To regenerate three-dimensional endometrium in vitro as a novel model for studying the mechanism of implantation of embryos, the luminal epithelial cells and stromal cells of the rabbit uterus were separated and cultu...To regenerate three-dimensional endometrium in vitro as a novel model for studying the mechanism of implantation of embryos, the luminal epithelial cells and stromal cells of the rabbit uterus were separated and cultured in vitro. The type Ⅰ mouse tail collagen was used as scaffolding material. The stromal cells were inoculated in the type I mouse tail collagen, and the luminal epithelial cells were inoculated on the type i mouse tall collagen to regenerate the endometrium in vitro. The regenerated endometrium was cultured in DMEM-F/12 media containing 100 nmol L^-1 progesterone, 10 nM β-estradiol, and 10% fetal bovine serum (FBS) for 3 d. The media were then replaced with CZB containing 100 nM progesterone, 10 nmol L-1 β-estradiol, and 10% FBS, and the mouse blastulas were co-cultured with it. The results of scanning electronic micrography showed that the epithelial cells on the surface of the reconstructed endometrium were covered with numerous slender microvilli and some epithelial cells protruded pinopodes. After culturing for 12 h with the mouse blastula, the shedding, attachment, and implantation of the blastula were observed. The blastula can escape from zona pellucida and attach to the three-dimensional endometrium and is then implanted into it. This study showed that the reconstructed three-dimensional endometrium can serve as a robust embryo implantation model in vitro.展开更多
Adhesions between different cells and extracellular matrix have been studied extensively in vitro, but little is known about their functions in testicular tissue counterparts. Spermatogonia and their companion somatic...Adhesions between different cells and extracellular matrix have been studied extensively in vitro, but little is known about their functions in testicular tissue counterparts. Spermatogonia and their companion somatic cells maintain a close association throughout spermatogenesis and this association is necessary for normal spermatogenesis. In order to keep the relative integrity of the testicular tissues, and to detect the development in vitro, culture testicular tissues in a three- dimensional (3D) agarose matrix was examined. Testicular tissues isolated from 6.5 d postpartum (dpp) mouse were cultured on the top of the matrix for 26 d with a medium height up to 4/5 of the 3D agarose matrix. The results showed that in this 3D culture environment, each type of testicular cells kept the same structure, localization and function as in vivo and might be more biologically relevant to living organisms. After culture, germ cell marker VASA and meiosis markers DAZL and SCP3 showed typical positive analysed by immunofluorescence staining and RT-PCR. It demonstrated that this 3D culture system was able to maintain the number of germ cells and promote the meiosis initiation of male germ cells.展开更多
BACKGROUND Liver transplantation is a therapy for irreversible liver failure;however,at present,donor organs are in short supply.Cell transplantation therapy for liver failure is still at the developmental stage and i...BACKGROUND Liver transplantation is a therapy for irreversible liver failure;however,at present,donor organs are in short supply.Cell transplantation therapy for liver failure is still at the developmental stage and is critically limited by a shortage of human primary hepatocytes.AIM To investigate the possibility that hepatic progenitor cells(HPCs)prepared from the portal branch-ligated hepatic lobe may be used in regenerative medicine,we attempted to enable the implantation of extracellular matrices containing organoids consisting of HPC-derived hepatocytes and non-parenchymal cells.METHODS In vitro liver organoid tissue has been generated by accumulating collagen fibrils,fibroblasts,and HPCs on a mesh of polylactic acid fabric using a bioreactor;this was subsequently implanted into syngeneic wild-type mice.RESULTS The in vitro liver organoid tissues generated transplantable tissues in the condensed collagen fibril matrix and were obtained from the mouse through partial hepatectomy.CONCLUSION Liver organoid tissue was produced from expanded HPCs using an originally designed bioreactor system.This tissue was comparable to liver lobules,and with fibroblasts embedded in the network collagen fibrils of this artificial tissue,it is useful for reconstructing the hepatic interstitial structure.展开更多
