期刊文献+
共找到9,319篇文章
< 1 2 250 >
每页显示 20 50 100
Multilayered microfluidic platform for three-dimensional vascularized organ-on-a-chip applications
1
作者 Chenyang Zhou Zhangjie Li +3 位作者 Jiaqi Xu Dingyuan Yu Lian Xuan Xiaolin Wang 《Bio-Design and Manufacturing》 2025年第6期930-947,I0004-I0009,共24页
The vascular network is integral to the developmental and metabolic processes of various tissues and functions as a systemic circulatory system that also interconnects organs throughout the body.In this study,we descr... The vascular network is integral to the developmental and metabolic processes of various tissues and functions as a systemic circulatory system that also interconnects organs throughout the body.In this study,we describe a multilayered microfluidic organ-on-a-chip platform designed for reproducing various three-dimensional(3D)vascularized microtissue models for biological applications.This platform utilizes a porous membrane as a physical barrier and leverages capillary action for hydrogel self-filling.Its high flow resistance mitigates the risk of gel bursting into the medium channels and facilitates the delivery of substances to generate a wide range of interstitial flow and biochemical factor concentration gradients.This study demonstrated that this platform can be used to accurately replicate 3D microenvironments for vasculogenesis,angiogenesis,and vascularized tumor modeling.We also investigated the critical role of multiple microenvironmental regulations in vascular formation on a chip.Moreover,we reproduced the process of tumor angiogenesis,including primary solid tumor features and the inhibitory effects of antitumor drugs on tumor growth and tumor vasculature before and after angiogenesis.Hence,our multilayered microfluidic platform is valuable for exploring multiple vascular mechanisms and constructing specific microtissues that closely mimic in vivo physiological conditions,providing new strategies for cancer research.Furthermore,the multilayered configuration improves design flexibility and scalability,providing the potential for a multi-organ interconnected platform for high-throughput drug screening. 展开更多
关键词 Microfluidics multilayerED Organ-on-a-chip VASCULARIZATION
暂未订购
Architecting heterostructures in multilayered titanium laminates to attain 1 GPa yield stress with uncompromised ductility at 500℃ 被引量:1
2
作者 Tian-Le Li Ning Xu +5 位作者 Ren-Hao Wu Jia-Bao Liu Man Jae SaGong Shi Woo Lee Yun-Tian Zhu Hyoung Seop Kim 《Rare Metals》 2025年第7期5045-5060,共16页
Lightweight,high-strength,and heat-resistant protective structures have consistently been crucial for applications in extreme environments,such as aerospace,semiconductors,and nuclear power industries.Multilayered TC4... Lightweight,high-strength,and heat-resistant protective structures have consistently been crucial for applications in extreme environments,such as aerospace,semiconductors,and nuclear power industries.Multilayered TC4/TB8 titanium(Ti)laminates,inspired by theheterostructures of natural biological shells,were fabricated using a hybrid diffusion bonding-hot rolling process followed by an aging treatment,resulting in an architected micro structure.The laminate achieves an ultra-high yield stress of 1020 MPa and proper uniform elongation of 4.2%at 500℃.The TB8 layers with high-density nano-precipitates and dislocations act as hard zone,contributing to high strength.The TC4 layers,with their bimodal structure consisting of coarse and fine grains characterized by equiaxed and lamellar structures,experience more plastic strain than the TB8 layers.The hetero deformation associated with the detwinning ofαgrains in the TC4 layer induces toughening at high temperatures. 展开更多
关键词 multilayered Ti laminates Bimodal grain Dislocation interaction Detwinning High-temperature mechanical property
原文传递
Three-dimensional line-of-sight-angle-constrained leader-following cooperative interception guidance law with prespecified impact time 被引量:1
3
作者 Hao YOU Xinlong CHANG Jiufen ZHAO 《Chinese Journal of Aeronautics》 2025年第1期491-506,共16页
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea... To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law. 展开更多
关键词 three-dimensional cooperative interception Leader-following missiles Prespecified impact time LOS-angle-constrained Fixed-time stability Global integral sliding mode
原文传递
