期刊文献+
共找到8,539篇文章
< 1 2 250 >
每页显示 20 50 100
Three-dimensional reconstruction of industrial parts from a single image 被引量:1
1
作者 Zhenxing Xu Aizeng Wang +1 位作者 Fei Hou Gang Zhao 《Visual Computing for Industry,Biomedicine,and Art》 2024年第1期340-351,共12页
This study proposes an image-based three-dimensional(3D)vector reconstruction of industrial parts that can gener-ate non-uniform rational B-splines(NURBS)surfaces with high fidelity and flexibility.The contributions o... This study proposes an image-based three-dimensional(3D)vector reconstruction of industrial parts that can gener-ate non-uniform rational B-splines(NURBS)surfaces with high fidelity and flexibility.The contributions of this study include three parts:first,a dataset of two-dimensional images is constructed for typical industrial parts,including hex-agonal head bolts,cylindrical gears,shoulder rings,hexagonal nuts,and cylindrical roller bearings;second,a deep learning algorithm is developed for parameter extraction of 3D industrial parts,which can determine the final 3D parameters and pose information of the reconstructed model using two new nets,CAD-ClassNet and CAD-ReconNet;and finally,a 3D vector shape reconstruction of mechanical parts is presented to generate NURBS from the obtained shape parameters.The final reconstructed models show that the proposed approach is highly accurate,efficient,and practical. 展开更多
关键词 three-dimensional reconstruction Non-uniform rational B-splines Industrial parts Deep learning
在线阅读 下载PDF
Image Super-Resolution Reconstruction Model Based on SRGAN
2
作者 LU Xin-ya CHEN Jia-yi +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第5期21-28,共8页
Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual... Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual perception,significantly increasing the utility of low-resolution images.In this study,an improved image superresolution reconstruction model based on Generative Adversarial Networks(SRGAN)was proposed.This model introduced a channel and spatial attention mechanism(CSAB)in the generator,allowing it to effectively leverage the information from the input image to enhance feature representations and capture important details.The discriminator was designed with an improved PatchGAN architecture,which more accurately captured local details and texture information of the image.With these enhanced generator and discriminator architectures and an optimized loss function design,this method demonstrated superior performance in image quality assessment metrics.Experimental results showed that this model outperforms traditional methods,presenting more detailed and realistic image details in the visual effects. 展开更多
关键词 image super-resolution reconstruction Generative Adversarial Networks CSAB PatchGAN architecture
在线阅读 下载PDF
Frequency-Quantized Variational Autoencoder Based on 2D-FFT for Enhanced Image Reconstruction and Generation
3
作者 Jianxin Feng Xiaoyao Liu 《Computers, Materials & Continua》 2025年第5期2087-2107,共21页
As a form of discrete representation learning,Vector Quantized Variational Autoencoders(VQ-VAE)have increasingly been applied to generative and multimodal tasks due to their ease of embedding and representative capaci... As a form of discrete representation learning,Vector Quantized Variational Autoencoders(VQ-VAE)have increasingly been applied to generative and multimodal tasks due to their ease of embedding and representative capacity.However,existing VQ-VAEs often perform quantization in the spatial domain,ignoring global structural information and potentially suffering from codebook collapse and information coupling issues.This paper proposes a frequency quantized variational autoencoder(FQ-VAE)to address these issues.The proposed method transforms image features into linear combinations in the frequency domain using a 2D fast Fourier transform(2D-FFT)and performs adaptive quantization on these frequency components to preserve image’s global relationships.The codebook is dynamically optimized to avoid collapse and information coupling issue by considering the usage frequency and dependency of code vectors.Furthermore,we introduce a post-processing module based on graph convolutional networks to further improve reconstruction quality.Experimental results on four public datasets demonstrate that the proposed method outperforms state-of-the-art approaches in terms of Structural Similarity Index(SSIM),Learned Perceptual Image Patch Similarity(LPIPS),and Reconstruction Fréchet Inception Distance(rFID).In the experiments on the CIFAR-10 dataset,compared to the baselinemethod VQ-VAE,the proposedmethod improves the abovemetrics by 4.9%,36.4%,and 52.8%,respectively. 展开更多