We present a threedimensional(3D)isotropic imaging of mouse brain using light-sheet fuo-rescent microscopy(LSFM)in conjumction with a multi-view imaging computation.Unlike common single view LSFM is used for mouse bra...We present a threedimensional(3D)isotropic imaging of mouse brain using light-sheet fuo-rescent microscopy(LSFM)in conjumction with a multi-view imaging computation.Unlike common single view LSFM is used for mouse brain imaging,the brain tissue is 3D imaged under eight views in our study,by a home-built selective plane ilumination microscopy(SPIM).An output image containing complete structural infornation as well as significantly improved res olution(~4 times)are then computed based on these eight views of data,using a bead-guided multi-view registration and deconvolution.With superior imaging quality,the astrocyte and pyrarmidal neurons together with their subcellular nerve fbers can be clearly visualized and segmented.With further incuding other computational methods,this study can be potentially scaled up to map the conectome of whole mouse brain with a simple light.sheet microscope.展开更多
Objective To establish three-dimensional phenotyping system for congenital heart disease in mouse and to lay a foundation for the study of phenotype identification and mechanism of congenital heart disease.Methods Twe...Objective To establish three-dimensional phenotyping system for congenital heart disease in mouse and to lay a foundation for the study of phenotype identification and mechanism of congenital heart disease.Methods Twelve SPF C57BL/6 J wild type pregnant mice(8-10 week-old)were randomly divided into control group(n=6)and experimental group(n=6).展开更多
Background: The suitability of micro-computed tomography (CT) for soft tissue applications has been well documented. Although the application of micro-CT to the three dimensional (3D) structure of the tongue muscle ha...Background: The suitability of micro-computed tomography (CT) for soft tissue applications has been well documented. Although the application of micro-CT to the three dimensional (3D) structure of the tongue muscle has been reported, a 3D rendering and/or a schematic view of the tongue muscle has yet to be published. Material and Method: First, muse tongues were fixed and decalcified, and then the vertical muscle (Ve), the transverse muscle (Tr), and/or the genioglossus muscle of the mouse tongue (Ge) were analyzed using micro-CT and are shown in this report in rendered images and pattern diagrams. Results: 1) The Tr is classified into three parts: the first part extends from the middle to the apical part of the tongue;the second part is strongly connected to the superior longitudinal muscles of the tongue (Lo);the third part fans out from the middle to the root of the tongue. 2) The Ve is classified into two main groups: the first group joins the dorsal and the lateral parts of the tongue;the second group joins the dorsal part and the floor of the tongue. 3) Ge is classified into four parts: three parts comprise the Ge apical and middle parts of the tongue, with one part in the inferior longitudinal muscles of the tongue, one joining the lingual septum of the tongue (LS), and the other joining the sub-surface of the dorsal part of the Lo. The remaining Ge exits in a fan-like manner through the root of the tongue and then joins the Tr.展开更多
Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D...Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D,and neurodegenera-tive diseases,including dementia.It is imperative to further understand the relation-ship between obesity,T2D,and cognitive deficits.Methods:This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet(HFD)and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross(CC)mice.The CC mice are a genetically diverse panel derived from eight inbred strains.Results:Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line,C57BL/6J.CC037 line exhibited a substantial increase in body weight on HFD,whereas line CC005 ex-hibited differing responses based on sex.Glucose tolerance tests revealed significant variations,with some lines like CC005 showing a marked increase in area under the curve(AUC)values on HFD.Organ weights,including brain,spleen,liver,and kidney,varied significantly among the lines and sexes in response to HFD.Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background.Conclusions:Our study establishes a foundation for future quantitative trait loci map-ping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease(AD),caused by obesity and T2D.The genetic components may offer new tools for early prediction and prevention.展开更多