Influence of Process Parameters on Forming Quality of Single-Channel Multilayer by Joule Heat Fuse Additive Manufacturing
4
作者 Li Suli Fan Longfei +3 位作者 Chen Jichao Gao Zhuang Xiong Jie Yang Laixia 《稀有金属材料与工程》 北大核心 2025年第5期1165-1176,共12页
To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and l... To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts. 展开更多
关键词 Joule heat additive manufacturing single-channel multilayer process parameter forming quality
原文传递
Three-dimensional models:from cell culture to Patient-Derived Organoid and its application to future liposarcoma research
5
作者 SAYUMI TAHARA SYDNEY RENTSCH +4 位作者 FERNANDA COSTAS CASAL DE FARIA PATRICIA SARCHET ROMA KARNA FEDERICA CALORE RAPHAEL E.POLLOCK 《Oncology Research》 SCIE 2025年第1期1-13,共13页
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ... Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma. 展开更多
关键词 Cell culture LIPOSARCOMA Patient-Derived Organoid(PDO) SPHEROID three-dimensional(3D)cell culture
暂未订购
Electron doping in FeSe monolayer and multilayer via metal phthalocyanine adsorption:A first-principles investigation
6
作者 Fangyu Yang Yan-Fang Zhang +1 位作者 Peixuan Li Shixuan Du 《Chinese Physics B》 2025年第11期236-240,共5页
Electron doping has been established as an effective method to enhance the superconducting transition temperature and superconducting energy gap of FeSe thin films on strontium titanate(SrTiO_(3))substrates.Previous s... Electron doping has been established as an effective method to enhance the superconducting transition temperature and superconducting energy gap of FeSe thin films on strontium titanate(SrTiO_(3))substrates.Previous studies have demonstrated that electron/hole doping can be achieved through the adsorption of metal phthalocyanine(MPc,M=Co,Cu,Mn,Fe,and Ni)molecules on surfaces.This work explores the electron doping induced by the adsorption of MPc molecules,specifically cobalt phthalocyanine(CoPc)and copper phthalocyanine(CuPc),onto FeSe monolayer and multilayers.Utilizing first-principles calculations based on density functional theory,we demonstrate that charge rearrangement occurs when MPc molecules adsorb on the FeSe substrate,contributing to an accumulation of electrons at the interface.In the CoPc/FeSe systems,the electron accumulation increases with the layer number of FeSe substrate,converging for substrates with 3-5 layers.The analysis of the integrated planar charge difference up to the position with zero integrated charge transfer reveals that all the five MPc molecules donate electrons to the uppermost FeSe layer.The electron donation suggests that MPc adsorption can be a promising strategy to modulate the superconductivity of FeSe layers. 展开更多
关键词 metal-phthalocyanine multilayer FeSe electron doping INTERFACES
原文传递
Self-similarity of multilayer networks
7
作者 Bing Wang Huizhi Yu Daijun Wei 《Chinese Physics B》 2025年第1期204-213,共10页
Research on the self-similarity of multilayer networks is scarce, when compared to the extensive research conducted on the dynamics of these networks. In this paper, we use entropy to determine the edge weights in eac... Research on the self-similarity of multilayer networks is scarce, when compared to the extensive research conducted on the dynamics of these networks. In this paper, we use entropy to determine the edge weights in each sub-network,and apply the degree–degree distance to unify the weight values of connecting edges between different sub-networks, and unify the edges with different meanings in the multilayer network numerically. At this time, the multilayer network is compressed into a single-layer network, also known as the aggregated network. Furthermore, the self-similarity of the multilayer network is represented by analyzing the self-similarity of the aggregate network. The study of self-similarity was conducted on two classical fractal networks and a real-world multilayer network. The results show that multilayer networks exhibit more pronounced self-similarity, and the intensity of self-similarity in multilayer networks can vary with the connection mode of sub-networks. 展开更多
关键词 multilayer networks SELF-SIMILARITY degree-degree distance ENTROPY
原文传递
Investigation into the degradation of 2,4,6-trichlorophenol utilizing a three-dimensional electrocatalytic reactor filled with fluorine-doped copper-carbon particle electrodes
8
