Currently, for some complex plastic deformations, the analytical solution can not be obtained by using Mises yield criterion, because Mises yield criterion is nine dimensions, the velocity field is complex, and the so...Currently, for some complex plastic deformations, the analytical solution can not be obtained by using Mises yield criterion, because Mises yield criterion is nine dimensions, the velocity field is complex, and the solving methods are not innovative. Corresponding solutions of these problems are that yield criterion is linearized to reduce the variable numbers, and the velocity field and the solving methods are reasonably simplified, respectively. In this paper, a new linear yield criterion--mean yield(MY) criterion and inner-product of strain rate vector are used to analytically solve 3D forging taking into account bugling of sides. The velocity field is expressed as a vector in three dimensions, and rotation and divergence are applied to confirm that the velocity field is kinematically admissible. Then, the corresponding strain rate tensor of the velocity field is transformed into principal one by making the determinant of coefficients of the tensor cubic equation be zero. By using MY criterion, the plastic power is term by term integrated and summed according to inner-product of strain rate vector. An upper bound analytical solution is obtained for the forging, and verified by a pure lead press test. The test result turns out that the total pressure calculated by MY criterion is higher by 2.5%-15% than measuring value. In addition, a measuring formula of bulging parameter (a) is proposed, but the values of a measured by the formula are lower than those optimized by the golden section search. The total pressure calculated by MY criterion is compared with the ones by twin shear, Trasca yield, and Mises yield criterion. The comparing result shows that the total pressure calculated by MY criterion is slightly higher than the mean value of that by twin shear and Trasca yield criterion, and lower than that by Mises yield criterion, but more close to that by Mises yield criterion compared with that by other two. The proposed analytical solving methods can be effectively used to other complex plastic deformation, simplifying the solving process and obtaining the reasonable results.展开更多
A kinematically admissible continuous velocity field was proposed for the analysis of three-dimensional forging.The linear yield criterion expressed by geometric midline of error triangle between Tresca and Twin shear...A kinematically admissible continuous velocity field was proposed for the analysis of three-dimensional forging.The linear yield criterion expressed by geometric midline of error triangle between Tresca and Twin shear stress yield loci on the π-plane,called GM yield criterion for short,was firstly applied to analysis of the velocity field for the forging.The analytical solution of the forging force with the effects of external zone and bulging parameter is obtained by strain rate inner product.Compression tests of pure lead are performed to compare the calculated results with the measured ones.The results show that the calculated total pressures are higher than the measured ones whilst the relative error is no more than 9.5%.It is implied that the velocity field is reasonable and the geometric midline yield criterion is available.The solution is still an upper-bound one.展开更多
The microstructure models were integrated into finite element(FE)code,and a three-dimensional(3D)FE analysis on the entire hot forging processes of 300 M steel large components was performed to predict the distrib...The microstructure models were integrated into finite element(FE)code,and a three-dimensional(3D)FE analysis on the entire hot forging processes of 300 M steel large components was performed to predict the distributions of effective strain,temperature field and austenite grain size.The simulated results show that the finest grains distribute in the maximum effective strain region because large strain induces the occurrence of dynamic recrystallization.However,coarse macro-grains appear in the minimum effective strain region.Then,300 M steel forging test was performed to validate the results of FE simulation,and microstructure observations and quantitative analysis were implemented.The average relative difference between the calculated and experimental austenite grain size is 7.56%,implying that the present microstructure models are reasonable and can be used to analyze the hot forging processes of 300 M steel.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ...Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.展开更多
