期刊文献+
共找到329篇文章
< 1 2 17 >
每页显示 20 50 100
Three-Dimensional Prospectivity Modeling of Jinshan Ag-Au Deposit,Southern China by Weights-of-Evidence
1
作者 Fan Xiao Qiuming Cheng +1 位作者 Weisheng Hou Frederik P.Agterberg 《Journal of Earth Science》 2025年第5期2038-2057,共20页
To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets ... To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets of concealed ore bodies,three-dimensional Mineral Prospectivity Modeling(MPM)of the deposit has been conducted using the weights-of-evidence(WofE)method.Conditional independence between evidence layers was tested,and the outline results using the prediction-volume(P-V)and Student's t-statistic methods for delineating favorable mineralization areas from continuous posterior probability map were critically compared.Four exploration targets delineated ultimately by the Student's t-statistic method for the discovery of minable ore bodies in each of the target areas were discussed in detail.The main conclusions include:(1)three-dimensional modeling of a deposit using multi-source reconnaissance data is useful for MPM in interpreting their relationships with known ore bodies;(2)WofE modeling can be used as a straightforward tool for integrating deposit model and reconnaissance data in MPM;(3)the Student's t-statistic method is more applicable in binarizing the continuous prospectivity map for exploration targeting than the PV approach;and(4)two target areas within high potential to find undiscovered ore bodies were diagnosed to guide future near-mine exploration activities of the Jinshan deposit. 展开更多
关键词 three-dimensional modeling mineral prospectivity mapping exploration targeting WEIGHTS-OF-EVIDENCE C-V fractal model Jinshan Ag-Au deposit mineral deposits economic geology
原文传递
Mixed integer programming modeling for the satellite three-dimensional component assignment and layout optimization problem
2
作者 Yufeng XIA Xianqi CHEN +3 位作者 Zhijia LIU Weien ZHOU Wen YAO Zhongneng ZHANG 《Chinese Journal of Aeronautics》 2025年第6期427-447,共21页
Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en... Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications. 展开更多
关键词 Mixed integer programming modeling three-dimensional component assignment Layout optimization Phi-function Finite-rectangle method
原文传递
Dynamic modeling of a three-dimensional braided composite thin plate considering braiding directions
3
作者 Chentong GAO Huiyu SUN +1 位作者 Jianping GU W.M.HUANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期123-138,共16页
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone... Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications. 展开更多
关键词 three-dimensional(3D)braided composite braiding direction composite thin plate large overall motion dynamic model
在线阅读 下载PDF
Research on the Three-dimensional Modeling and Optimization of a Virtual Tower Crane Based on 3DS Max, Solidworks and EON Professional 被引量:2
4
作者 HOU Xiao-ting LI Chang-hua 《International Journal of Plant Engineering and Management》 2013年第1期15-19,共5页
Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enha... Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enhancing the requests of image quality and stability of the virtual construction scene, taking a tower crane for example. We studied the technology of three-dimensional modeling and optimization of a virtual tower crane, and a method named two-stage model optimization was put forward. This depended on the modeling stage using Solidworks and 3DS Max and the performance optimization stage in EON. The practice of software development indicates that the proposed methods of three-dimensional modeling and optimization could satisfy the performance request of virtual construction system and be popularized to other virtual system. 展开更多
关键词 3DS Max SOLIDWORKS EON Professional virtual tower crane three-dimensional modeling andoptimization virtual construction
在线阅读 下载PDF
The detection of keratoconus using a three-dimensional corneal model derived from anterior segment optical coherence tomography
5
作者 Sang Ngoc Tran Isa S.K.Mohammed +1 位作者 Zeshan Tariq Wuqaas M.Munir 《Annals of Eye Science》 2025年第3期73-82,共10页
