Meeting the increasing demand for food and industrial products by the growing global population requires targeted efforts to improve crops,livestock,and microorganisms.Modern biotechnology,particularly genetic modific...Meeting the increasing demand for food and industrial products by the growing global population requires targeted efforts to improve crops,livestock,and microorganisms.Modern biotechnology,particularly genetic modification(GM)and genome-editing(GE)technologies,is crucial for food security and environmental sustainability.China,which is at the forefront of global biotechnological innovation and the rapid advancements in GM and GE technologies,has prioritized this field by implementing strategic programs such as the National High-tech Research&Development Program in 1986,the National Genetically Modified Organism New Variety Breeding Program in 2008,and the Biological Breeding-National Science and Technology Major Project in 2022.Many biotechnological products have been widely commercialized in China,including biofertilizers,animal feed,animal vaccines,pesticides,and GM crops such as cotton(Gossypium hirsutum),maize(Zea mays),and soybean(Glycine max).In this review,we summarize progress on the research and utilization of GM and GE organisms in China over the past 3 decades and provide perspectives on their further development.This review thus aims to promote worldwide academic exchange and contribute to the further development and commercial success of agricultural biotechnology.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ...Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.展开更多
Objective To explore the impact of mergers and acquisitions(M&A)on the innovation performance of the companies from both a patent perspective and a financial perspective by taking the case of M&A Company J as ...Objective To explore the impact of mergers and acquisitions(M&A)on the innovation performance of the companies from both a patent perspective and a financial perspective by taking the case of M&A Company J as an example.Methods The literature research method,patent data analysis method,and financial data analysis method were used.Results:The M&A has a positive impact on the innovation performance of Company J,and the results from the patent perspective and the financial perspective are consistent.Results and Conclusion The literature research method,patent data analysis method,and financial data analysis method were used.The M&A has a positive impact on the innovation performance of Company J,and the results from the patent perspective and the financial perspective are consistent.展开更多
Hardship The Double Take column looks at a single topic from an African and Chinese perspective.This month,we explore whether enduring hardship is still a necessary path to growth in a changing world.
Sodium-sulfur(Na-S)batteries are considered as a promising successor to the next-generation of high-capacity,low-cost and environmentally friendly sulfur-based battery systems.However,Na-S batteries still suffer from ...Sodium-sulfur(Na-S)batteries are considered as a promising successor to the next-generation of high-capacity,low-cost and environmentally friendly sulfur-based battery systems.However,Na-S batteries still suffer from the“shuttle effect”and sluggish ion transport kinetics due to the dissolution of sodium polysulfides and poor conductivity of sulfur.MXenes,as 2D transition metal carbides/nitrides,have exhibited excellent conductivity,diverse structure and tunable surface groups,particularly playing a crucial role in inhibiting polysulfide shuttle and sodium dendrite growth.In this review,achievements and advancements of MXene-based Na-S batteries are discussed,including applications of a sulfur cathode,separator,interlayer between separator and cathode,and sodium anode.In the end,perspectives and challenges on the future development of MXene-based materials in Na-S batteries are proposed.展开更多
Objective:This study aims to explore the experiences of social alienation among adolescents with depression,providing practical This study aims to explore the experiences of social alienation among adolescents with de...Objective:This study aims to explore the experiences of social alienation among adolescents with depression,providing practical This study aims to explore the experiences of social alienation among adolescents with depression,providing practical guidance for improving their interpersonal relationships and facilitating their reintegration into society.Methods:This qualitative research was conducted following the conventional content analysis method.20 adolescents with depression were employed to select from June to August 2024 for face-to-face semi-structured interviews.The collected data were analyzed using Colaizzi's seven-step method.Results:Three themes and eight sub-themes were analyzed and identified:individual level(feelings of helplessness and powerlessness,cognitive distortion,avoidance and withdrawal),family level(lack of family awareness,family conflict),social level(limitations of academic stress and social circle,lack and degradation of skills,generalization of virtual reality,social“stigma”).Conclusion:Adolescents with depression experience complex social alienation.Healthcare providers should enhance their self-awareness and social adaptation skills,improve family dynamics,and provide a comprehensive range of services and services to help them to cope with the challenges of depression.Healthcare providers should enhance their self-awareness and social adaptation skills,improve family dynamics,strengthen communication,bolster family support systems,and collaborate to develop comprehensive social networks and psychological services.This will create a supportive social atmosphere to help adolescents gradually alleviate their feelings of social alienation.展开更多