Substantial evidence points to the early onset of peripheral inflammation in the development of Parkinson's disease(PD),supporting the“body-first”hypothesis.However,there remains a notable absence of PD-specific...Substantial evidence points to the early onset of peripheral inflammation in the development of Parkinson's disease(PD),supporting the“body-first”hypothesis.However,there remains a notable absence of PD-specific animal models induced by inflammatory cytokines.This study introduces a novel mouse model of PD driven by the proinflammatory cytokine CXCL1,identified in our previous research.The involvement of CXCL1 in PD pathogenesis was validated using subacute and chronic MPTP-induced mouse models.Based on these findings,2-month-old C57BL/6J mice were intravenously administered CXCL1(20 ng/kg/day)for 2 weeks(5 days per week),successfully replicating motor deficits and pathological alterations in the substantia nigra observed in the chronic MPTP model.These results demonstrate the potential of CXCL1-induced inflammation as a mechanism for PD modeling.The model revealed activation of the PPAR signaling pathway in CXCL1-mediated neuronal damage by CXCL1.Linoleic acid,a PPAR-γactivator,significantly mitigated MPTPand CXCL1-induced toxicity and reduced serum CXCL1levels.In addition,the CXCL1-injected mouse model shortened the timeline for developing chronic PD mouse model to 2 weeks,offering an efficient platform for studying inflammation-driven processes in PD.The findings provide critical insights into the inflammatory mechanisms underlying PD and identify promising therapeutic targets for intervention.展开更多
Alzheimer'sdisease(AD)isaprogressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features,including amyloid-βplaques,neurofibrillary tangles,and reactive astrog...Alzheimer'sdisease(AD)isaprogressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features,including amyloid-βplaques,neurofibrillary tangles,and reactive astrogliosis.Developing effective diagnostic,preventative,and therapeutic strategies for AD necessitates the establishment of animal models that accurately recapitulate the pathophysiological processes of the disease.Existing transgenic mouse models have significantly contributed to understanding AD pathology but often fail to replicate the complexity of human AD.Additionally,these models are limited in their ability to elucidate the interplay among amyloid-βplaques,neurofibrillary tangles,and reactive astrogliosis due to the absence of spatially and temporally specific genetic manipulation.In this study,we introduce a novel AD mouse model(APP/PS1-TauP301L-Adeno mice)designed to rapidly induce pathological symptoms and enhance understanding of AD mechanisms.Neurofibrillary tangles and severe reactive astrogliosis were induced by injecting AAVDJ-EF1a-hTauP301L-EGFP and Adeno-GFAP-GFP viruses into the hippocampi of 5-month-old APP/PS1 mice.Three months post-injection,these mice exhibited pronounced astrogliosis,substantial amyloid-βplaque accumulation,extensiveneurofibrillarytangles,accelerated neuronal loss,elevated astrocytic GABA levels,and significant spatial memory deficits.Notably,these pathological features were less severe in AAVTauP301L-expressing APP/PS1 mice without augmented reactive astrogliosis.These findings indicate an exacerbating role of severe reactive astrogliosis in amyloid-βplaque and neurofibrillary tangle-associated pathology.The APP/PS1-TauP301L-Adeno mouse model provides a valuable tool for advancing therapeutic research aimed at mitigating the progression of AD.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ...Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.展开更多
The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated cata...The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.展开更多
In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring t...In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.展开更多
BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major...BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.展开更多
Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of t...Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.展开更多
Background:Spinocerebellar ataxia type 2(SCA2)is a neurodegenerative disease marked by significant clinical and genetic heterogeneity,primarily caused by expanded CAG mutations in the ATXN2 gene.The unstable expansion...Background:Spinocerebellar ataxia type 2(SCA2)is a neurodegenerative disease marked by significant clinical and genetic heterogeneity,primarily caused by expanded CAG mutations in the ATXN2 gene.The unstable expansion of CAG repeats disrupts the genetic stability of animal models,which is detrimental to disease research.Methods:In this study,we established a mouse model in which CAG repeats do not undergo microsatellite instability(MSI)across generations.A humanized ATXN2 cDNA with four CAA interruptions within 73 CAG expansions was inserted into the Rosa26 locus of C57BL/6J mice.A 23 CAG control mouse model was also generated to verify ATXN2 integration and expression.Results:In our model,the number of CAG repeats remained stable during transmission,with no CAG repeat expansion observed in 64 parent-to-offspring transmissions.Compared with SCA2-Q23 mice,SCA2-Q73 mice exhibited progressive motor impairment,reduced Purkinje cell count and volume(indicative of cell atrophy),and muscle atrophy.These observations in the mice suggest that the behavioral and neuropathological phenotypes may reflect the features of SCA2 patients.RNA-seq analysis of the gastrocnemius muscle in SCA2-Q73 mice showed significant changes in muscle differentiation and development gene expression at 56 weeks,with no significant differences at 16 weeks compared to SCA2-Q23 mice.The expression level of the Myf6 gene significantly changed in the muscles of aged mice.Conclusion:In summary,the establishment of this model not only provides a stable animal model for studying CAG transmission in SCA2 but also indicates that the lack of long-term neural stimulation leads to muscle atrophy.展开更多