关键词 VAE 2D-FFT image reconstruction image generation
在线阅读 下载PDF
Three-dimensional reconstruction under computed tomography and myopectineal orifice measurement under laparoscopy for quality control of inguinal hernia treatment
4
作者 Lei Zhang Jing Chen +7 位作者 Yu-Ying Zhang Lei Liu Han-Dan Wang Ya-Fei Zhang Jun Sheng Qiu-Shi Hu Ming-Liang Liu Yi-Lin Yuan 《World Journal of Gastrointestinal Endoscopy》 2025年第3期50-59,共10页
BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are ne... BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size. 展开更多
关键词 HERNIA INGUINAL Myopectineal orifice three-dimensional reconstruction Computed tomography Inguinal hernia
暂未订购
Safety and efficacy of three-dimensional reconstruction technologyassisted percutaneous transhepatic biliary drainage:A metaanalysis
5
作者 Ze-Hui Chen Li-Juan Zhang +4 位作者 Zhi-Xin Lin Shu-Xiang Lin Zheng-Fu Song Ze-Jian Wu Wei Lin 《World Journal of Gastrointestinal Surgery》 2025年第9期367-380,共14页
BACKGROUND Percutaneous transhepatic biliary drainage(PTBD)is one of the primary clinical treatment options for patients with obstructive jaundice.In recent years,PTBD assisted by three-dimensional(3D)reconstruction t... BACKGROUND Percutaneous transhepatic biliary drainage(PTBD)is one of the primary clinical treatment options for patients with obstructive jaundice.In recent years,PTBD assisted by three-dimensional(3D)reconstruction technology has been widely implemented,but its advantages over traditional methods remains inconclusive.Thus,a discussion is warranted.AIM To explore the safety and efficacy of 3D reconstruction technology-assisted PTBD.METHODS We systematically searched the databases including the Cochrane Library,PubMed,EMBASE,Web of Science and China National Knowledge Infrastructure.The search period extended from the establishment of each database to November,2024.We screened the literature according to predefined inclusion and exclusion criteria,assessed the quality of the studies,and extracted data.Meta-analysis was performed using Revman 5.4.1 software.RESULTS A total of 15 studies were included,involving 1434 patients.The results of the meta-analysis showed that compared with the traditional group,the overall post-operative complications rate in the 3D reconstruction technology group was significantly lower[odds ratio=0.25;95%confidence interval(CI):0.17-0.36,P<0.00001].The overall puncture success rate in the 3D reconstruction group was better than those in the traditional group(odds ratio=3.61;95%CI:1.98-6.55,P<0.0001).However,there was no significant difference between the two groups in the reduction levels of postoperative total bilirubin(mean difference=-1.38;95%CI:-3.29 to 0.53,P=0.16).Subgroup analysis were conducted on the surgery time according to guidance stages of the 3D reconstruction,3D reconstruction imaging modalities,and types of studies.The results were stable,with no significant changes observed.CONCLUSION 3D reconstruction technology significantly improves the puncture success rate and safety of PTBD.However,it has no significant advantage in bile drainage effectiveness.Continued research is warranted to further explore its clinical value and optimize its application. 展开更多
关键词 three-dimensional reconstruction technology Percutaneous transhepatic biliary drainage Obstructive jaundice COMPLICATIONS Liver function
暂未订购
Hyperspectral Image Reconstruction for Interferometric Spectral Imaging System with Degradation Synthesis
6
作者 Yuansheng Li Xiangpeng Feng +2 位作者 Siyuan Li Geng Zhang Ying Fu 《Journal of Beijing Institute of Technology》 2025年第1期42-56,共15页
Among hyperspectral imaging technologies, interferometric spectral imaging is widely used in remote sening due to advantages of large luminous flux and high resolution. However, with complicated mechanism, interferome... Among hyperspectral imaging technologies, interferometric spectral imaging is widely used in remote sening due to advantages of large luminous flux and high resolution. However, with complicated mechanism, interferometric imaging faces the impact of multi-stage degradation. Most exsiting interferometric spectrum reconstruction methods are based on tradition model-based framework with multiple steps, showing poor efficiency and restricted performance. Thus, we propose an interferometric spectrum reconstruction method based on degradation synthesis and deep learning.Firstly, based on imaging mechanism, we proposed an mathematical model of interferometric imaging to analyse the degradation components as noises and trends during imaging. The model consists of three stages, namely instrument degradation, sensing degradation, and signal-independent degradation process. Then, we designed calibration-based method to estimate parameters in the model, of which the results are used for synthesizing realistic dataset for learning-based algorithms.In addition, we proposed a dual-stage interferogram spectrum reconstruction framework, which supports pre-training and integration of denoising DNNs. Experiments exhibits the reliability of our degradation model and synthesized data, and the effectiveness of the proposed reconstruction method. 展开更多