The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated cata...The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.展开更多
Driven by the goal of carbon neutrality,prefabricated buildings,as an important form of green construction,have become a key focus in the study of lifecycle carbon footprint management.Based on this,this paper starts ...Driven by the goal of carbon neutrality,prefabricated buildings,as an important form of green construction,have become a key focus in the study of lifecycle carbon footprint management.Based on this,this paper starts from the perspective of carbon footprint and combines the digital and visual advantages of BIM technology to construct a green evaluation system for prefabricated buildings.It explores the carbon emissions in each stage of the building and proposes corresponding improvement measures,aiming to provide necessary references for the low-carbon transformation of prefabricated buildings.展开更多
In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring t...In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.展开更多
Parental educational anxiety has become a social symptom in China,and rural primary school students’mothers exhibit unique educational anxieties due to their special living environment.Based on interviews with 10 rur...Parental educational anxiety has become a social symptom in China,and rural primary school students’mothers exhibit unique educational anxieties due to their special living environment.Based on interviews with 10 rural primary school students’mothers,five typical educational anxiety experiences were selected for analysis,and themes such as rural life burden,children’s learning habits,mothers’educational expectations,mothers’educational methods,mothers’emotional state,deviation between reality and expectations,homework guidance ability,mothers’educational level,and attitudes towards children’s future development were refined.The root causes of educational anxiety among rural primary school students’mothers include the deviation between children’s actual performance and mothers’educational expectations,the sense of disparity under social comparison,physical and mental exhaustion caused by role overload,anxiety triggered by excessive economic burden,and a sense of powerlessness towards children’s educational outcomes.To alleviate the educational anxiety of rural primary school students’mothers,mothers should actively adjust themselves,fathers should actively participate in their children’s education,society should create a healthy atmosphere,and schools should strengthen family education guidance.展开更多
BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major...BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.展开更多
Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of t...Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.展开更多
On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on ...On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.The forum was organised by the China Writers Association and co-organised by China National Publications Import&Export(Group)Corporation.展开更多
The red cultural resources in rural areas bear the heavy historical and spiritual strength,and are the key rich ore and spiritual pillar in the field of education.This study discusses the connotation of red culture re...The red cultural resources in rural areas bear the heavy historical and spiritual strength,and are the key rich ore and spiritual pillar in the field of education.This study discusses the connotation of red culture resources and the current situation of educating people,and then analyzes how to integrate interdisciplinary learning theory into red culture to enhance the value of educating people.On this basis,it proposes to explore the educational path of optimizing rural red cultural resources from an interdisciplinary perspective by integrating multi-disciplinary knowledge and red cultural resources.展开更多
Ecological network(EN)identification and optimization is an essential research tool for safeguarding regional ecological security patterns and planning territorial space.Especially for the ecologically fragile inland ...Ecological network(EN)identification and optimization is an essential research tool for safeguarding regional ecological security patterns and planning territorial space.Especially for the ecologically fragile inland river basins,EN optimization is of significance in ensuring regional ecological security and virtuous cycle of ecosystems.In addition,EN is a dynamically changing structural system that is more applicable to the regional development by optimizing it from comprehensive future development perspective.EN of Shiyang River basin was constructed on account of the circuit theory,and land use/cover changes(LUCC)of the basin in 2035 was predicted by PLUS model,so as to explore the ecological conservation priorities and formulate optimization strategies.54 ecological sources(ESs)were identified,covering an area of 12,198 km^(2),mainly in the southern basin.133 ecological corridors(ECs)with an area of 3,176.92 km^(2)were extracted.38 ecological pinchpoints(EPs)and 22 ecological barriers(EBs)were identified respectively,which were mainly distributed in the lower basin.To effectively enhance the connectivity of EN in Minqin County,which has the worst ecological environment,we added five stepping stones based on the Ant Forest project.In addition,the optimal EPS is selected according to the development and limitation needs of inland river basins and the threat degree of warning points(WPs)under different scenarios.Scientific and reasonable optimization of future urban layout to prevent WPs can effectively alleviate the contradiction between ecological protection and economic development.The study is intended to provide basis for ecological sustainable development and rational planning territorial space in Shiyang River basin,as well as opinion for EN optimization in inland river basin.展开更多