作者 Hongrui Zhang Wenyu Huang +4 位作者 Hainong Song Hanhui Yan Jia Zhang Fang Zhong Huilan Li 《Journal of Environmental Sciences》 2025年第9期701-719,共19页
The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated cata... The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP. 展开更多
关键词 2 4 6-TRICHLOROPHENOL Heterogeneous Fenton-like process three-dimensional electrocatalytic reactor three-dimensional particle electrode system Fluorine-doped copper-carbon particle electrodes
原文传递
Experimental Study of Thermal Conductivity of Multilayer Cylindrical Walls
9
作者 Xin JIN Pei DENG +3 位作者 Minghang TAN Xidan ZHANG Lingzi FENG Tianlong YUAN 《Mechanical Engineering Science》 2025年第1期8-11,共4页
Thermal conductivity is an important physical parameter in thermal equipment,in the blast furnace,rotary kiln and other equipment,multi-layer cylindrical wall is extremely important in industrial production of a therm... Thermal conductivity is an important physical parameter in thermal equipment,in the blast furnace,rotary kiln and other equipment,multi-layer cylindrical wall is extremely important in industrial production of a thermal conductivity model,its thermal conductivity coefficient determines the ability of the cylindrical wall,which results in the existence of a large number of multi-layer cylinder thermal conductivity problems of the pitfalls.This paper focuses on the establishment of a mathematical model of the multi-layer cylinder thermal conductivity problem,by applying different voltages to the multi-layer cylinder wall,study the temperature distribution of the multi-layer cylinder wall under the conditions of natural convection and forced convection,and draw the line graphs under the conditions of natural convection and forced convection by Origin software,and finally conclude that:under the same conditions,the forced convection is significantly stronger than the natural convection;under the conditions of different voltages,the multi-layer cylinder wall under the conditions of steady state convection,the forced convection is much stronger than natural convection.Under different voltage conditions,the temperature of the multilayer cylinder wall under steady state conditions increases with the increase of voltage,which provides a strong support for the related research. 展开更多
关键词 multilayer cylindrical walls Thermal conductivity TEMPERATURE EXPERIMENTS
在线阅读 下载PDF
An epidemic model considering multiple factors based on multilayer hypernetworks
10
作者 Yue-Yue Zheng Zhi-Ping Wang +2 位作者 Ya-Nan Sun Shi-Jie Xie Lin Wang 《Chinese Physics B》 2025年第10期271-283,共13页
The outbreak of COVID-19 in 2019 has made people pay more attention to infectious diseases.In order to reduce the risk of infection and prevent the spread of infectious diseases,it is crucial to strengthen individual ... The outbreak of COVID-19 in 2019 has made people pay more attention to infectious diseases.In order to reduce the risk of infection and prevent the spread of infectious diseases,it is crucial to strengthen individual immunization measures and to restrain the diffusion of negative information relevant to vaccines at the opportune moment.This study develops a three-layer coupling model within the framework of hypernetwork evolution,examining the interplay among negative information,immune behavior,and epidemic propagation.Firstly,the dynamic topology evolution process of hypernetwork includes node joining,aging out,hyperedge adding and reconnecting.The three-layer communication model accounts for the multifaceted influences exerted by official media channels,subjective psychological acceptance capabilities,self-identification abilities,and physical fitness levels.Each level of the decision-making process is described using the Heaviside step function.Secondly,the dynamics equations of each state and the prevalence threshold are derived using the microscopic Markov chain approach(MMCA).The results show that the epidemic threshold is affected by three transmission processes.Finally,through the simulation testing,it is possible to enhance the intensity of official clarification,improve individual self-identification ability and physical fitness,and thereby promote the overall physical enhancement of society.This,in turn,is beneficial in controlling false information,heightening vaccination coverage,and controlling the epidemic. 展开更多