The differences in damage values,residual stresses,microstructure and mechanical properties of Ti–6Al–4V alloy under hammer forging and press forging were explored through physical experiments and numerical simulati...The differences in damage values,residual stresses,microstructure and mechanical properties of Ti–6Al–4V alloy under hammer forging and press forging were explored through physical experiments and numerical simulations.The results showed that the temperature field and equivalent strain field of forgings under the hammer forging process were more uniformly distributed,resulting in smaller surface cracks and better residual stress distribution.The impact dynamic loading of hammer forging leads to forgings with higher dislocation densities,while the stabilized strain rate of press forging results in forgings exhibiting finer grain sizes.In this context,the yield strength enhancement of forgings by both processes was nearly identical,while the forgings demonstrated more excellent elongation under the hammer forging process.Additionally,increasing the number of blows in the hammer forging process or enhancing the loading rate in the press forging process can optimize the residual stress distribution of the forgings while simultaneously promoting dislocation multiplication and grain refinement.展开更多
The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated cata...The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.展开更多
Magnesium alloy thin-walled cylindrical components with the advantages of high specific stiffness and strength present broad prospect for the lightweight of aerospace components.However,poor formability resulting from...Magnesium alloy thin-walled cylindrical components with the advantages of high specific stiffness and strength present broad prospect for the lightweight of aerospace components.However,poor formability resulting from the hexagonal close-packed crystal structure in magnesium alloy puts forwards a great challenge for thin-walled cylindrical components fabrication,especially for extreme structure with the thicknesschanging web and the high thin-wall.In this research,an ZK61 magnesium alloy thin-walled cylindrical component was successfully fabricated by two-step forging,i.e.,the pre-forging and final-forging is mainly used for wed and thin-wall formation,respectively.Microstructure and mechanical properties at the core,middle and margin of the web and the thin-wall of the pre-forged and final-forged components are studied in detail.Due to the large strain-effectiveness and metal flow along the radial direction(RD),the grains of the web are all elongated along RD for the pre-forged component,where an increasingly elongated trend is found from the core to the margin of the wed.A relatively low recrystallized degree occurs during pre-forging,and the web at different positions are all with prismatic and pyramid textures.During finalforging,the microstructures of the web and the thin-wall are almost equiaxed due to the remarkable occurrence of dynamic recrystallization.Similarity,except for few basal texture of the thin-wall,only prismatic and pyramid textures are found for the final-forged component.Compared with the initial billet,an obviously improved mechanical isotropy is achieved during pre-forging,which is well-maintained during final-forging.展开更多
Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study...Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study,a machine-learning-assisted method for di-gital modeling of the forging force and autonomous control in response to forging parameter disturbances was proposed.First,finite ele-ment simulations of the forging processes were conducted under varying friction factors,die temperatures,billet temperatures,and for-ging velocities,and the sample data,including process parameters and forging force under different forging strokes,were gathered.Pre-diction models for the forging force were established using the support vector regression algorithm.The prediction error of F_(f),that is,the forging force required to fill the die cavity fully,was as low as 4.1%.To further improve the prediction accuracy of the model for the ac-tual F_(f),two rounds of iterative forging experiments were conducted using the Bayesian optimization algorithm,and the prediction error of F_(f) in the forging experiments was reduced from 6.0%to 1.5%.Finally,the prediction model of F_(f) combined with a genetic algorithm was used to establish an autonomous optimization strategy for the forging velocity at each stage of the forging stroke,when the billet and die temperatures were disturbed,which realized the autonomous control in response to disturbances.In cases of−20 or−40℃ reductions in the die and billet temperatures,forging experiments conducted with the autonomous optimization strategy maintained the measured F_(f) around the target value of 180 t,with the relative error ranging from−1.3%to+3.1%.This work provides a reference for the study of di-gital modeling and autonomous optimization control of quality factors in the forging process.展开更多
The mechanical properties,microstructure and second phase precipitation behavior of flange forgings for high-pressure hydrogen storage vessels at different tempering temperatures(620–700℃)were studied.The results sh...The mechanical properties,microstructure and second phase precipitation behavior of flange forgings for high-pressure hydrogen storage vessels at different tempering temperatures(620–700℃)were studied.The results showed that when tempered at 620–680°C,the main microstructure of the test steel was tempered sorbite,and the main microstructure of tempered steel changed to martensite at 700℃.At 700℃,the dislocation density increased and some retained austenite existed.With the tempering temperature increasing,the yield strength showed a decreasing trend,the formation of fresh martensite made the tensile strength first decrease and then increase slightly,the impact energy at−40℃increased first and then decreased,and the impact energy at 660℃had the maximum value.The precipitates of MC type were mainly(Mo,V,Ti)C.The test steel had excellent strength and toughness matching at 660℃tempering,the tensile strength at different cross section locations was above 750 MPa,the impact energy was above 200 J at−40℃,and the relative percentage reduction of area(ZH2/ZN2)was above 75%at hydrogen environment of 6.3 MPa.展开更多
