Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ...Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.展开更多
It is of great importance to obtain precise trace data,as traces are frequently the sole visible and measurable parameter in most outcrops.The manual recognition and detection of traces on high-resolution three-dimens...It is of great importance to obtain precise trace data,as traces are frequently the sole visible and measurable parameter in most outcrops.The manual recognition and detection of traces on high-resolution three-dimensional(3D)models are relatively straightforward but time-consuming.One potential solution to enhance this process is to use machine learning algorithms to detect the 3D traces.In this study,a unique pixel-wise texture mapper algorithm generates a dense point cloud representation of an outcrop with the precise resolution of the original textured 3D model.A virtual digital image rendering was then employed to capture virtual images of selected regions.This technique helps to overcome limitations caused by the surface morphology of the rock mass,such as restricted access,lighting conditions,and shading effects.After AI-powered trace detection on two-dimensional(2D)images,a 3D data structuring technique was applied to the selected trace pixels.In the 3D data structuring,the trace data were structured through 2D thinning,3D reprojection,clustering,segmentation,and segment linking.Finally,the linked segments were exported as 3D polylines,with each polyline in the output corresponding to a trace.The efficacy of the proposed method was assessed using a 3D model of a real-world case study,which was used to compare the results of artificial intelligence(AI)-aided and human intelligence trace detection.Rosette diagrams,which visualize the distribution of trace orientations,confirmed the high similarity between the automatically and manually generated trace maps.In conclusion,the proposed semi-automatic method was easy to use,fast,and accurate in detecting the dominant jointing system of the rock mass.展开更多
Three-dimensional models, consisting of the flame kernel formation model, flame kernel development model and natural gas single step reaction model, are used to analyze the contribution of cyclic equivalence ratio var...Three-dimensional models, consisting of the flame kernel formation model, flame kernel development model and natural gas single step reaction model, are used to analyze the contribution of cyclic equivalence ratio variations to cyclic variations in the compressed natural gas (CNG) lean burn spark ignition engine. Computational results including the contributions of equivalence ratio cyclic variations to each combustion stage and effects of engine speed to the extent of combustion variations are discussed. It is concluded that the equivalence ratio variations affect mostly the main stage of combustion and hardly influence initial kernel development stage.展开更多
BACKGROUND Leprosy is a disease caused by Mycobacterium leprae(M.leprae),an intracellular pathogen that has tropism and affects skin and nervous system cells.The disease has two forms of presentation:Paucibacillary an...BACKGROUND Leprosy is a disease caused by Mycobacterium leprae(M.leprae),an intracellular pathogen that has tropism and affects skin and nervous system cells.The disease has two forms of presentation:Paucibacillary and multibacillary,with different clinical and immunological manifestations.Unlike what occurs in the multibacillary form,the diagnostic tests for the paucibacillary form are nonspecific and not very sensitive,allowing the existence of infected individuals without treatment,which contributes to the spread of the pathogen in the population.To mitigate this contamination,more sensitive diagnostic tests capable of detecting paucibacillary patients are needed.AIM To predict the three-dimensional structure models of M.leprae antigens with serodiagnostic potential for leprosy.METHODS In this in silico study,satisfactory templates were selected in the Protein Data Bank(PDB)using Basic Local Alignment Search Tool to predict the structural templates of ML2038,ML0286,ML0050,and 85B antigens by comparative modeling.The templates were selected according to general criteria such as sequence identity,coverage,X-ray resolution,Global Model Quality Estimate value and phylogenetic relationship;Clustal X 2.1 software was used in this analysis.Molecular modeling was completed using the software Modeller 9v13.Visualization of the models was made using ViewerLite 4.2 and PyMol software,and analysis of the quality of the predicted models was performed using the QMEAN score and Z-score.Finally,the three-dimensional moels were validated using the MolProbity and Verify 3D platforms.RESULTS The three-dimensional structure models of ML2038,ML0286,ML0050,and 85B antigens of M.leprae were predicted using the templates PDB:3UOI(90.51%identity),PDB:3EKL(87.46%identity),PDB:3FAV(40.00%identity),and PDB:1F0N(85.21%identity),respectively.The QMEAN and Z-score values indicated the good quality of the structure models.These data refer to the monomeric units of antigens,since some of these antigens have quaternary structure.The validation of the models was performed with the final three-dimensional structure-monomer(ML0050 and 85B antigens)and quaternary structures(ML2038 and ML0286).The majority of amino acid residues were observed in favorable and allowed regions in the Ramachandran plot,indicating correct positioning of the side chain and absence of steric impediment.The MolProbity score value and Verify 3D results of all models indicated a satisfactory prediction.CONCLUSION The polarized immune response against M.leprae creates a problem in leprosy detection.The selection of immunodominant epitopes is essential for the development of more sensitive serodiagnostic tests,for this it is important to know the three-dimensional structure of the antigens,which can be predicted with bioinformatics tools.展开更多