关键词 multilayer hypernetworks information diffusion immunization behavior epidemic spreading
原文传递
A Review of Three-Dimensional Research on Urban Recreation Space Based on CiteSpace
11
作者 LIU Yongli 《Journal of Landscape Research》 2025年第1期30-34,共5页
In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring t... In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”. 展开更多
关键词 Compact city Urban recreation space three-dimensional CITESPACE
在线阅读 下载PDF
Optimized graph neural network-multilayer perceptron fusion classifier for metastatic prostate cancer detection in Western and Asian populations
12
作者 Fengxian Han Xiaohui Fan +12 位作者 Pengwei Long Wenhui Zhang Qiting Li Yingxuan Li Xingpeng Guo Yinran Luo Rongqi Wen Sheng Wang Shan Zhang Yizhuo Li Yan Wang Xu Gao Jing Li 《Asian Journal of Urology》 2025年第3期327-337,共11页
Objective:Prostate cancer(PCa)exhibits significant genomic differences between Western and Asian populations.This study aimed to design a predictive model applicable across diverse populations while selecting a limite... Objective:Prostate cancer(PCa)exhibits significant genomic differences between Western and Asian populations.This study aimed to design a predictive model applicable across diverse populations while selecting a limited set of genes suitable for clinical implementation.Methods:We utilized an integrated dataset of 1360 whole-exome and whole-genome sequences from Chinese and Western PCa cohorts to develop and evaluate the model.External validation was conducted using an independent cohort of patients.A graph neural network architecture,termed the pathway-aware multi-layered hierarchical network-Western and Asian(P-NETwa),was developed and trained on combined genomic profiles from Chinese and Western cohorts.The model employed a multilayer perceptron(MLP)to identify key signature genes from multiomics data,enabling precise prediction of PCa metastasis.Results:The model achieved an accuracy of 0.87 and an F1-score of 0.85 on Western population datasets.The application of integrated Chinese and Western population data improved the accuracy to 0.88,achieving an F1-score of 0.75.The analysis identified 18 signature genes implicated in PCa progression,including established markers(AR and TP53)and novel candidates(MUC16,MUC4,and ASB12).For clinical adoption,the model was optimized for commercially available gene panels while maintaining high classification accuracy.Additionally,a user-friendly web interface was developed to facilitate real-time prediction of primary versus metastatic status using the pre-trained P-NETwa-MLP model.Conclusion:The P-NETwa-MLP model integrates a query system that allows for efficient retrieval of prediction outcomes and associated genomic signatures via sample ID,enhancing its potential for seamless integration into clinical workflows. 展开更多
关键词 Prostate cancer Machine learning multilayer perceptron Graph neural network
在线阅读 下载PDF
Lamb waves in multilayered piezoelectric semiconductor plates
13
作者 Ru TIAN Lisha YI +3 位作者 Guoquan NIE Jinxi LIU Ernian PAN Yuesheng WANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第8期1493-1510,I0012-I0015,共22页
In this paper,we theoretically study the Lamb wave in a multilayered piezoelectric semiconductor(PSC)plate,where each layer is an n-type PSC with the symmetry of transverse isotropy.Based on the extended Stroh formali... In this paper,we theoretically study the Lamb wave in a multilayered piezoelectric semiconductor(PSC)plate,where each layer is an n-type PSC with the symmetry of transverse isotropy.Based on the extended Stroh formalism and dual-variable and position(DVP)method,the general solution of the coupled fields for the Lamb wave is derived,and then the dispersion equation is obtained by the application of the boundary conditions.First,the influence of semiconducting properties on the dispersion behavior of the Lamb wave in a single-layer PSC plate is analyzed.Then,the propagation characteristics of the Lamb wave in a sandwich plate are investigated in detail.The numerical results show that the wave speed and attenuation depend on the stacking sequence,layer thickness,and initial carrier density,the Lamb wave can propagate without a cut-off frequency in both the homogeneous and multilayer PSC plates due to the semiconducting properties,and the Lamb wave without attenuation can be achieved by carefully selecting the semiconductor property in the upper and lower layers.These new features could be very helpful as theoretical guidance for the design and performance optimization of PSC devices. 展开更多