This study systematically investigated the microstructure,mechanical properties,and corrosion behavior of an extruded Zn-0.2Mg alloy processed by multi-directional forging(MDF)at 100℃.The mean grain size was remarkab...This study systematically investigated the microstructure,mechanical properties,and corrosion behavior of an extruded Zn-0.2Mg alloy processed by multi-directional forging(MDF)at 100℃.The mean grain size was remarkably decreased from 17.2±0.5µm to 1.9±0.3µm,and 84.4%of the microstructure was occupied by grains of below 1µm in size after applying three MDF passes.Electron backscattered difraction examinations revealed that continuous dynamic recrystallization,progressive lattice rotation,and particle-stimulated nucleation mechanisms were recognized as contributing to microstructural evolution.Furthermore,transmission electron microscopy results showed that nanoparticles of Mg/Zn dynamically formed under high strain MDF,while the initial extrusion fber texture was altered to be<0001>parallel to the fnal forging axis.A synergistic efect of grain refnement,texture evolution,second-phase precipitates,and dislocation strengthening resulted in an increased ultimate tensile strength of 232±5 MPa after three MDF passes.However,this was accompanied by a reduction in the elongation(8±2.1%).Additionally,a high corrosion rate of 0.59 mm/year was measured for the experimental alloy fabricated by 3 MDF passes.In agreement with the latter,electrochemical impedance spectroscopy results indicated that the grain refnement improved the passivation kinetics of the oxide layer.展开更多
This study investigates the differences in microstructural control between cryogenic forging combined with pre-deformation(PCF)and traditional thermal forging(TTF)for 7050 aluminum forgings intended for aerospace appl...This study investigates the differences in microstructural control between cryogenic forging combined with pre-deformation(PCF)and traditional thermal forging(TTF)for 7050 aluminum forgings intended for aerospace applications.The PCF process,utilizing cryogenic deformation,significantly refines the coarse grains at the surface of the forgings,resulting in a finer and more uniform microstructure,thereby effectively addressing the issue of surface coarse grains associated with traditional methods.The findings indicate that the PCF process can accumulate higher stored energy,facilitating static recrystallization(SRX)during subsequent heat treatment and enhancing the microstructural uniformity.Utilizing various analytical techniques,including optical microscopy(OM),electron backscatter diffraction(EBSD),and transmission electron microscopy(TEM).This study reveals the superiority of the PCF process in terms of strain accumulation,dislocation density,and grain refinement.In conclusion,this method offers advantages in enhancing the performance and microstructural uniformity of 7050 aluminum forgings,presenting new opportunities for applications in the aluminum forging industry.展开更多
In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring t...In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.展开更多
BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major...BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.展开更多
Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of t...Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.展开更多
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr...The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With ...Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.展开更多
To explore ambient strengthening and high temperature ductility,a combined forming approach of multidirectional forging and asymmetric rolling was proposed.A novel multicomponent ultralight Mg-3.11Li-2.31Al-1.95Sn-0.9...To explore ambient strengthening and high temperature ductility,a combined forming approach of multidirectional forging and asymmetric rolling was proposed.A novel multicomponent ultralight Mg-3.11Li-2.31Al-1.95Sn-0.94Y-0.45Er alloy was fabricated.The microstructural evolution and mechanical properties were investigated by microstructural characterization and tensile test.The combined forming results in remarkable grain refinement.The ultimate tensile strength and elongation of(255±7)MPa and 24.9%,respectively,were obtained at room temperature.The contribution of various strengthening mechanisms of the rolled alloy was obtained.Microstructural examination revealed the occurrence of dynamic recrystallization at 473-573 K and dynamic grain growth at 573-623 K.The maximum elongation of 293.9%was demonstrated at 623 K and 5×10^(-4)s^(-1).The dominate deformation mechanism at elevated temperatures is dislocation viscous glide.展开更多