The advancement of tissue clearing technology has significantly propelled neuroscience research.Nevertheless,the fluorescent proteins used in traditional transgenic mouse strains were not specifically optimized for ti...The advancement of tissue clearing technology has significantly propelled neuroscience research.Nevertheless,the fluorescent proteins used in traditional transgenic mouse strains were not specifically optimized for tissue clearing procedures,resulting in a substantial decrease in fluorescent intensity after clearing.In this study,we developed the Ci1 reporter mouse strain(where Ci stands for the Chinese Institute for Brain Research,CIBR)based on the bright red fluorescent protein mScarlet.The Ci1 reporter exhibits no fluorescence leakage in various organs or tissue types and can be readily crossed with multiple tissue-specific Cre lines.Compared to the Ai14 mouse strain,the Ci1 reporter strain demonstrates lower non-specific leakage,stronger fluorescence intensity in different tissues,and better preservation of fluorescence following tissue clearing treatment.The creation of the Ci1 reporter provides a more effective tool for both neuroscience and other biomedical research applications.展开更多
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr...The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
Murine subarachnoid hemorrhage(SAH)induced using the filament perforation method is a useful in vivo experimental model to investigate the pathophysiological mechanisms in the brain underlying SAH.However,identifying ...Murine subarachnoid hemorrhage(SAH)induced using the filament perforation method is a useful in vivo experimental model to investigate the pathophysiological mechanisms in the brain underlying SAH.However,identifying mice with comorbid acute neurogenic pulmonary edema(NPE),a life-threatening systemic consequence often induced by SAH,in this model is difficult without histopathological investiga-tions.Herein,we present an imaging procedure involving dual-energy X-ray absorp-tiometry(DXA)to identify NPE in a murine model of SAH.We quantified the lung lean mass(LM)and compared the relationship between micro-computed tomography(CT)evidence of Hounsfield unit(HU)values and histopathological findings of PE.Of the 85 mice with successful induction of SAH by filament perforation,16(19%)had NPE,as verified by postmortem histology.The DXA-LM values correlate well with CT-HU levels(r=0.63,p<0.0001).Regarding the relationship between LM and HU in mice with post-SAH NPE,the LM was positively associated with HU values(r2=0.43;p=0.0056).A receiver operating characteristics curve of LM revealed a sensitivity of 87%and specificity of 57%for detecting PE,with a similar area under the curve as the HU(0.79±0.06 vs.0.84±0.07;p=0.21).These data suggest that confirming acute NPE using DXA-LM is a valuable method for selecting a clinically relevant murine NPE model that could be used in future experimental SAH studies.展开更多
文摘To regenerate three-dimensional endometrium in vitro as a novel model for studying the mechanism of implantation of embryos, the luminal epithelial cells and stromal cells of the rabbit uterus were separated and cultured in vitro. The type Ⅰ mouse tail collagen was used as scaffolding material. The stromal cells were inoculated in the type I mouse tail collagen, and the luminal epithelial cells were inoculated on the type i mouse tall collagen to regenerate the endometrium in vitro. The regenerated endometrium was cultured in DMEM-F/12 media containing 100 nmol L^-1 progesterone, 10 nM β-estradiol, and 10% fetal bovine serum (FBS) for 3 d. The media were then replaced with CZB containing 100 nM progesterone, 10 nmol L-1 β-estradiol, and 10% FBS, and the mouse blastulas were co-cultured with it. The results of scanning electronic micrography showed that the epithelial cells on the surface of the reconstructed endometrium were covered with numerous slender microvilli and some epithelial cells protruded pinopodes. After culturing for 12 h with the mouse blastula, the shedding, attachment, and implantation of the blastula were observed. The blastula can escape from zona pellucida and attach to the three-dimensional endometrium and is then implanted into it. This study showed that the reconstructed three-dimensional endometrium can serve as a robust embryo implantation model in vitro.