Background:Traditional imaging approaches to keratoconus(KCN)have thus far failed to produce a standardized approach for diagnosis.While many diagnostic modalities and metrics exist,none have proven robust enough to b... Background:Traditional imaging approaches to keratoconus(KCN)have thus far failed to produce a standardized approach for diagnosis.While many diagnostic modalities and metrics exist,none have proven robust enough to be considered a gold standard.This study aims to introduce novel metrics to differentiate between KCN and healthy corneas using three-dimensional(3D)measurements of surface area and volume.Methods:This retrospective observational study examined KCN patients along with healthy control patients between the ages of 20 and 79 years old at the University of Maryland,Baltimore.The selected patients underwent a nine-line raster scan anterior segment optical coherence tomography(AS-OCT).ImageJ was used to determine the central 6 mm of each image and each corneal image was then divided into six 1 mm segments.Free-D software was then used to render the nine different images into a 3D model to calculate corneal surface area and volume.A two-tailed Mann-Whitney test was used to assess statistical significance when comparing these subsets.Results:Thirty-three eyes with KCN,along with 33 healthy control,were enrolled.There were statistically significant differences between the healthy and KCN groups in the metric of anterior corneal surface area(13.927 vs.13.991 mm^(2),P=0.046),posterior corneal surface area(14.045 vs.14.173 mm^(2),P<0.001),and volume(8.430 vs.7.773 mm3,P<0.001)within the central 6 mm.Conclusions:3D corneal models derived from AS-OCT can be used to measure anterior corneal surface area,posterior corneal surface area,and corneal volume.All three parameters are statistically different between corneas with KCN and healthy corneas.Further study and application of these parameters may yield new methodologies for the detection of KCN. 展开更多
关键词 CORNEA ECTASIA keratoconus(KCN) anterior segment optical coherence tomography(AS-OCT) three-dimensional model(3D model)
暂未订购
Three-dimensional numerical modeling of gravity anomalies based on Poisson equation in spacewavenumber mixed domain 被引量:6
6
作者 Dai Shi-Kun Zhao Dong-Dong +3 位作者 Zhang Qian-Jiang Li Kun Chen Qing-Rui Wang Xu-Long 《Applied Geophysics》 SCIE CSCD 2018年第3期513-523,共11页
In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over ... In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over large-scale and complex terrain requires additional methods. To this end, we have proposed a new topography-capable By performing a two-dimensional Fourier transform in the horizontal directions, threedimensional partial differential equations in the spatial domain were transformed into a group of independent, one-dimensional differential equations engaged with different wave numbers. These independent differential equations are highly parallel across different wave numbers. differential equations with different wave numbers, and the efficiency of solving fixedbandwidth linear equations was further improved by a chasing method. In a synthetic test, a prism model was used to verify the accuracy and reliability of the proposed algorithm by comparing the numerical solution with the analytical solution. We studied the computational precision and efficiency with and without topography using different Fourier transform methods. The results showed that the Guass-FFT method has higher numerical precision, while the standard FFT method is superior, in terms of computation time, for inversion and quantitative interpretation under complicated terrain. 展开更多
关键词 Topography gravity ANOMALY space-wavenumber mixing DOMAIN three-dimensional NUMERICAL modeling
在线阅读 下载PDF
Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling 被引量:16
7
作者 Nipha Chaicharoenaudomrung Phongsakorn Kunhorm Parinya Noisa 《World Journal of Stem Cells》 SCIE 2019年第12期1065-1083,共19页
Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cel... Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cell characteristics and architectures are closely mimicked by the 3D cell models.Thus,the 3D cell cultures are promising and suitable systems for various proposes,ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives.This review provides a comprehensive compendium of recent advancements in culturing cells,in particular cancer and stem cells,using 3D culture techniques.The major approaches highlighted here include cell spheroids,hydrogel embedding,bioreactors,scaffolds,and bioprinting.In addition,the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed,and the prominent studies of 3D cell culture systems were discussed. 展开更多
关键词 three-dimensional CULTURES CANCER Stem cells Disease modeling In VITRO screening PLATFORM
暂未订购