The natural visibility graph method has been widely used in physiological signal analysis,but it fails to accurately handle signals with data points below the baseline.Such signals are common across various physiologi...The natural visibility graph method has been widely used in physiological signal analysis,but it fails to accurately handle signals with data points below the baseline.Such signals are common across various physiological measurements,including electroencephalograph(EEG)and functional magnetic resonance imaging(fMRI),and are crucial for insights into physiological phenomena.This study introduces a novel method,the baseline perspective visibility graph(BPVG),which can analyze time series by accurately capturing connectivity across data points both above and below the baseline.We present the BPVG construction process and validate its performance using simulated signals.Results demonstrate that BPVG accurately translates periodic,random,and fractal signals into regular,random,and scale-free networks respectively,exhibiting diverse degree distribution traits.Furthermore,we apply BPVG to classify Alzheimer’s disease(AD)patients from healthy controls using EEG data and identify non-demented adults at varying dementia risk using resting-state fMRI(rs-fMRI)data.Utilizing degree distribution entropy derived from BPVG networks,our results exceed the best accuracy benchmark(77.01%)in EEG analysis,especially at channels F4(78.46%)and O1(81.54%).Additionally,our rs-fMRI analysis achieves a statistically significant classification accuracy of 76.74%.These findings highlight the effectiveness of BPVG in distinguishing various time series types and its practical utility in EEG and rs-fMRI analysis for early AD detection and dementia risk assessment.In conclusion,BPVG’s validation across both simulated and real data confirms its capability to capture comprehensive information from time series,irrespective of baseline constraints,providing a novel method for studying neural physiological signals.展开更多
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr...The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With ...Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.展开更多
基金Biological Breeding-National Science and Technology Major Project(2022ZD04021).
文摘Meeting the increasing demand for food and industrial products by the growing global population requires targeted efforts to improve crops,livestock,and microorganisms.Modern biotechnology,particularly genetic modification(GM)and genome-editing(GE)technologies,is crucial for food security and environmental sustainability.China,which is at the forefront of global biotechnological innovation and the rapid advancements in GM and GE technologies,has prioritized this field by implementing strategic programs such as the National High-tech Research&Development Program in 1986,the National Genetically Modified Organism New Variety Breeding Program in 2008,and the Biological Breeding-National Science and Technology Major Project in 2022.Many biotechnological products have been widely commercialized in China,including biofertilizers,animal feed,animal vaccines,pesticides,and GM crops such as cotton(Gossypium hirsutum),maize(Zea mays),and soybean(Glycine max).In this review,we summarize progress on the research and utilization of GM and GE organisms in China over the past 3 decades and provide perspectives on their further development.This review thus aims to promote worldwide academic exchange and contribute to the further development and commercial success of agricultural biotechnology.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
文摘Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.
文摘Objective To explore the impact of mergers and acquisitions(M&A)on the innovation performance of the companies from both a patent perspective and a financial perspective by taking the case of M&A Company J as an example.Methods The literature research method,patent data analysis method,and financial data analysis method were used.Results:The M&A has a positive impact on the innovation performance of Company J,and the results from the patent perspective and the financial perspective are consistent.Results and Conclusion The literature research method,patent data analysis method,and financial data analysis method were used.The M&A has a positive impact on the innovation performance of Company J,and the results from the patent perspective and the financial perspective are consistent.
文摘Hardship The Double Take column looks at a single topic from an African and Chinese perspective.This month,we explore whether enduring hardship is still a necessary path to growth in a changing world.
基金supported by the National Natural Science Foundation of China(Nos.51972198 and 61633015)the Natural Science Foundation of Shandong Province(No.ZR2020JQ19)+1 种基金Taishan Scholars Program of Shandong Province(No.ts20190908)Shenzhen Fundamental Research Program(No.JCYJ20190807093405503).
文摘Sodium-sulfur(Na-S)batteries are considered as a promising successor to the next-generation of high-capacity,low-cost and environmentally friendly sulfur-based battery systems.However,Na-S batteries still suffer from the“shuttle effect”and sluggish ion transport kinetics due to the dissolution of sodium polysulfides and poor conductivity of sulfur.MXenes,as 2D transition metal carbides/nitrides,have exhibited excellent conductivity,diverse structure and tunable surface groups,particularly playing a crucial role in inhibiting polysulfide shuttle and sodium dendrite growth.In this review,achievements and advancements of MXene-based Na-S batteries are discussed,including applications of a sulfur cathode,separator,interlayer between separator and cathode,and sodium anode.In the end,perspectives and challenges on the future development of MXene-based materials in Na-S batteries are proposed.