To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets ...To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets of concealed ore bodies,three-dimensional Mineral Prospectivity Modeling(MPM)of the deposit has been conducted using the weights-of-evidence(WofE)method.Conditional independence between evidence layers was tested,and the outline results using the prediction-volume(P-V)and Student's t-statistic methods for delineating favorable mineralization areas from continuous posterior probability map were critically compared.Four exploration targets delineated ultimately by the Student's t-statistic method for the discovery of minable ore bodies in each of the target areas were discussed in detail.The main conclusions include:(1)three-dimensional modeling of a deposit using multi-source reconnaissance data is useful for MPM in interpreting their relationships with known ore bodies;(2)WofE modeling can be used as a straightforward tool for integrating deposit model and reconnaissance data in MPM;(3)the Student's t-statistic method is more applicable in binarizing the continuous prospectivity map for exploration targeting than the PV approach;and(4)two target areas within high potential to find undiscovered ore bodies were diagnosed to guide future near-mine exploration activities of the Jinshan deposit.展开更多
Background:Traditional imaging approaches to keratoconus(KCN)have thus far failed to produce a standardized approach for diagnosis.While many diagnostic modalities and metrics exist,none have proven robust enough to b...Background:Traditional imaging approaches to keratoconus(KCN)have thus far failed to produce a standardized approach for diagnosis.While many diagnostic modalities and metrics exist,none have proven robust enough to be considered a gold standard.This study aims to introduce novel metrics to differentiate between KCN and healthy corneas using three-dimensional(3D)measurements of surface area and volume.Methods:This retrospective observational study examined KCN patients along with healthy control patients between the ages of 20 and 79 years old at the University of Maryland,Baltimore.The selected patients underwent a nine-line raster scan anterior segment optical coherence tomography(AS-OCT).ImageJ was used to determine the central 6 mm of each image and each corneal image was then divided into six 1 mm segments.Free-D software was then used to render the nine different images into a 3D model to calculate corneal surface area and volume.A two-tailed Mann-Whitney test was used to assess statistical significance when comparing these subsets.Results:Thirty-three eyes with KCN,along with 33 healthy control,were enrolled.There were statistically significant differences between the healthy and KCN groups in the metric of anterior corneal surface area(13.927 vs.13.991 mm^(2),P=0.046),posterior corneal surface area(14.045 vs.14.173 mm^(2),P<0.001),and volume(8.430 vs.7.773 mm3,P<0.001)within the central 6 mm.Conclusions:3D corneal models derived from AS-OCT can be used to measure anterior corneal surface area,posterior corneal surface area,and corneal volume.All three parameters are statistically different between corneas with KCN and healthy corneas.Further study and application of these parameters may yield new methodologies for the detection of KCN.展开更多
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(...Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].展开更多
This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to use...This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.展开更多
Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making sys...Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making system to propose a sewage treatment mode and scheme suitable for local conditions.By considering the village spatial layout and terrain factors,a decision tree model of residential density and terrain type was constructed with accuracies of 76.47%and 96.00%,respectively.Combined with binary classification probability unit regression,an appropriate sewage treatment mode for the village was determined with 87.00%accuracy.The Analytic Hierarchy Process(AHP),combined with the Technique for Order Preference(TOPSIS)by Similarity to an Ideal Solution model,formed the basis for optimal treatment process selection under different emission standards.Verification was conducted in 542 villages across three counties of the Inner Mongolia Autonomous Region,focusing on the standard effluent effect(0.3773),low investment cost(0.3196),and high standard effluent effect(0.5115)to determine the best treatment process for the same emission standard under different needs.The annual environmental and carbon emission benefits of sewage treatment in these villages were estimated.This model matches village density,geographic feature,and social development level,and provides scientific support and a theoretical basis for rural sewage treatment decision-making.展开更多
BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models ...BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.展开更多
Three-dimensional(3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover,these models bridge the ga...Three-dimensional(3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover,these models bridge the gap between traditional two-dimensional(2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition,3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.展开更多
Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en...Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.展开更多
Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual pat...Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual patient responses towards different drugs.This study aimed to investigate the patient-derived breast cancer culture models for drug sensitivity evaluations.Methods:Tumor and adjacent tissues from female breast cancer patients were collected during surgery.Patient-derived breast cancer cells were cultured using the conditional reprogramming technique to establish 2D models.The obtained patient-derived conditional reprogramming breast cancer(CRBC)cells were subsequently embedded in alginate-gelatin methacryloyl hydrogel microspheres to form 3D culture models.Comparisons between 2D and 3D models were made using immunohistochemistry(tumor markers),MTS assays(cell viability),flow cytometry(apoptosis),transwell assays(migration),and Western blotting(protein expression).Drug sensitivity tests were conducted to evaluate patient-specific responses to anti-cancer agents.Results:2D and 3D culture models were successfully established using samples from eight patients.The 3D models retained histological and marker characteristics of the original tumors.Compared to 2D cultures,3D models exhibited increased apoptosis,enhanced drug resistance,elevated stem cell marker expression,and greater migration ability—features more reflective of in vivo tumor behavior.Conclusion:Patient-derived 3D CRBC models effectively mimic the in vivo tumor microenvironment and demonstrate stronger resistance to anti-cancer drugs than 2D models.These hydrogel-based models offer a cost-effective and clinically relevant platform for drug screening and personalized breast cancer treatment.展开更多
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone...Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications.展开更多
Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of kn...Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.展开更多
The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying ge...The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches.展开更多
Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in ...Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.展开更多
The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cereb...The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.展开更多
The identification of rock mass discontinuities is critical for rock mass characterization.While high-resolution digital outcrop models(DOMs)are widely used,current digital methods struggle to generalize across divers...The identification of rock mass discontinuities is critical for rock mass characterization.While high-resolution digital outcrop models(DOMs)are widely used,current digital methods struggle to generalize across diverse geological settings.Large-scale models(LSMs),with vast parameter spaces and extensive training datasets,excel in solving complex visual problems.This study explores the potential of using one such LSM,Segment anything model(SAM),to identify facet-type discontinuities across several outcrops via interactive prompting.The findings demonstrate that SAM effectively segments two-dimensional(2D)discontinuities,with its generalization capability validated on a dataset of 2426 identified discontinuities across 170 outcrops.The model achieves 0.78 mean IoU and 0.86 average precision using 11-point prompts.To extend to three dimensions(3D),a framework integrating SAM with Structure-from-Motion(SfM)was proposed.By utilizing the inherent but often overlooked relationship between image pixels and point clouds in SfM,the identification process was simplified and generalized across photogrammetric devices.Benchmark studies showed that the framework achieved 0.91 average precision,identifying 87 discontinuities in Dataset-3D.The results confirm its high precision and efficiency,making it a valuable tool for data annotation.The proposed method offers a practical solution for geological investigations.展开更多
Objective To evaluate left atrial function in essential hypertension patients with different patterns of left ventricular geometric models by real-time three-dimensional echocardiography (RT-3DE) and left atrial tra...Objective To evaluate left atrial function in essential hypertension patients with different patterns of left ventricular geometric models by real-time three-dimensional echocardiography (RT-3DE) and left atrial tracking (EAT).展开更多
文摘Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.
基金supported by grants from the Human Resources Development program (Grant No.20204010600250)the Training Program of CCUS for the Green Growth (Grant No.20214000000500)by the Korea Institute of Energy Technology Evaluation and Planning (KETEP)funded by the Ministry of Trade,Industry,and Energy of the Korean Government (MOTIE).
文摘It is of great importance to obtain precise trace data,as traces are frequently the sole visible and measurable parameter in most outcrops.The manual recognition and detection of traces on high-resolution three-dimensional(3D)models are relatively straightforward but time-consuming.One potential solution to enhance this process is to use machine learning algorithms to detect the 3D traces.In this study,a unique pixel-wise texture mapper algorithm generates a dense point cloud representation of an outcrop with the precise resolution of the original textured 3D model.A virtual digital image rendering was then employed to capture virtual images of selected regions.This technique helps to overcome limitations caused by the surface morphology of the rock mass,such as restricted access,lighting conditions,and shading effects.After AI-powered trace detection on two-dimensional(2D)images,a 3D data structuring technique was applied to the selected trace pixels.In the 3D data structuring,the trace data were structured through 2D thinning,3D reprojection,clustering,segmentation,and segment linking.Finally,the linked segments were exported as 3D polylines,with each polyline in the output corresponding to a trace.The efficacy of the proposed method was assessed using a 3D model of a real-world case study,which was used to compare the results of artificial intelligence(AI)-aided and human intelligence trace detection.Rosette diagrams,which visualize the distribution of trace orientations,confirmed the high similarity between the automatically and manually generated trace maps.In conclusion,the proposed semi-automatic method was easy to use,fast,and accurate in detecting the dominant jointing system of the rock mass.