基金supported by the National Natural Science Foundation of China(31272518)the program for the New Century Excellent Talents of Ministry of Education of China(NCET-09-0654)+1 种基金the Doctoral Fund of Ministry of Education of P.R.China(RFDP,20120204110030)the Fundamental Research Funds for the Central Universities,China(QN2011012)
文摘Adhesions between different cells and extracellular matrix have been studied extensively in vitro, but little is known about their functions in testicular tissue counterparts. Spermatogonia and their companion somatic cells maintain a close association throughout spermatogenesis and this association is necessary for normal spermatogenesis. In order to keep the relative integrity of the testicular tissues, and to detect the development in vitro, culture testicular tissues in a three- dimensional (3D) agarose matrix was examined. Testicular tissues isolated from 6.5 d postpartum (dpp) mouse were cultured on the top of the matrix for 26 d with a medium height up to 4/5 of the 3D agarose matrix. The results showed that in this 3D culture environment, each type of testicular cells kept the same structure, localization and function as in vivo and might be more biologically relevant to living organisms. After culture, germ cell marker VASA and meiosis markers DAZL and SCP3 showed typical positive analysed by immunofluorescence staining and RT-PCR. It demonstrated that this 3D culture system was able to maintain the number of germ cells and promote the meiosis initiation of male germ cells.
基金Supported by Grants-in-Aid for Scientific Research(A),No.25242040(to Tagawa YI)Grants-in-Aid for Challenging Exploratory Research,No.20K21520(to Tagawa YI)+3 种基金Grants-in-Aid for Early Career Scientists from the Japan Society for the Promotion of Science(JSPS),No.19K20655(to Tamai M)Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education,Culture,Sports,Science and Technology of Japan(MEXT),No.231190003(to Tagawa YI)Japan Agency for Medical Research and Development(AMED),No.20fk0310102(to Tagawa YI)Building of Consortia for the Development of Human Resources in Science and Technology,Ministry of Education,Culture,Sports,Science and Technology,Japan(to Tamai M)。
文摘BACKGROUND Liver transplantation is a therapy for irreversible liver failure;however,at present,donor organs are in short supply.Cell transplantation therapy for liver failure is still at the developmental stage and is critically limited by a shortage of human primary hepatocytes.AIM To investigate the possibility that hepatic progenitor cells(HPCs)prepared from the portal branch-ligated hepatic lobe may be used in regenerative medicine,we attempted to enable the implantation of extracellular matrices containing organoids consisting of HPC-derived hepatocytes and non-parenchymal cells.METHODS In vitro liver organoid tissue has been generated by accumulating collagen fibrils,fibroblasts,and HPCs on a mesh of polylactic acid fabric using a bioreactor;this was subsequently implanted into syngeneic wild-type mice.RESULTS The in vitro liver organoid tissues generated transplantable tissues in the condensed collagen fibril matrix and were obtained from the mouse through partial hepatectomy.CONCLUSION Liver organoid tissue was produced from expanded HPCs using an originally designed bioreactor system.This tissue was comparable to liver lobules,and with fibroblasts embedded in the network collagen fibrils of this artificial tissue,it is useful for reconstructing the hepatic interstitial structure.
基金funding support from 1000 Youth Talents Plan of China (P.F.)Fundamental Research Program of Shenzhen (P.F.,JCYJ20160429182424047)+1 种基金National Science Foundation of China (NSFC31571002,D.Z)Graduates'Innovation Fund of Huazhong University of Science and Technology (5003182004).