关键词 piezoelectric semiconductor(PSC) Lamb wave multilayer plate dispersion ATTENUATION
在线阅读 下载PDF
Resection of a ganglioneuroma encasing major blood vessels using three-dimensional laparoscopy combined with organ suspension:A case report
14
作者 Guo-Zhen Wu Shen-Zhe Fang +1 位作者 Shi-An Yu Min Yu 《World Journal of Gastrointestinal Surgery》 2025年第8期467-475,共9页
BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major... BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels. 展开更多
关键词 Ganglioneuromas Retroperitoneal three-dimensional laparoscopy Organ suspension Case report
暂未订购
Reconfigurable Three-Dimensional Thermal Dome
15
作者 Yuhong Zhou Fubao Yang +5 位作者 Liujun Xu Pengfei Zhuang Dong Wang Xiaoping Ouyang Ying Li Jiping Huang 《Engineering》 2025年第3期236-244,共9页
Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of t... Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields. 展开更多
关键词 Thermal domes Reconfigurable metamaterials three-dimensional invisibility
在线阅读 下载PDF
Effects of information and policy regulation on green behavior propagation in multilayer networks: Modeling, analysis,and optimal allocation
16
作者 Xian-Li Sun Ling-Hua Zhang 《Chinese Physics B》 2025年第6期635-646,共12页
As the economy grows, environmental issues are becoming increasingly severe, making the promotion of green behavior more urgent. Information dissemination and policy regulation play crucial roles in influencing and am... As the economy grows, environmental issues are becoming increasingly severe, making the promotion of green behavior more urgent. Information dissemination and policy regulation play crucial roles in influencing and amplifying the spread of green behavior across society. To this end, a novel three-layer model in multilayer networks is proposed. In the novel model, the information layer describes green information spreading, the physical contact layer depicts green behavior propagation, and policy regulation is symbolized by an isolated node beneath the two layers. Then, we deduce the green behavior threshold for the three-layer model using the microscopic Markov chain approach. Moreover, subject to some individuals who are more likely to influence others or become green nodes and the limitations of the capacity of policy regulation, an optimal scheme is given that could optimize policy interventions to most effectively prompt green behavior.Subsequently, simulations are performed to validate the preciseness and theoretical results of the new model. It reveals that policy regulation can prompt the prevalence and outbreak of green behavior. Then, the green behavior is more likely to spread and be prevalent in the SF network than in the ER network. Additionally, optimal allocation is highly successful in facilitating the dissemination of green behavior. In practice, the optimal allocation strategy could prioritize interventions at critical nodes or regions, such as highly connected urban areas, where the impact of green behavior promotion would be most significant. 展开更多
关键词 green behavior propagation multilayer networks information dissemination optimal allocation
原文传递
Bioinspired sticker-type multilayer anti-reflective film for flexible perovskite solar cells
17
作者 Ji Seong Choi Unsoo Kim +3 位作者 Jieun Lee Yun Seog Lee Mansoo Choi Seong Min Kang 《Journal of Energy Chemistry》 2025年第8期540-547,共8页
Perovskite solar cells(PSCs)have been receiving attention for photovoltaic advantages of high-power conversion efficiency,cost-effectiveness,and easy fabrication process.Particularly,flexible PSCs(FPSCs)are considered... Perovskite solar cells(PSCs)have been receiving attention for photovoltaic advantages of high-power conversion efficiency,cost-effectiveness,and easy fabrication process.Particularly,flexible PSCs(FPSCs)are considered to be promising renewable power sources due to the positive potential of flexible and lightweight properties.However,FPSCs tend to have lower efficiency compared to glass-based rigid PSCs(RPSCs).The main issue is high refractive index of polymer substrates such as polyethylene naphthalate(PEN),used for FPSCs,thereby reducing the external light absorption efficiency.In this