基金Sponsored by the National Natural Science Foundation of China(50406003)
文摘Three-dimensional models, consisting of the flame kernel formation model, flame kernel development model and natural gas single step reaction model, are used to analyze the contribution of cyclic equivalence ratio variations to cyclic variations in the compressed natural gas (CNG) lean burn spark ignition engine. Computational results including the contributions of equivalence ratio cyclic variations to each combustion stage and effects of engine speed to the extent of combustion variations are discussed. It is concluded that the equivalence ratio variations affect mostly the main stage of combustion and hardly influence initial kernel development stage.
文摘BACKGROUND Leprosy is a disease caused by Mycobacterium leprae(M.leprae),an intracellular pathogen that has tropism and affects skin and nervous system cells.The disease has two forms of presentation:Paucibacillary and multibacillary,with different clinical and immunological manifestations.Unlike what occurs in the multibacillary form,the diagnostic tests for the paucibacillary form are nonspecific and not very sensitive,allowing the existence of infected individuals without treatment,which contributes to the spread of the pathogen in the population.To mitigate this contamination,more sensitive diagnostic tests capable of detecting paucibacillary patients are needed.AIM To predict the three-dimensional structure models of M.leprae antigens with serodiagnostic potential for leprosy.METHODS In this in silico study,satisfactory templates were selected in the Protein Data Bank(PDB)using Basic Local Alignment Search Tool to predict the structural templates of ML2038,ML0286,ML0050,and 85B antigens by comparative modeling.The templates were selected according to general criteria such as sequence identity,coverage,X-ray resolution,Global Model Quality Estimate value and phylogenetic relationship;Clustal X 2.1 software was used in this analysis.Molecular modeling was completed using the software Modeller 9v13.Visualization of the models was made using ViewerLite 4.2 and PyMol software,and analysis of the quality of the predicted models was performed using the QMEAN score and Z-score.Finally,the three-dimensional moels were validated using the MolProbity and Verify 3D platforms.RESULTS The three-dimensional structure models of ML2038,ML0286,ML0050,and 85B antigens of M.leprae were predicted using the templates PDB:3UOI(90.51%identity),PDB:3EKL(87.46%identity),PDB:3FAV(40.00%identity),and PDB:1F0N(85.21%identity),respectively.The QMEAN and Z-score values indicated the good quality of the structure models.These data refer to the monomeric units of antigens,since some of these antigens have quaternary structure.The validation of the models was performed with the final three-dimensional structure-monomer(ML0050 and 85B antigens)and quaternary structures(ML2038 and ML0286).The majority of amino acid residues were observed in favorable and allowed regions in the Ramachandran plot,indicating correct positioning of the side chain and absence of steric impediment.The MolProbity score value and Verify 3D results of all models indicated a satisfactory prediction.CONCLUSION The polarized immune response against M.leprae creates a problem in leprosy detection.The selection of immunodominant epitopes is essential for the development of more sensitive serodiagnostic tests,for this it is important to know the three-dimensional structure of the antigens,which can be predicted with bioinformatics tools.
基金financially supported by the Ministry of Science and Technology of China(Nos.2022YFF0801201,2021YFC2900300)the National Natural Science Foundation of China(Nos.41872245,U1911202)the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515010666)。
文摘To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets of concealed ore bodies,three-dimensional Mineral Prospectivity Modeling(MPM)of the deposit has been conducted using the weights-of-evidence(WofE)method.Conditional independence between evidence layers was tested,and the outline results using the prediction-volume(P-V)and Student's t-statistic methods for delineating favorable mineralization areas from continuous posterior probability map were critically compared.Four exploration targets delineated ultimately by the Student's t-statistic method for the discovery of minable ore bodies in each of the target areas were discussed in detail.The main conclusions include:(1)three-dimensional modeling of a deposit using multi-source reconnaissance data is useful for MPM in interpreting their relationships with known ore bodies;(2)WofE modeling can be used as a straightforward tool for integrating deposit model and reconnaissance data in MPM;(3)the Student's t-statistic method is more applicable in binarizing the continuous prospectivity map for exploration targeting than the PV approach;and(4)two target areas within high potential to find undiscovered ore bodies were diagnosed to guide future near-mine exploration activities of the Jinshan deposit.