文摘We present a threedimensional(3D)isotropic imaging of mouse brain using light-sheet fuo-rescent microscopy(LSFM)in conjumction with a multi-view imaging computation.Unlike common single view LSFM is used for mouse brain imaging,the brain tissue is 3D imaged under eight views in our study,by a home-built selective plane ilumination microscopy(SPIM).An output image containing complete structural infornation as well as significantly improved res olution(~4 times)are then computed based on these eight views of data,using a bead-guided multi-view registration and deconvolution.With superior imaging quality,the astrocyte and pyrarmidal neurons together with their subcellular nerve fbers can be clearly visualized and segmented.With further incuding other computational methods,this study can be potentially scaled up to map the conectome of whole mouse brain with a simple light.sheet microscope.
文摘Objective To establish three-dimensional phenotyping system for congenital heart disease in mouse and to lay a foundation for the study of phenotype identification and mechanism of congenital heart disease.Methods Twelve SPF C57BL/6 J wild type pregnant mice(8-10 week-old)were randomly divided into control group(n=6)and experimental group(n=6).
文摘Background: The suitability of micro-computed tomography (CT) for soft tissue applications has been well documented. Although the application of micro-CT to the three dimensional (3D) structure of the tongue muscle has been reported, a 3D rendering and/or a schematic view of the tongue muscle has yet to be published. Material and Method: First, muse tongues were fixed and decalcified, and then the vertical muscle (Ve), the transverse muscle (Tr), and/or the genioglossus muscle of the mouse tongue (Ge) were analyzed using micro-CT and are shown in this report in rendered images and pattern diagrams. Results: 1) The Tr is classified into three parts: the first part extends from the middle to the apical part of the tongue;the second part is strongly connected to the superior longitudinal muscles of the tongue (Lo);the third part fans out from the middle to the root of the tongue. 2) The Ve is classified into two main groups: the first group joins the dorsal and the lateral parts of the tongue;the second group joins the dorsal part and the floor of the tongue. 3) Ge is classified into four parts: three parts comprise the Ge apical and middle parts of the tongue, with one part in the inferior longitudinal muscles of the tongue, one joining the lingual septum of the tongue (LS), and the other joining the sub-surface of the dorsal part of the Lo. The remaining Ge exits in a fan-like manner through the root of the tongue and then joins the Tr.
文摘Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D,and neurodegenera-tive diseases,including dementia.It is imperative to further understand the relation-ship between obesity,T2D,and cognitive deficits.Methods:This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet(HFD)and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross(CC)mice.The CC mice are a genetically diverse panel derived from eight inbred strains.Results:Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line,C57BL/6J.CC037 line exhibited a substantial increase in body weight on HFD,whereas line CC005 ex-hibited differing responses based on sex.Glucose tolerance tests revealed significant variations,with some lines like CC005 showing a marked increase in area under the curve(AUC)values on HFD.Organ weights,including brain,spleen,liver,and kidney,varied significantly among the lines and sexes in response to HFD.Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background.Conclusions:Our study establishes a foundation for future quantitative trait loci map-ping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease(AD),caused by obesity and T2D.The genetic components may offer new tools for early prediction and prevention.
基金supported by the National Natural Science Foundation of China (32471049,32170984,32471188,32200802)Natural Science Foundation of Shandong Province (ZR2023QH110)。
文摘Substantial evidence points to the early onset of peripheral inflammation in the development of Parkinson's disease(PD),supporting the“body-first”hypothesis.However,there remains a notable absence of PD-specific animal models induced by inflammatory cytokines.This study introduces a novel mouse model of PD driven by the proinflammatory cytokine CXCL1,identified in our previous research.The involvement of CXCL1 in PD pathogenesis was validated using subacute and chronic MPTP-induced mouse models.Based on these findings,2-month-old C57BL/6J mice were intravenously administered CXCL1(20 ng/kg/day)for 2 weeks(5 days per week),successfully replicating motor deficits and pathological alterations in the substantia nigra observed in the chronic MPTP model.These results demonstrate the potential of CXCL1-induced inflammation as a mechanism for PD modeling.The model revealed activation of the PPAR signaling pathway in CXCL1-mediated neuronal damage by CXCL1.Linoleic acid,a PPAR-γactivator,significantly mitigated MPTPand CXCL1-induced toxicity and reduced serum CXCL1levels.In addition,the CXCL1-injected mouse model shortened the timeline for developing chronic PD mouse model to 2 weeks,offering an efficient platform for studying inflammation-driven processes in PD.The findings provide critical insights into the inflammatory mechanisms underlying PD and identify promising therapeutic targets for intervention.