关键词 hyperspectral imaging degradation modeling data synthesis spectral reconstruction
在线阅读 下载PDF
Neural-field-based image reconstruction for bioluminescence tomography
7
作者 Xuanxuan Zhang Xu Cao +2 位作者 Jiulou Zhang Lin Zhang Guanglei Zhang 《Journal of Innovative Optical Health Sciences》 2025年第1期165-179,共15页
Deep learning(DL)-based image reconstruction methods have garnered increasing interest in the last few years.Numerous studies demonstrate that DL-based reconstruction methods function admirably in optical tomographic ... Deep learning(DL)-based image reconstruction methods have garnered increasing interest in the last few years.Numerous studies demonstrate that DL-based reconstruction methods function admirably in optical tomographic imaging techniques,such as bioluminescence tomography(BLT).Nevertheless,nearly every existing DL-based method utilizes an explicit neural representation for the reconstruction problem,which either consumes much memory space or requires various complicated computations.In this paper,we present a neural field(NF)-based image reconstruction scheme for BLT that uses an implicit neural representation.The proposed NFbased method establishes a transformation between the coordinate of an arbitrary spatial point and the source value of the point with a relatively light-weight multilayer perceptron,which has remarkable computational efficiency.Another simple neural network composed of two fully connected layers and a 1D convolutional layer is used to generate the neural features.Results of simulations and experiments show that the proposed NF-based method has similar performance to the photon density complement network and the two-stage network,while consuming fewer floating point operations with fewer model parameters. 展开更多
关键词 Bioluminescence tomography image reconstruction neural field
原文传递
Revolutionizing hepatobiliary surgery:Impact of three-dimensional imaging and virtual surgical planning on precision,complications,and patient outcomes
8
作者 Himanshu Agrawal Himanshu Tanwar Nikhil Gupta 《Artificial Intelligence in Gastroenterology》 2025年第1期39-51,共13页
BACKGROUND Hepatobiliary surgery is complex and requires a thorough understanding of the liver’s anatomy,biliary system,and vasculature.Traditional imaging methods such as computed tomography(CT)and magnetic resonanc... BACKGROUND Hepatobiliary surgery is complex and requires a thorough understanding of the liver’s anatomy,biliary system,and vasculature.Traditional imaging methods such as computed tomography(CT)and magnetic resonance imaging(MRI),although helpful,fail to provide three-dimensional(3D)relationships of these structures,which are critical for planning and executing complicated surgeries.AIM To explore the use of 3D imaging and virtual surgical planning(VSP)technologies to improve surgical accuracy,reduce complications,and enhance patient recovery in hepatobiliary surgeries.METHODS A comprehensive review of studies published between 2017 and 2024 was conducted through PubMed,Scopus,Google Scholar,and Web of Science.Studies selected focused on 3D imaging and VSP applications in hepatobiliary surgery,assessing surgical precision,complications,and patient outcomes.Thirty studies,including randomized controlled trials,cohort studies,and case reports,were included in the final analysis.RESULTS Various 3D imaging modalities,including multidetector CT,MRI,and 3D rotational angiography,provide high-resolution views of the liver’s vascular and biliary anatomy.VSP allows surgeons to simulate complex surgeries,improving preoperative planning and reducing complications like bleeding and bile leaks.Several studies have demonstrated improved surgical precision,reduced complications,and faster recovery times when 3D imaging and VSP were used in complex surgeries.CONCLUSION 3D imaging and VSP technologies significantly enhance the accuracy and outcomes of hepatobiliary surgeries by providing individualized preoperative planning.While promising,further research,particularly randomized controlled trials,is needed to standardize protocols and evaluate long-term efficacy. 展开更多