Real-time model updating and prediction of three-dimensional timevarying consolidation settlement using machine learning
8
作者 Huaming Tian Yu Wang Danni Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5954-5969,共16页
The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying ge... The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches. 展开更多
关键词 Digital twin three-dimensional(3D)finite element method(FEM) Time-varying 3D settlement Real-time model update Sparse dictionary learning(SDL)
在线阅读 下载PDF
Microstructure modeling and virtual test of asphalt mixture based on three-dimensional discrete element method 被引量:4
9
作者 马涛 张德育 +2 位作者 张垚 赵永利 黄晓明 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第6期1525-1534,共10页
The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem... The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture. 展开更多
关键词 asphalt mixture microstructure modeling virtual test discrete element method three-dimensional method
在线阅读 下载PDF
Three-dimensional land FD-CSEM forward modeling using edge finite-element method 被引量:3
10
作者 LIU Jian-xin LIU Peng-mao TONG Xiao-zhong 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期131-140,共10页
A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been deve... A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion. 展开更多
关键词 three-dimensional model frequency-domain electromagnetic method horizontal electric dipole forward modeling edge finite-element
在线阅读 下载PDF
Three-dimensional forward modeling for magnetotelluric sounding by finite element method 被引量:3
11
作者 童孝忠 柳建新 +3 位作者 谢维 徐凌华 郭荣文 程云涛 《Journal of Central South University》 SCIE EI CAS 2009年第1期136-142,共7页
A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forwar... A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances. 展开更多
关键词 magnetotelluric sounding three-dimensional forward modeling finite element method general variation principle divergence condition
在线阅读 下载PDF
Three-dimensional fuzzy logic system for process modeling and control 被引量:2
12
作者 Han-Xiong LI Xiaogang DUAN Zhi LIU 《控制理论与应用(英文版)》 EI 2010年第3期280-285,共6页
The traditional fuzzy logic system (FLS) can only model and control the process in two-dimensional nature. Many of real-world systems are of multidimensional features, such as, thermal and fluid processes with spati... The traditional fuzzy logic system (FLS) can only model and control the process in two-dimensional nature. Many of real-world systems are of multidimensional features, such as, thermal and fluid processes with spatiotemporal dynamics, biological systems, or decision-making processes that contain stochastic and imprecise uncertainties. These types of systems are difficult for the traditional FLS to model and control because they require a third dimension for spatial or probabilistic information. The type-2 fuzzy set provides the possibility to develop a three-dimensional fuzzy logic system for modeling and controlling these processes in three-dimensional nature. 展开更多
关键词 three-dimensional fuzzy logic system Spatiotemporal system modeling
在线阅读 下载PDF
Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling 被引量:2
13
作者 金秋雪 刘波 +8 位作者 刘燕 王维维 汪恒 许震 高丹 王青 夏洋洋 宋志棠 封松林 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期128-131,共4页
An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell ... An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current. 展开更多
关键词 PCRAM cell RESET three-dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element modeling of by in with
原文传递
The Design of a Three-Dimensional Physical Modeling System for Real-Time Groundwater Flows 被引量:1
14
作者 SHI Feng ZHANG Fawang +5 位作者 CHEN Li HAN Zhantao YAO Hongchao QIAN Long CHEN Liang JIANG Chengchao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第6期2103-2103,共1页
In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-di... In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-dimensional groundwater flows,making it impossible to validate groundwater flows simulated by numerical methods with physical modeling. 展开更多
关键词 The Design of a three-dimensional Physical modeling System for Real-Time Groundwater Flows
在线阅读 下载PDF
THREE-DIMENSIONAL MODELING FOR THIN PLATE-LIKE STRUCTURES INCLUDING SURFACE EFFECTS BY USING STATE SPACE METHOD
15
作者 Hongyu Sheng Pin Lu 《Acta Mechanica Solida Sinica》 SCIE EI 2010年第3期260-270,共11页