基金supported by the National Research Foundation of Korea (NRF)funded by the Ministry of Science,ICT&Future Planning (2022R1A2C2006229,2022R1A6A3A01086868)Korea Dementia Research Project through the Korea Dementia Research Center (KDRC)funded by the Ministry of Health&Welfare and Ministry of Science and ICT,Republic of Korea (RS-2024-00345328)KIST Institutional Grant (2E32851)。
文摘Alzheimer'sdisease(AD)isaprogressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features,including amyloid-βplaques,neurofibrillary tangles,and reactive astrogliosis.Developing effective diagnostic,preventative,and therapeutic strategies for AD necessitates the establishment of animal models that accurately recapitulate the pathophysiological processes of the disease.Existing transgenic mouse models have significantly contributed to understanding AD pathology but often fail to replicate the complexity of human AD.Additionally,these models are limited in their ability to elucidate the interplay among amyloid-βplaques,neurofibrillary tangles,and reactive astrogliosis due to the absence of spatially and temporally specific genetic manipulation.In this study,we introduce a novel AD mouse model(APP/PS1-TauP301L-Adeno mice)designed to rapidly induce pathological symptoms and enhance understanding of AD mechanisms.Neurofibrillary tangles and severe reactive astrogliosis were induced by injecting AAVDJ-EF1a-hTauP301L-EGFP and Adeno-GFAP-GFP viruses into the hippocampi of 5-month-old APP/PS1 mice.Three months post-injection,these mice exhibited pronounced astrogliosis,substantial amyloid-βplaque accumulation,extensiveneurofibrillarytangles,accelerated neuronal loss,elevated astrocytic GABA levels,and significant spatial memory deficits.Notably,these pathological features were less severe in AAVTauP301L-expressing APP/PS1 mice without augmented reactive astrogliosis.These findings indicate an exacerbating role of severe reactive astrogliosis in amyloid-βplaque and neurofibrillary tangle-associated pathology.The APP/PS1-TauP301L-Adeno mouse model provides a valuable tool for advancing therapeutic research aimed at mitigating the progression of AD.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
文摘Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.
基金supported by Guangxi Science and Technology Major Program(No.AA23073008)Hubei Key Laboratory of Water System Science for Sponge City Construction(Wuhan University)(No.2023–05)Nanning Innovation and Entrepreneur Leading Talent Project(No.2021001).
文摘The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.
基金Sponsored by the Project of Sichuan Landscape and Recreation Research Center(JGYQ2020037).
文摘In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.
基金Supported by the Zhejiang Medical Science and Technology Project,No.2022KY1325 and No.2023KY381Public Welfare Project of Jinhua Science and Technology Plan,No.2023-4-084Major Project of Jinhua Science and Technology Plan,No.2023-3-066.
文摘BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.
基金supported by the National Natural Science Foundation of China to Jiping Huang(12035004 and 12320101004)the Innovation Program of the Shanghai Municipal Education Commission to Jiping Huang(2023ZKZD06)+2 种基金the National Natural Science Foundation of China to Ying Li(92163123 and 52250191)the Zhejiang Provincial Natural Science Foundation of China to Ying Li(LZ24A050002)the National Natural Science Foundation of China to Liujun Xu(12375040,12088101,and U2330401).
文摘Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.