关键词 three-dimensional imaging Virtual surgical planning Hepatobiliary surgery Surgical precision Preoperative planning
暂未订购
Reducing Both Radiation Dose and Iodine Intake in 80 kVp Head and Neck CT Angiography Using Deep Learning Image Reconstruction Combined with Contrast-Enhancement-boost Technology:A Comparison with 100 kVp Imaging Using Hybrid Iterative Reconstruction
9
作者 WANG Yun ZHANG Xinyue +5 位作者 TONG Jiajing CHEN Yu XU Min WANG Jian ZHANG Zhuhua JIN Zhengyu 《CT理论与应用研究(中英文)》 2025年第6期1082-1091,共10页
Purpose:To assess the clinical efficacy of integrating deep learning reconstruction(DLR)with contrast-enhancement-boost(CE-boost)in 80 kVp head and neck CT angiography(CTA)using substantially lowered radiation and con... Purpose:To assess the clinical efficacy of integrating deep learning reconstruction(DLR)with contrast-enhancement-boost(CE-boost)in 80 kVp head and neck CT angiography(CTA)using substantially lowered radiation and contrast medium(CM)doses,compared to the standard 100 kVp protocol using hybrid iterative reconstruction(HIR).Methods:Sixty-six patients were prospectively enrolled and randomly assigned to one of two groups:the low-dose group(n=33),receiving 80 kVp and 28 mL contrast medium(CM)with a noise index(NI)of 15;and the regular-dose group(n=33),receiving 100 kVp and 40 mL CM with an NI of 10.For the lowdose group,images underwent reconstruction using both hybrid iterative reconstruction(HIR)and deep learning reconstruction(DLR)at mild-,standard-,and strong-strength levels,both before and after combination with contrast enhancement-boost(CE-boost).This generated eight distinct datasets:L-HIR,L-DLR_(mild),L-DLR_(standard),L-DLR_(strong),L-HIR-CE,L-DLR_(mild)-CE,L-DLR_(standard)-CE,and L-DLR_(strong)-CE.Images for the regular-dose group were reconstructed solely with HIR(R-HIR).Quantitative analysis involved calculating and comparing CT attenuation,image noise,signal-to-noise ratio(SNR),and contrast-to-noise ratio(CNR)within six key vessels:the aortic arch(AA),internal carotid artery(ICA),external carotid artery(ECA),vertebral arteries(VA),basilar artery(BA),and middle cerebral artery(MCA).Two radiologists independently assessed subjective image quality using a 5-point scale,with statistical significance defined as P<0.05.Results:Compared to the regular-dose group,the low-dose protocol achieved a substantial reduction in contrast media volume(28 mL versus 40 mL,a 30%decrease)and radiation exposure((0.41±0.08)mSv versus(1.18±0.12)mSv,a 65%reduction).Both L-DLR_(standard) and L-DLR_(strong) delivered comparable or superior SNR and CNR across all vascular segments relative to R-HIR.However,subjective image quality scores for L-DLR at all strength levels fell below those for R-HIR(all P<0.05 for both readers).Combining CE-boost with the low-dose protocol significantly enhanced the objective image performance of L-DLR_(strong)-CE(all P<0.05)and produced subjective image scores comparable to R-HIR(reader 1:P=0.15;reader 2:P=0.06).Conclusion:When compared to the standard 100 kVp head and neck CTA,the combination of the DLR and CE-boost techniques at 80 kVp can achieve a 30%reduction in contrast dose and a 65%reduction in radiation dose,while maintaining both objective and subjective image quality. 展开更多
关键词 computed tomography angiography radiation dosage deep learning reconstruction image quality
原文传递
Hyperspectral imagery quality assessment and band reconstruction using the prophet model
10
作者 Ping Ma Jinchang Ren +2 位作者 Zhi Gao Yinhe Li Rongjun Chen 《CAAI Transactions on Intelligence Technology》 2025年第1期47-61,共15页
In Hyperspectral Imaging(HSI),the detrimental influence of noise and distortions on data quality is profound,which has severely affected the following-on analytics and decisionmaking such as land mapping.This study pr... In Hyperspectral Imaging(HSI),the detrimental influence of noise and distortions on data quality is profound,which has severely affected the following-on analytics and decisionmaking such as land mapping.This study presents an innovative framework for assessing HSI band quality and reconstructing the low-quality bands,based on the Prophet model.By introducing a comprehensive quality metric to start,the authors approach factors in both spatial and spectral characteristics across local and global scales.This metric effectively captures the intricate noise and distortions inherent in the HSI data.Subsequently,the authors employ the Prophet model to forecast information within the low-quality bands,leveraging insights from neighbouring high-quality bands.To