文摘Background:Traditional imaging approaches to keratoconus(KCN)have thus far failed to produce a standardized approach for diagnosis.While many diagnostic modalities and metrics exist,none have proven robust enough to be considered a gold standard.This study aims to introduce novel metrics to differentiate between KCN and healthy corneas using three-dimensional(3D)measurements of surface area and volume.Methods:This retrospective observational study examined KCN patients along with healthy control patients between the ages of 20 and 79 years old at the University of Maryland,Baltimore.The selected patients underwent a nine-line raster scan anterior segment optical coherence tomography(AS-OCT).ImageJ was used to determine the central 6 mm of each image and each corneal image was then divided into six 1 mm segments.Free-D software was then used to render the nine different images into a 3D model to calculate corneal surface area and volume.A two-tailed Mann-Whitney test was used to assess statistical significance when comparing these subsets.Results:Thirty-three eyes with KCN,along with 33 healthy control,were enrolled.There were statistically significant differences between the healthy and KCN groups in the metric of anterior corneal surface area(13.927 vs.13.991 mm^(2),P=0.046),posterior corneal surface area(14.045 vs.14.173 mm^(2),P<0.001),and volume(8.430 vs.7.773 mm3,P<0.001)within the central 6 mm.Conclusions:3D corneal models derived from AS-OCT can be used to measure anterior corneal surface area,posterior corneal surface area,and corneal volume.All three parameters are statistically different between corneas with KCN and healthy corneas.Further study and application of these parameters may yield new methodologies for the detection of KCN.
文摘Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].
基金funded by the Office of the Vice-President for Research and Development of Cebu Technological University.
文摘This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.
基金supported by the Central Government Guiding Local Science and Technology Development Fund Project(No.2024SZY0343)the Joint Research Program for Ecological Conservation and High Quality Development of the Yellow River Basin(No.2022-YRUC-01-050205)+2 种基金the Higher Education Scientific Research Project of Inner Mongolia Autonomous Region(No.NJZZ23078)the project of Inner Mongolia"Prairie Talents"Engineering Innovation Entrepreneurship Talent Team,the Major Projects of Erdos Science and Technology(No.2022EEDSKJZDZX015)the Innovation Team of the Inner Mongolia Academy of Science and Technology(No.CXTD2023-01-016).
文摘Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making system to propose a sewage treatment mode and scheme suitable for local conditions.By considering the village spatial layout and terrain factors,a decision tree model of residential density and terrain type was constructed with accuracies of 76.47%and 96.00%,respectively.Combined with binary classification probability unit regression,an appropriate sewage treatment mode for the village was determined with 87.00%accuracy.The Analytic Hierarchy Process(AHP),combined with the Technique for Order Preference(TOPSIS)by Similarity to an Ideal Solution model,formed the basis for optimal treatment process selection under different emission standards.Verification was conducted in 542 villages across three counties of the Inner Mongolia Autonomous Region,focusing on the standard effluent effect(0.3773),low investment cost(0.3196),and high standard effluent effect(0.5115)to determine the best treatment process for the same emission standard under different needs.The annual environmental and carbon emission benefits of sewage treatment in these villages were estimated.This model matches village density,geographic feature,and social development level,and provides scientific support and a theoretical basis for rural sewage treatment decision-making.
基金Supported by the National Key Specialty of Traditional Chinese Medicine(Spleen and Stomach Diseases),No.0500004National Natural Science Foundation of China,No.82205104 and No.82104850+1 种基金Hospital Capability Enhancement Project of Xiyuan Hospital,CACMS,No.XYZX0303-07the Fundamental Research Funds for the Central Public Welfare Research Institutes,Excellent Young Scientists Training Program of China Academy of Chinese Medical Sciences,No.ZZ16-YQ-002.
文摘BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.
基金supported by the National Megaprojects for Infectious Diseases (2014ZX10004002-004001)
文摘Three-dimensional(3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover,these models bridge the gap between traditional two-dimensional(2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition,3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.
基金supported by the National Natural Science Foundation of China(No.92371206)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.CX2023063).
文摘Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.
基金supported by the Natural Science Foundation of Guangdong Province(No.2021B1515120053)Guangdong Basic and Applied Basic Research Foundation(Grant No.2024A1515140166).
