit temperature and pressure,remain below 0.41%,5.69%,2.55%,3.18%and 0.67%,respectively.Crucially,the model exposes a discernible temporal lag in the compressor outlet pressure and temperature response due to volume effects—previously unquantified in quasi-3D transient simulations.And further exploration of the meridional flow field emphasizes the consequential role of volumes in transient flow field evolution.Incorporating volume effects within quasi-3D transient simulations enhances engine modeling and is pivotal for precise transient analysis in engine design and optimization. 展开更多
关键词 Engines Transient simulation Quasi-3D modeling Component volume effects Flow field evolution Transient performance analysis
原文传递
Research on Three-Dimensional Simulation of the Internal Arc Gear Skiving
19
作者 Xiaoqiang WU Rui XUE +9 位作者 Erkuo GUO Dongzhou JIA Taiyan GONG Zengrong LI Haijun YANG Xiaoxue LI Xin JIANG Shuai DING Yong LIU Shitian LI 《Mechanical Engineering Science》 2024年第1期35-40,共6页
Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relat... Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relationship and positional relationship between the caries knife and the workpiece,the coordinate system of the caries machining was established.With the MATLAB software,the cutting edge model and the blade sweeping surface model of the boring cutter are sequentially established.Boolean operation is performed on the blade swept surface formed by the tooth cutter teeth with time t and the workpiece tooth geometry as well as the undeformed three-dimensional chip geometry model and the instantaneous cogging geometry model are obtained at different times.Through the compare between gear end face simulation tooth profile and the theoretical inner arc tooth profile,we verified the accuracy and rationality of the proposed method. 展开更多
关键词 gear skiving undeformed three-dimensional chips solid modeling
暂未订购
Numerical Simulation of the Whole Three-Dimensional Flow in a Stirred Tank with Anisotropic Algebraic Stress Model 被引量:19
20
作者 孙海燕 王卫京 毛在砂 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第1期15-24,共10页
In accordance to the anisotropic feature of turbulent flow, ananisotropic algebraic stress model is adopted to predict theturbulent flow field and turbulent characteristics generated by aRushton disc turbine with the ... In accordance to the anisotropic feature of turbulent flow, ananisotropic algebraic stress model is adopted to predict theturbulent flow field and turbulent characteristics generated by aRushton disc turbine with the improved inner-outer iterativeprocedure. The predicted turbulent flow is compared with experimentaldata and the simulation by the standard k-ε turbulence model. Theanisotropic algebraic stress model is found to give better predictionthan the standard k-ε turbulence model. The predicted turbulent flowfield is in accordance to experimental data and the trend of theturbulence intensity can be effectively reflected in the simulation. 展开更多
关键词 agitated vessel anisotropic algebraic stress model numerical simulation inner-outer iteration
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部