validate the effectiveness of the authors’proposed model,extensive experiments on three publicly available uncorrected datasets are conducted.In a head-to-head comparison,the framework against six state-ofthe-art band reconstruction algorithms including three spectral methods,two spatialspectral methods and one deep learning method is benchmarked.The authors’experiments also delve into strategies for band selection based on quality metrics and the quality evaluation of the reconstructed bands.In addition,the authors assess the classification accuracy utilising these reconstructed bands.In various experiments,the results consistently affirm the efficacy of the authors’method in HSI quality assessment and band reconstruction.Notably,the authors’approach obviates the need for manually prefiltering of noisy bands.This comprehensive framework holds promise in addressing HSI data quality concerns whilst enhancing the overall utility of HSI. 展开更多
关键词 band reconstruction band quality hyperspectral image(HSI) prophet model
在线阅读 下载PDF
3D Model Reconstruction of Aluminum Foam Cross-Sectional Sequence Images Based on Milling
11
作者 Xu Feng Zhiguo Dong +1 位作者 Bo Li Hui Peng 《Journal of Beijing Institute of Technology》 2025年第5期458-481,共24页
This study introduces a novel method for reconstructing the 3D model of aluminum foam using cross-sectional sequence images.Combining precision milling and image acquisition,high-qual-ity cross-sectional images are ob... This study introduces a novel method for reconstructing the 3D model of aluminum foam using cross-sectional sequence images.Combining precision milling and image acquisition,high-qual-ity cross-sectional images are obtained.Pore structures are segmented by the U-shaped network(U-Net)neural network integrated with the Canny edge detection operator,ensuring accurate pore delineation and edge extraction.The trained U-Net achieves 98.55%accuracy.The 2D data are superimposed and processed into 3D point clouds,enabling reconstruction of the pore structure and aluminum skeleton.Analysis of pore 01 shows the cross-sectional area initially increases,and then decreases with milling depth,with a uniform point distribution of 40 per layer.The reconstructed model exhibits a porosity of 77.5%,with section overlap rates between the 2D pore segmentation and the reconstructed model exceeding 96%,confirming high fidelity.Equivalent sphere diameters decrease with size,averaging 1.95 mm.Compression simulations reveal that the stress-strain curve of the 3D reconstruction model of aluminum foam exhibits fluctuations,and the stresses in the reconstruction model concentrate on thin cell walls,leading to localized deformations.This method accurately restores the aluminum foam’s complex internal structure,improving reconstruction preci-sion and simulation reliability.The approach offers a cost-efficient,high-precision technique for optimizing material performance in engineering applications. 展开更多
关键词 aluminum foam section milling cross-sectional sequence images U-Net neural network 3D model reconstruction compression simulation
在线阅读 下载PDF
Semantic segmentation of camouflage objects via fusing reconstructed multispectral and RGB images
12
作者 Feng Huang Gonghan Yang +5 位作者 Jing Chen Yixuan Xu Jingze Su Guimin Huang Shu Wang Wenxi Liu 《Defence Technology(防务技术)》 2025年第8期324-337,共14页
Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging du... Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing. 展开更多
关键词 Camouflage object detection reconstructed multispectral image(MSI) Unmanned aerial vehicle(UAV) Semantic segmentation Remote sensing
在线阅读 下载PDF
Training image analysis for three-dimensional reconstruction of porous media
13
作者 滕奇志 杨丹 +2 位作者 徐智 李征骥 何小海 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期415-421,共7页
In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is prop... In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics. 展开更多
关键词 three-dimensional reconstruction training image stationarity porous media multiple-point statistics
在线阅读 下载PDF
Three-dimensional positions of scattering centers reconstruction from multiple SAR images based on radargrammetry 被引量:3
14
作者 钟金荣 文贡坚 +1 位作者 回丙伟 李德仁 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1776-1789,共14页
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of... A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method. 展开更多
关键词 multiple synthetic aperture radar(SAR) images three-dimensional scattering center position reconstruction radargrammetry
在线阅读 下载PDF
A novel technique of three-dimensional reconstruction segmentation and analysis for sliced images of biological tissues 被引量:3