基金CAMS Innovation Fund for Medical Sciences,Grant/Award Number:CIFMS,2021-I2M-1-024The Joint Fund for the Department of Science and Technology of Yunnan Province-Kunming Medical University,Grant/Award Number:202201AY070001-007+1 种基金Open Research Fund Project of Yunnan Provincial Key Laboratory of Pharmacology of Natural Medicines,Grant/Award Number:YKLPNP-G2403The Science and Technology Leading Talent Program of Yunnan Province,Grant/Award Number:202405AB350002。
文摘Background:Spinocerebellar ataxia type 2(SCA2)is a neurodegenerative disease marked by significant clinical and genetic heterogeneity,primarily caused by expanded CAG mutations in the ATXN2 gene.The unstable expansion of CAG repeats disrupts the genetic stability of animal models,which is detrimental to disease research.Methods:In this study,we established a mouse model in which CAG repeats do not undergo microsatellite instability(MSI)across generations.A humanized ATXN2 cDNA with four CAA interruptions within 73 CAG expansions was inserted into the Rosa26 locus of C57BL/6J mice.A 23 CAG control mouse model was also generated to verify ATXN2 integration and expression.Results:In our model,the number of CAG repeats remained stable during transmission,with no CAG repeat expansion observed in 64 parent-to-offspring transmissions.Compared with SCA2-Q23 mice,SCA2-Q73 mice exhibited progressive motor impairment,reduced Purkinje cell count and volume(indicative of cell atrophy),and muscle atrophy.These observations in the mice suggest that the behavioral and neuropathological phenotypes may reflect the features of SCA2 patients.RNA-seq analysis of the gastrocnemius muscle in SCA2-Q73 mice showed significant changes in muscle differentiation and development gene expression at 56 weeks,with no significant differences at 16 weeks compared to SCA2-Q23 mice.The expression level of the Myf6 gene significantly changed in the muscles of aged mice.Conclusion:In summary,the establishment of this model not only provides a stable animal model for studying CAG transmission in SCA2 but also indicates that the lack of long-term neural stimulation leads to muscle atrophy.
基金supported by the startup funding from the Chinese Institute for Brain Research to Hu Zhao.
文摘The advancement of tissue clearing technology has significantly propelled neuroscience research.Nevertheless,the fluorescent proteins used in traditional transgenic mouse strains were not specifically optimized for tissue clearing procedures,resulting in a substantial decrease in fluorescent intensity after clearing.In this study,we developed the Ci1 reporter mouse strain(where Ci stands for the Chinese Institute for Brain Research,CIBR)based on the bright red fluorescent protein mScarlet.The Ci1 reporter exhibits no fluorescence leakage in various organs or tissue types and can be readily crossed with multiple tissue-specific Cre lines.Compared to the Ai14 mouse strain,the Ci1 reporter strain demonstrates lower non-specific leakage,stronger fluorescence intensity in different tissues,and better preservation of fluorescence following tissue clearing treatment.The creation of the Ci1 reporter provides a more effective tool for both neuroscience and other biomedical research applications.
基金supported by the National Science Foundation of China(Grant Nos.42374205 and 41974179)the Specialized Research Fund of the National Space Science Center,Chinese Academy of Sciences(Grant No.E4PD3010)supported by the Specialized Research Fund for State Key Laboratories.
文摘The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
基金supported by the Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science KAKENHI 22K09110.
文摘Murine subarachnoid hemorrhage(SAH)induced using the filament perforation method is a useful in vivo experimental model to investigate the pathophysiological mechanisms in the brain underlying SAH.However,identifying mice with comorbid acute neurogenic pulmonary edema(NPE),a life-threatening systemic consequence often induced by SAH,in this model is difficult without histopathological investiga-tions.Herein,we present an imaging procedure involving dual-energy X-ray absorp-tiometry(DXA)to identify NPE in a murine model of SAH.We quantified the lung lean mass(LM)and compared the relationship between micro-computed tomography(CT)evidence of Hounsfield unit(HU)values and histopathological findings of PE.Of the 85 mice with successful induction of SAH by filament perforation,16(19%)had NPE,as verified by postmortem histology.The DXA-LM values correlate well with CT-HU levels(r=0.63,p<0.0001).Regarding the relationship between LM and HU in mice with post-SAH NPE,the LM was positively associated with HU values(r2=0.43;p=0.0056).A receiver operating characteristics curve of LM revealed a sensitivity of 87%and specificity of 57%for detecting PE,with a similar area under the curve as the HU(0.79±0.06 vs.0.84±0.07;p=0.21).These data suggest that confirming acute NPE using DXA-LM is a valuable method for selecting a clinically relevant murine NPE model that could be used in future experimental SAH studies.