study,we developed glasswing inspired sticker-type multilayer anti-reflective(GSMA)film derived from the wings of the glasswing butterfly to enhance the light absorption efficiency of FPSCs.We designed and fabricated the GSMA film with multilayers specifically for FPSCs.The suitable materials and nanostructures to adjust the refractive index are theoretically optimized.The GSMA film effectively improved the optical properties of PSC substrates,reducing reflectance(∼5.01%)and enhancing light transmittance(∼6.17%)in indium tin oxide(ITO)/PEN.In addition,the GSMA film on PEN maintains more than 94.70%of its initial transmittance even after being exposed to various harsh environments for 500 h,and GSMA film demonstrates flexibility by maintaining its initial structure even after a bending test(bending radius of 1 mm).The FPSCs and RPSCs assisted by GSMA film show high short-circuit current density(FPSC:∼25.28 mA/cm^(2),up to 26.05 mA/cm^(2),RPSC:∼24.27 mA/cm^(2))and power conversion efficiency(FPSC:∼22.72%,RPSC:∼22.31%),significantly narrowing the efficiency gap between FPSC and RPSCs. 展开更多
关键词 multilayer anti-reflective film Nanostructure Flexible perovskite solar cells Sticker-type Refractive index
在线阅读 下载PDF
Machine Learning Model for Wind Power Forecasting Using Enhanced Multilayer Perceptron
18
作者 Ahmed A.Ewees Mohammed A.A.Al-Qaness +1 位作者 Ali Alshahrani Mohamed Abd Elaziz 《Computers, Materials & Continua》 2025年第5期2287-2303,共17页
Wind power forecasting plays a crucial role in optimizing the integration of wind energy into the grid by predicting wind patterns and energy output.This enhances the efficiency and reliability of renewable energy sys... Wind power forecasting plays a crucial role in optimizing the integration of wind energy into the grid by predicting wind patterns and energy output.This enhances the efficiency and reliability of renewable energy systems.Forecasting approaches inform energy management strategies,reduce reliance on fossil fuels,and support the broader transition to sustainable energy solutions.The primary goal of this study is to introduce an effective methodology for estimating wind power through temporal data analysis.This research advances an optimized Multilayer Perceptron(MLP)model using recently proposedmetaheuristic optimization algorithms,namely the FireHawk Optimizer(FHO)and the Non-Monopolize Search(NO).A modified version of FHO,termed FHONO,is developed by integrating NO as a local search mechanism to enhance the exploration capability and address the shortcomings of the original FHO.The developed FHONO is then employed to optimize the MLP for enhanced wind power prediction.The effectiveness of the proposed FHONO-MLP model is validated using renowned datasets from wind turbines in France.The results of the comparative analysis between FHONO-MLP,conventionalMLP,and other optimized versions of MLP show that FHONO-MLP outperforms the others,achieving an average RootMean Square Error(RMSE)of 0.105,Mean Absolute Error(MAE)of 0.082,and Coefficient of Determination(R^(2))of 0.967 across all datasets.These findings underscore the significant enhancement in predictive accuracy provided by FHONO and demonstrate its effectiveness in improving wind power forecasting. 展开更多
关键词 Wind power forecasting multilayer perceptron fire hawk optimizer non-monopolize search
在线阅读 下载PDF
Three-dimensional spectral analysis of gravity waves from airglow observations over Northwest China
19
作者 QinZeng Li JiYao Xu +3 位作者 Wei Yuan Xiao Liu YaJun Zhu WeiJun Liu 《Earth and Planetary Physics》 2025年第4期988-994,共7页
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr... The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs. 展开更多
关键词 AIRGLOW gravity wave three-dimensional spectral analysis seasonal variation
在线阅读 下载PDF
Global Mapping of Three-Dimensional Urban Structures Reveals Escalating Utilization in the Vertical Dimension and Pronounced Building Space Inequality
20
作者 Xiaoping Liu Xinxin Wu +6 位作者 Xuecao Li Xiaocong Xu Weilin Liao Limin Jiao Zhenzhong Zeng Guangzhao Chen Xia Li 《Engineering》 2025年第4期86-99,共14页
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan... Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies. 展开更多
关键词 three-dimensional Global mapping Building volume Building height Building space inequality
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部