15
作者 李晶 赵海燕 +4 位作者 阮兴云 徐永清 孟伟正 李鲲鹏 张景强 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2005年第12期1210-1212,共3页
A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron micr... A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron microscope slices by Fou-rier-Bessel synthesis and electron tomography (ET), and a series of computed tomography (CT) was developed to perform si-multaneous measurement on the structure and function of biomedical samples. The paper presents the 3D reconstruction seg-mentation display and analysis results of pollen spore, chaperonin, virus, head, cervical bone, tibia and carpus. At the same time, it also puts forward some potential applications of the new technique in the biomedical realm. 展开更多
关键词 Sliced images 3D reconstruction and analysis 3D segmentation CHAPERONIN VIRUS
在线阅读 下载PDF
Three-Dimensional Model Reconstruction of Nonwovens from Multi-Focus Images 被引量:2
16
作者 DONG Gaige WANG Rongwu +1 位作者 LI Chengzu YOU Xiangyin 《Journal of Donghua University(English Edition)》 CAS 2022年第3期185-192,共8页
The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based... The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently. 展开更多
关键词 three-dimensional(3D)model reconstruction deep learning MICROSCOPY NONWOVEN image processing
在线阅读 下载PDF
Research and Realization of Medical Image Fusion Based on Three-Dimensional Reconstruction 被引量:5
17
作者 TAO Ling QIAN Zhi-yu CHEN Chun-xiao 《Chinese Journal of Biomedical Engineering(English Edition)》 2007年第3期117-122,共6页
A new medical image fusion technique is presented.The method is based on three-dimensional reconstruction.After reconstruction,the three-dimensional volume data is normalized by three-dimensional coordinate conversion... A new medical image fusion technique is presented.The method is based on three-dimensional reconstruction.After reconstruction,the three-dimensional volume data is normalized by three-dimensional coordinate conversion in the same way and intercepted through setting up cutting plane including anatomical structure,as a result two images in entire registration on space and geometry are obtained and the images are fused at last.Compared with traditional two-dimensional fusion technique,three-dimensional fusion technique can not only resolve the different problems existed in the two kinds of images,but also avoid the registration error of the two kinds of images when they have different scan and imaging parameter.The research proves this fusion technique is more exact and has no registration,so it is more adapt to arbitrary medical image fusion with different equipments. 展开更多
关键词 medical image volume data three-dimensional reconstruction image cutting image fusion
在线阅读 下载PDF
Survey of methods and principles in three-dimensional reconstruction from two-dimensional medical images
18
作者 Mriganka Sarmah Arambam Neelima Heisnam Rohen Singh 《Visual Computing for Industry,Biomedicine,and Art》 EI 2023年第1期199-217,共19页
Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new p... Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new paradigm.However,development of fast and accurate 3D models from medical images or a set of medical scans remains a daunting task due to the number of pre-processing steps involved,most of which are dependent on human expertise.In this review,a survey of pre-processing steps was conducted,and reconstruction techniques for several organs in medical diagnosis were studied.Various methods and principles related to 3D reconstruction were highlighted.The usefulness of 3D reconstruction of organs in medical diagnosis was also highlighted. 展开更多
关键词 three-dimensional reconstruction Human organ Medical images
在线阅读 下载PDF
Image processing based three-dimensional model reconstruction for cross-platform numerical simulation
19
作者 Yu-cheng Sun Yu-hang Huang +5 位作者 Na Li Xiao Han Ai-long Jiang Jin-wu Kang Ji-wu Wang Hai-liang Yu 《China Foundry》 SCIE CAS CSCD 2023年第2期139-147,共9页
Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different ... Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study. 展开更多
关键词 cross-platform numerical simulation 3D model reconstruction image processing SLICE
在线阅读 下载PDF
FITTING CORRECTION METHOD OF RING ARTIFACTS FOR RECONSTRUCTING CONE-BEAM CT IMAGES 被引量:1
20
作者 罗守华 吴婧 +1 位作者 张波 陈功 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第1期34-38,共5页
In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often distur... In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images 展开更多
关键词 image processing image reconstruction flat-panel detector fitting correction method
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部