A three-dimensional (3-D) approach based on the state space method is proposed to study size-dependent mechanical properties of ultra-thin plate-like elastic structures considering surface effects. The structure is ... A three-dimensional (3-D) approach based on the state space method is proposed to study size-dependent mechanical properties of ultra-thin plate-like elastic structures considering surface effects. The structure is modeled as a laminate composed of a bulk bounded with upper and bottom surface layers, which are allowed to have different material properties from the bulk layer. State equations, including the surface properties of the structure, can be established on the basis of 3-D fundamental elasticity to analyze the size-dependent static characteristics of the thin plate-like structure. Compared with two-dimensional plate theories based size-dependent models for thin film structures in literature, the present 3-D approach is exact, which can provide benchmark results to assess the accuracy of 2-D plate theories and various numerical approaches. To show the feasibility of the proposed approach, a 3-D analytical solution for a simply supported plate-like thin structure including surface layers is derived. An algorithm is proposed for the calculation of the state equations obtained to ensure that the numerical results can reveal the surface effects clearly even for extremely thin surface layers. Numerical examples are carried out to exhibit the surface effects and some discussions are provided based on the results obtained. 展开更多
关键词 micro-structures surface effects SIZE-DEPENDENCE state equation three-dimensional modeling
原文传递
In vitro three-dimensional cancer metastasis modeling:Past,present,and future
16
作者 韩伟静 袁伟 +3 位作者 朱江瑞 樊琪慧 屈军乐 刘雳宇 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期360-369,共10页
Metastasis is the leading cause of most cancer deaths, as opposed to dysregulated cell growth of the primary tumor. Molecular mechanisms of metastasis have been studied for decades and the findings have evolved our un... Metastasis is the leading cause of most cancer deaths, as opposed to dysregulated cell growth of the primary tumor. Molecular mechanisms of metastasis have been studied for decades and the findings have evolved our understanding of the progression of malignancy. However, most of the molecular mechanisms fail to address the causes of cancer and its evolutionary origin, demonstrating an inability to find a solution for complete cure of cancer. After being a neglected area of tumor biology for quite some time, recently several studies have focused on the impact of the tumor microenvironment on cancer growth. The importance of the tumor microenvironment is gradually gaining attention, particularly from the per- spective of biophysics. In vitro three-dimensional (3-D) metastatic models are an indispensable platform for investigating the tumor microenvironment, as they mimic the in vivo tumor tissue. In 3-D metastatic in vitro models, static factors such as the mechanical properties, biochemical factors, as well as dynamic factors such as cell-cell, cell-ECM interactions, and fluid shear stress can be studied quantitatively. With increasing focus on basic cancer research and drug development, the in vitro 3-D models offer unique advantages in fundamental and clinical biomedical studies. 展开更多
关键词 cancer metastasis microfluidic chip three-dimensional in vitro model CHEMOTAXIS
原文传递
Central nervous system tumors and three-dimensional cell biology: Current and future perspectives in modeling
17
作者 Zaki Abou-Mrad Jolie Bou Gharios +4 位作者 Maya M Moubarak Ahmad Chalhoub Charbel Moussalem Hisham F Bahmad Wassim Abou-Kheir 《World Journal of Stem Cells》 SCIE 2021年第8期1112-1126,共15页
Central nervous system(CNS)tumors are a variety of distinct neoplasms that present multiple challenges in terms of treatment and prognosis.Glioblastoma,the most common primary tumor in adults,is associated with poor s... Central nervous system(CNS)tumors are a variety of distinct neoplasms that present multiple challenges in terms of treatment and prognosis.Glioblastoma,the most common primary tumor in adults,is associated with poor survival and remains one of the least treatable neoplasms.These tumors are highly heterogenous and complex in their nature.Due to this complexity,traditional cell culturing techniques and methods do not provide an ideal recapitulating model for the study of these tumors’behavior in vivo.Two-dimensional models lack the spatial arrangement,the heterogeneity in cell types,and the microenvironment that play a large role in tumor cell behavior and response to treatment.Recently,scientists have turned towards three-dimensional culturing methods,namely spheroids and organoids,as they have been shown to recapitulate tumors in a more faithful manner to their in vivo counterparts.Moreover,tumor-on-a-chip systems have lately been employed in CNS tumor modeling and have shown great potential in both studying the pathophysiology and therapeutic testing.In this review,we will discuss the current available literature on in vitro threedimensional culturing models in CNS tumors,in addition to presenting their advantages and current limitations.We will also elaborate on the future implications of these models and their benefit in the clinical setting. 展开更多