文摘Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual patient responses towards different drugs.This study aimed to investigate the patient-derived breast cancer culture models for drug sensitivity evaluations.Methods:Tumor and adjacent tissues from female breast cancer patients were collected during surgery.Patient-derived breast cancer cells were cultured using the conditional reprogramming technique to establish 2D models.The obtained patient-derived conditional reprogramming breast cancer(CRBC)cells were subsequently embedded in alginate-gelatin methacryloyl hydrogel microspheres to form 3D culture models.Comparisons between 2D and 3D models were made using immunohistochemistry(tumor markers),MTS assays(cell viability),flow cytometry(apoptosis),transwell assays(migration),and Western blotting(protein expression).Drug sensitivity tests were conducted to evaluate patient-specific responses to anti-cancer agents.Results:2D and 3D culture models were successfully established using samples from eight patients.The 3D models retained histological and marker characteristics of the original tumors.Compared to 2D cultures,3D models exhibited increased apoptosis,enhanced drug resistance,elevated stem cell marker expression,and greater migration ability—features more reflective of in vivo tumor behavior.Conclusion:Patient-derived 3D CRBC models effectively mimic the in vivo tumor microenvironment and demonstrate stronger resistance to anti-cancer drugs than 2D models.These hydrogel-based models offer a cost-effective and clinically relevant platform for drug screening and personalized breast cancer treatment.
基金Project supported by the National Natural Science Foundation of China(Nos.12372071 and 12372070)the Aeronautical Science Fund of China(No.2022Z055052001)the Foundation of China Scholarship Council(No.202306830079)。
文摘Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation):project ID 431549029-SFB 1451the Marga-und-Walter-Boll-Stiftung(#210-10-15)(to MAR)a stipend from the'Gerok Program'(Faculty of Medicine,University of Cologne,Germany)。
文摘Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.
基金supported by a grant from the Research Grant Council of Hong Kong Special Administrative Region(Project No.11207724).
文摘The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches.
文摘Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.
基金supported by the Grant PID2021-126715OB-IOO financed by MCIN/AEI/10.13039/501100011033 and"ERDFA way of making Europe"by the Grant PI22CⅢ/00055 funded by Instituto de Salud CarlosⅢ(ISCⅢ)+6 种基金the UFIECPY 398/19(PEJ2018-004965) grant to RGS funded by AEI(Spain)the UFIECPY-396/19(PEJ2018-004961)grant financed by MCIN (Spain)FI23CⅢ/00003 grant funded by ISCⅢ-PFIS Spain) to PMMthe UFIECPY 328/22 (PEJ-2021-TL/BMD-21001) grant to LM financed by CAM (Spain)the grant by CAPES (Coordination for the Improvement of Higher Education Personnel)through the PDSE program (Programa de Doutorado Sanduiche no Exterior)to VSCG financed by MEC (Brazil)
文摘The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.
基金support in dataset preparation.This study was funded by National Natural Science Foundation of China(Nos.42422704 and 52379109)Opening the fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(No.SKLGP2024K028)Science and Technology Research and Design Projects of China State Construction Engineering Corporation Ltd.(No.CSCEC-2024-Q-68).
文摘The identification of rock mass discontinuities is critical for rock mass characterization.While high-resolution digital outcrop models(DOMs)are widely used,current digital methods struggle to generalize across diverse geological settings.Large-scale models(LSMs),with vast parameter spaces and extensive training datasets,excel in solving complex visual problems.This study explores the potential of using one such LSM,Segment anything model(SAM),to identify facet-type discontinuities across several outcrops via interactive prompting.The findings demonstrate that SAM effectively segments two-dimensional(2D)discontinuities,with its generalization capability validated on a dataset of 2426 identified discontinuities across 170 outcrops.The model achieves 0.78 mean IoU and 0.86 average precision using 11-point prompts.To extend to three dimensions(3D),a framework integrating SAM with Structure-from-Motion(SfM)was proposed.By utilizing the inherent but often overlooked relationship between image pixels and point clouds in SfM,the identification process was simplified and generalized across photogrammetric devices.Benchmark studies showed that the framework achieved 0.91 average precision,identifying 87 discontinuities in Dataset-3D.The results confirm its high precision and efficiency,making it a valuable tool for data annotation.The proposed method offers a practical solution for geological investigations.
基金Supported by the Natural Science Foundation of Liaoning ProvinceChina(2013023010)
文摘Objective To evaluate left atrial function in essential hypertension patients with different patterns of left ventricular geometric models by real-time three-dimensional echocardiography (RT-3DE) and left atrial tracking (EAT).