Today,I want to share how international standards can forge trust and fuel innovation,laying the foundation for a future where AI benefits everyone,everywhere.First,AI standards,developed jointly by ISO and IEC-the In...Today,I want to share how international standards can forge trust and fuel innovation,laying the foundation for a future where AI benefits everyone,everywhere.First,AI standards,developed jointly by ISO and IEC-the International Electrotechnical Commission-help build global trust and enable responsible innovation by bringing clarity and coherence to an ever-changing AI landscape.As developments in AI continue to emerge at speed,regulation is struggling to keep up and the proliferation of competing standards has created confusion rather than clarity.ISO and our partner IEC are addressing this challenge through the work of our expert committee on AI,SC 42,which takes a holistic,cohesive approach to AI standardization.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50474015)State Key Laboratory of Rolling and Automation(RAL) Self-determination Science Foundation of UK (Grant No. RAL_SD_2008_2)
文摘Currently, for some complex plastic deformations, the analytical solution can not be obtained by using Mises yield criterion, because Mises yield criterion is nine dimensions, the velocity field is complex, and the solving methods are not innovative. Corresponding solutions of these problems are that yield criterion is linearized to reduce the variable numbers, and the velocity field and the solving methods are reasonably simplified, respectively. In this paper, a new linear yield criterion--mean yield(MY) criterion and inner-product of strain rate vector are used to analytically solve 3D forging taking into account bugling of sides. The velocity field is expressed as a vector in three dimensions, and rotation and divergence are applied to confirm that the velocity field is kinematically admissible. Then, the corresponding strain rate tensor of the velocity field is transformed into principal one by making the determinant of coefficients of the tensor cubic equation be zero. By using MY criterion, the plastic power is term by term integrated and summed according to inner-product of strain rate vector. An upper bound analytical solution is obtained for the forging, and verified by a pure lead press test. The test result turns out that the total pressure calculated by MY criterion is higher by 2.5%-15% than measuring value. In addition, a measuring formula of bulging parameter (a) is proposed, but the values of a measured by the formula are lower than those optimized by the golden section search. The total pressure calculated by MY criterion is compared with the ones by twin shear, Trasca yield, and Mises yield criterion. The comparing result shows that the total pressure calculated by MY criterion is slightly higher than the mean value of that by twin shear and Trasca yield criterion, and lower than that by Mises yield criterion, but more close to that by Mises yield criterion compared with that by other two. The proposed analytical solving methods can be effectively used to other complex plastic deformation, simplifying the solving process and obtaining the reasonable results.
基金Project(50474015)supported by the National Natural Science Foundation of China
文摘A kinematically admissible continuous velocity field was proposed for the analysis of three-dimensional forging.The linear yield criterion expressed by geometric midline of error triangle between Tresca and Twin shear stress yield loci on the π-plane,called GM yield criterion for short,was firstly applied to analysis of the velocity field for the forging.The analytical solution of the forging force with the effects of external zone and bulging parameter is obtained by strain rate inner product.Compression tests of pure lead are performed to compare the calculated results with the measured ones.The results show that the calculated total pressures are higher than the measured ones whilst the relative error is no more than 9.5%.It is implied that the velocity field is reasonable and the geometric midline yield criterion is available.The solution is still an upper-bound one.
基金Item Sponsored by National Natural Science Foundation of China(51575446)Natural Science Basis Research Plan in Shaanxi Province of China(2016JQ5070)
文摘The microstructure models were integrated into finite element(FE)code,and a three-dimensional(3D)FE analysis on the entire hot forging processes of 300 M steel large components was performed to predict the distributions of effective strain,temperature field and austenite grain size.The simulated results show that the finest grains distribute in the maximum effective strain region because large strain induces the occurrence of dynamic recrystallization.However,coarse macro-grains appear in the minimum effective strain region.Then,300 M steel forging test was performed to validate the results of FE simulation,and microstructure observations and quantitative analysis were implemented.The average relative difference between the calculated and experimental austenite grain size is 7.56%,implying that the present microstructure models are reasonable and can be used to analyze the hot forging processes of 300 M steel.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
文摘Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.