关键词 Central nervous system tumors GLIOBLASTOMA three-dimensional modelling SPHEROIDS ORGANOIDS
暂未订购
Three-Dimensional Pressure Modeling of South China Sea in High Temperature High Pressure Field
18
作者 Aiqun Liu Peiyuan Zhu +3 位作者 Guangchao Pan Caiwei Fan Bing Liu Yunpeng Wu 《Open Journal of Marine Science》 2017年第2期271-280,共10页
Yingqiong basin is a proven hydrocarbon-rich basin in South China Sea. There are a number of large exploration prospects in high temperature and over-pressured formations, especially in Yacheng Block of Qiongdongnan b... Yingqiong basin is a proven hydrocarbon-rich basin in South China Sea. There are a number of large exploration prospects in high temperature and over-pressured formations, especially in Yacheng Block of Qiongdongnan basin and Dongfang District of Yinggehai Basin. Owing to good exploration situation, we have already achieved proven geological reserves over 1000 × 108 m3. In recent years, a few drilled HPHT wells have confirmed that pressure predicted by conventional method was wildly inaccurate. From the view of regional stress, the accuracy of the pressure prediction will be substantially improved. Accurate pressure prediction and three-dimensional pressure modeling which are based on three-dimensional lithology modeling are the cornerstone to achieve exploration breakthrough. In this paper, the use of the triple constraint trend lithology model broke through the traditional method of seismic lithology prediction only by means of impedance threshold value. Compared with actual data and prediction, it confirms that three-dimensional pressure modeling method is reasonable and effective, and has a wide prospect of application. 展开更多
关键词 HIGH Temperature and HIGH PRESSURE Basin Sedimentary FACIES model Seismic Attribute model LITHOLOGY model three-dimensional PRESSURE model PRESSURE Prediction
在线阅读 下载PDF
Three-Dimensional Analytical Modeling of Axial-Flux Permanent Magnet Drivers
19
作者 Wenhui Li Dazhi Wang +3 位作者 Shuo Cao Deshan Kong Sihan Wang Zhong Hua 《Computers, Materials & Continua》 SCIE EI 2023年第4期259-276,共18页
In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare co... In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers. 展开更多
关键词 three-dimensional analytical modeling cylindrical coordinates magnetic field distribution parameter sensitivity analysis performance measurement
在线阅读 下载PDF
Application of Three-dimensional Modeling in a Hydrologic Test Reach
20
作者 Yuxing GAO Yiyang XIE 《Meteorological and Environmental Research》 2024年第6期67-69,共3页
To address the problem that the display effect of hydrologic test data was not intuitive,the three-dimensional modeling technology of a hydrologic test reach based on GIS technology was proposed.The reach of of the Ye... To address the problem that the display effect of hydrologic test data was not intuitive,the three-dimensional modeling technology of a hydrologic test reach based on GIS technology was proposed.The reach of of the Yellow River around Lanzhou hydrological station was selected to study three-dimensional modeling.The elevation data of river was processed through three-dimensional model constructing,water surface modeling and three-dimensional animation demonstration by using ArcGIS Pro software.Based on the historical highest flood level data of the test reach on September 15,1981,the real scene restoration was carried out based on the three-dimensional model,and the hydrological factors such as water depth and channel storage were analyzed.The three-dimensional modeling based on GIS technology can directly and realistically reflect the changes of topography and water surface of the test reach,and improve the application of hydrologic test results in flood control. 展开更多
关键词 three-dimensional modeling Hydrologic test ARCGIS Lanzhou hydrological station
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部