基金2024 Annual project of National Social Science Foundation“Research on Problem Identification and Governance Countermeasures of Minor Mental Health Network Support”(Project No.:24BXW044).
文摘Objective:This study aims to explore the experiences of social alienation among adolescents with depression,providing practical This study aims to explore the experiences of social alienation among adolescents with depression,providing practical guidance for improving their interpersonal relationships and facilitating their reintegration into society.Methods:This qualitative research was conducted following the conventional content analysis method.20 adolescents with depression were employed to select from June to August 2024 for face-to-face semi-structured interviews.The collected data were analyzed using Colaizzi's seven-step method.Results:Three themes and eight sub-themes were analyzed and identified:individual level(feelings of helplessness and powerlessness,cognitive distortion,avoidance and withdrawal),family level(lack of family awareness,family conflict),social level(limitations of academic stress and social circle,lack and degradation of skills,generalization of virtual reality,social“stigma”).Conclusion:Adolescents with depression experience complex social alienation.Healthcare providers should enhance their self-awareness and social adaptation skills,improve family dynamics,and provide a comprehensive range of services and services to help them to cope with the challenges of depression.Healthcare providers should enhance their self-awareness and social adaptation skills,improve family dynamics,strengthen communication,bolster family support systems,and collaborate to develop comprehensive social networks and psychological services.This will create a supportive social atmosphere to help adolescents gradually alleviate their feelings of social alienation.
基金supported by Guangxi Science and Technology Major Program(No.AA23073008)Hubei Key Laboratory of Water System Science for Sponge City Construction(Wuhan University)(No.2023–05)Nanning Innovation and Entrepreneur Leading Talent Project(No.2021001).
文摘The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.
文摘Driven by the goal of carbon neutrality,prefabricated buildings,as an important form of green construction,have become a key focus in the study of lifecycle carbon footprint management.Based on this,this paper starts from the perspective of carbon footprint and combines the digital and visual advantages of BIM technology to construct a green evaluation system for prefabricated buildings.It explores the carbon emissions in each stage of the building and proposes corresponding improvement measures,aiming to provide necessary references for the low-carbon transformation of prefabricated buildings.
基金Sponsored by the Project of Sichuan Landscape and Recreation Research Center(JGYQ2020037).
文摘In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.
基金Hunan Provincial Social Science Foundation“A Phenomenological Study on the Educational Life Experiences of Rural Young Teachers”(20YBA017)。
文摘Parental educational anxiety has become a social symptom in China,and rural primary school students’mothers exhibit unique educational anxieties due to their special living environment.Based on interviews with 10 rural primary school students’mothers,five typical educational anxiety experiences were selected for analysis,and themes such as rural life burden,children’s learning habits,mothers’educational expectations,mothers’educational methods,mothers’emotional state,deviation between reality and expectations,homework guidance ability,mothers’educational level,and attitudes towards children’s future development were refined.The root causes of educational anxiety among rural primary school students’mothers include the deviation between children’s actual performance and mothers’educational expectations,the sense of disparity under social comparison,physical and mental exhaustion caused by role overload,anxiety triggered by excessive economic burden,and a sense of powerlessness towards children’s educational outcomes.To alleviate the educational anxiety of rural primary school students’mothers,mothers should actively adjust themselves,fathers should actively participate in their children’s education,society should create a healthy atmosphere,and schools should strengthen family education guidance.
基金Supported by the Zhejiang Medical Science and Technology Project,No.2022KY1325 and No.2023KY381Public Welfare Project of Jinhua Science and Technology Plan,No.2023-4-084Major Project of Jinhua Science and Technology Plan,No.2023-3-066.
文摘BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.
基金supported by the National Natural Science Foundation of China to Jiping Huang(12035004 and 12320101004)the Innovation Program of the Shanghai Municipal Education Commission to Jiping Huang(2023ZKZD06)+2 种基金the National Natural Science Foundation of China to Ying Li(92163123 and 52250191)the Zhejiang Provincial Natural Science Foundation of China to Ying Li(LZ24A050002)the National Natural Science Foundation of China to Liujun Xu(12375040,12088101,and U2330401).