基金supported by the National Natural Science Foundation of China(Nos.52175145 and 51775427)the Key Research and Development Projects of Shaanxi Province(Grant No.2023-YBGY-335).
文摘The differences in damage values,residual stresses,microstructure and mechanical properties of Ti–6Al–4V alloy under hammer forging and press forging were explored through physical experiments and numerical simulations.The results showed that the temperature field and equivalent strain field of forgings under the hammer forging process were more uniformly distributed,resulting in smaller surface cracks and better residual stress distribution.The impact dynamic loading of hammer forging leads to forgings with higher dislocation densities,while the stabilized strain rate of press forging results in forgings exhibiting finer grain sizes.In this context,the yield strength enhancement of forgings by both processes was nearly identical,while the forgings demonstrated more excellent elongation under the hammer forging process.Additionally,increasing the number of blows in the hammer forging process or enhancing the loading rate in the press forging process can optimize the residual stress distribution of the forgings while simultaneously promoting dislocation multiplication and grain refinement.
基金supported by Guangxi Science and Technology Major Program(No.AA23073008)Hubei Key Laboratory of Water System Science for Sponge City Construction(Wuhan University)(No.2023–05)Nanning Innovation and Entrepreneur Leading Talent Project(No.2021001).
文摘The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.
基金supported by the National Natural Science Foundation of China(No.52405408,No.U21A20131,No.U2037204,No.52422510)the Natural Science Foundation of Hubei Province(No.2023AFB116)+1 种基金the State Key Laboratory of Materials Processing and Die&Mould TechnologyHuazhong University of Science and Technology(No.P2022-005)。
文摘Magnesium alloy thin-walled cylindrical components with the advantages of high specific stiffness and strength present broad prospect for the lightweight of aerospace components.However,poor formability resulting from the hexagonal close-packed crystal structure in magnesium alloy puts forwards a great challenge for thin-walled cylindrical components fabrication,especially for extreme structure with the thicknesschanging web and the high thin-wall.In this research,an ZK61 magnesium alloy thin-walled cylindrical component was successfully fabricated by two-step forging,i.e.,the pre-forging and final-forging is mainly used for wed and thin-wall formation,respectively.Microstructure and mechanical properties at the core,middle and margin of the web and the thin-wall of the pre-forged and final-forged components are studied in detail.Due to the large strain-effectiveness and metal flow along the radial direction(RD),the grains of the web are all elongated along RD for the pre-forged component,where an increasingly elongated trend is found from the core to the margin of the wed.A relatively low recrystallized degree occurs during pre-forging,and the web at different positions are all with prismatic and pyramid textures.During finalforging,the microstructures of the web and the thin-wall are almost equiaxed due to the remarkable occurrence of dynamic recrystallization.Similarity,except for few basal texture of the thin-wall,only prismatic and pyramid textures are found for the final-forged component.Compared with the initial billet,an obviously improved mechanical isotropy is achieved during pre-forging,which is well-maintained during final-forging.
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3706901)the National Natural Science Foundation of China(No.52090041)the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC 001).
文摘Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study,a machine-learning-assisted method for di-gital modeling of the forging force and autonomous control in response to forging parameter disturbances was proposed.First,finite ele-ment simulations of the forging processes were conducted under varying friction factors,die temperatures,billet temperatures,and for-ging velocities,and the sample data,including process parameters and forging force under different forging strokes,were gathered.Pre-diction models for the forging force were established using the support vector regression algorithm.The prediction error of F_(f),that is,the forging force required to fill the die cavity fully,was as low as 4.1%.To further improve the prediction accuracy of the model for the ac-tual F_(f),two rounds of iterative forging experiments were conducted using the Bayesian optimization algorithm,and the prediction error of F_(f) in the forging experiments was reduced from 6.0%to 1.5%.Finally,the prediction model of F_(f) combined with a genetic algorithm was used to establish an autonomous optimization strategy for the forging velocity at each stage of the forging stroke,when the billet and die temperatures were disturbed,which realized the autonomous control in response to disturbances.In cases of−20 or−40℃ reductions in the die and billet temperatures,forging experiments conducted with the autonomous optimization strategy maintained the measured F_(f) around the target value of 180 t,with the relative error ranging from−1.3%to+3.1%.This work provides a reference for the study of di-gital modeling and autonomous optimization control of quality factors in the forging process.