文摘Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.
文摘On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.The forum was organised by the China Writers Association and co-organised by China National Publications Import&Export(Group)Corporation.
基金Supported by the Research Project of Jiangsu Second Normal University"Research on the Construction and Application of Economics MOOC(Micro Course)from the Perspective of Ideological and Political Education JSSNUJXGG 2023YB08".
文摘The red cultural resources in rural areas bear the heavy historical and spiritual strength,and are the key rich ore and spiritual pillar in the field of education.This study discusses the connotation of red culture resources and the current situation of educating people,and then analyzes how to integrate interdisciplinary learning theory into red culture to enhance the value of educating people.On this basis,it proposes to explore the educational path of optimizing rural red cultural resources from an interdisciplinary perspective by integrating multi-disciplinary knowledge and red cultural resources.
基金funded by the National Natural Science Foundation of China(Grant No.42101276)。
文摘Ecological network(EN)identification and optimization is an essential research tool for safeguarding regional ecological security patterns and planning territorial space.Especially for the ecologically fragile inland river basins,EN optimization is of significance in ensuring regional ecological security and virtuous cycle of ecosystems.In addition,EN is a dynamically changing structural system that is more applicable to the regional development by optimizing it from comprehensive future development perspective.EN of Shiyang River basin was constructed on account of the circuit theory,and land use/cover changes(LUCC)of the basin in 2035 was predicted by PLUS model,so as to explore the ecological conservation priorities and formulate optimization strategies.54 ecological sources(ESs)were identified,covering an area of 12,198 km^(2),mainly in the southern basin.133 ecological corridors(ECs)with an area of 3,176.92 km^(2)were extracted.38 ecological pinchpoints(EPs)and 22 ecological barriers(EBs)were identified respectively,which were mainly distributed in the lower basin.To effectively enhance the connectivity of EN in Minqin County,which has the worst ecological environment,we added five stepping stones based on the Ant Forest project.In addition,the optimal EPS is selected according to the development and limitation needs of inland river basins and the threat degree of warning points(WPs)under different scenarios.Scientific and reasonable optimization of future urban layout to prevent WPs can effectively alleviate the contradiction between ecological protection and economic development.The study is intended to provide basis for ecological sustainable development and rational planning territorial space in Shiyang River basin,as well as opinion for EN optimization in inland river basin.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFF1204803)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20190736)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.NJ2024029)the National Natural Science Foundation of China(Grant Nos.81701346 and 62201265).
文摘The natural visibility graph method has been widely used in physiological signal analysis,but it fails to accurately handle signals with data points below the baseline.Such signals are common across various physiological measurements,including electroencephalograph(EEG)and functional magnetic resonance imaging(fMRI),and are crucial for insights into physiological phenomena.This study introduces a novel method,the baseline perspective visibility graph(BPVG),which can analyze time series by accurately capturing connectivity across data points both above and below the baseline.We present the BPVG construction process and validate its performance using simulated signals.Results demonstrate that BPVG accurately translates periodic,random,and fractal signals into regular,random,and scale-free networks respectively,exhibiting diverse degree distribution traits.Furthermore,we apply BPVG to classify Alzheimer’s disease(AD)patients from healthy controls using EEG data and identify non-demented adults at varying dementia risk using resting-state fMRI(rs-fMRI)data.Utilizing degree distribution entropy derived from BPVG networks,our results exceed the best accuracy benchmark(77.01%)in EEG analysis,especially at channels F4(78.46%)and O1(81.54%).Additionally,our rs-fMRI analysis achieves a statistically significant classification accuracy of 76.74%.These findings highlight the effectiveness of BPVG in distinguishing various time series types and its practical utility in EEG and rs-fMRI analysis for early AD detection and dementia risk assessment.In conclusion,BPVG’s validation across both simulated and real data confirms its capability to capture comprehensive information from time series,irrespective of baseline constraints,providing a novel method for studying neural physiological signals.
基金supported by the National Science Foundation of China(Grant Nos.42374205 and 41974179)the Specialized Research Fund of the National Space Science Center,Chinese Academy of Sciences(Grant No.E4PD3010)supported by the Specialized Research Fund for State Key Laboratories.
文摘The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
文摘Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.