基金supported by the National Key research and Development Program of China(No.2022YFB4003001).
文摘The mechanical properties,microstructure and second phase precipitation behavior of flange forgings for high-pressure hydrogen storage vessels at different tempering temperatures(620–700℃)were studied.The results showed that when tempered at 620–680°C,the main microstructure of the test steel was tempered sorbite,and the main microstructure of tempered steel changed to martensite at 700℃.At 700℃,the dislocation density increased and some retained austenite existed.With the tempering temperature increasing,the yield strength showed a decreasing trend,the formation of fresh martensite made the tensile strength first decrease and then increase slightly,the impact energy at−40℃increased first and then decreased,and the impact energy at 660℃had the maximum value.The precipitates of MC type were mainly(Mo,V,Ti)C.The test steel had excellent strength and toughness matching at 660℃tempering,the tensile strength at different cross section locations was above 750 MPa,the impact energy was above 200 J at−40℃,and the relative percentage reduction of area(ZH2/ZN2)was above 75%at hydrogen environment of 6.3 MPa.
文摘This study systematically investigated the microstructure,mechanical properties,and corrosion behavior of an extruded Zn-0.2Mg alloy processed by multi-directional forging(MDF)at 100℃.The mean grain size was remarkably decreased from 17.2±0.5µm to 1.9±0.3µm,and 84.4%of the microstructure was occupied by grains of below 1µm in size after applying three MDF passes.Electron backscattered difraction examinations revealed that continuous dynamic recrystallization,progressive lattice rotation,and particle-stimulated nucleation mechanisms were recognized as contributing to microstructural evolution.Furthermore,transmission electron microscopy results showed that nanoparticles of Mg/Zn dynamically formed under high strain MDF,while the initial extrusion fber texture was altered to be<0001>parallel to the fnal forging axis.A synergistic efect of grain refnement,texture evolution,second-phase precipitates,and dislocation strengthening resulted in an increased ultimate tensile strength of 232±5 MPa after three MDF passes.However,this was accompanied by a reduction in the elongation(8±2.1%).Additionally,a high corrosion rate of 0.59 mm/year was measured for the experimental alloy fabricated by 3 MDF passes.In agreement with the latter,electrochemical impedance spectroscopy results indicated that the grain refnement improved the passivation kinetics of the oxide layer.
基金Project(2021GK1040) supported by the Major Projects of Scientific and Technology Innovation of Hunan Province,ChinaProjects(52375398,52171018) supported by the National Natural Science Foundation of China+1 种基金Project(Kfkt2023-09) supported by the Open Research Fund of State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University,ChinaProject(E2021203059) supported by the Natural Science Foundation of Hebei Province,China。
文摘This study investigates the differences in microstructural control between cryogenic forging combined with pre-deformation(PCF)and traditional thermal forging(TTF)for 7050 aluminum forgings intended for aerospace applications.The PCF process,utilizing cryogenic deformation,significantly refines the coarse grains at the surface of the forgings,resulting in a finer and more uniform microstructure,thereby effectively addressing the issue of surface coarse grains associated with traditional methods.The findings indicate that the PCF process can accumulate higher stored energy,facilitating static recrystallization(SRX)during subsequent heat treatment and enhancing the microstructural uniformity.Utilizing various analytical techniques,including optical microscopy(OM),electron backscatter diffraction(EBSD),and transmission electron microscopy(TEM).This study reveals the superiority of the PCF process in terms of strain accumulation,dislocation density,and grain refinement.In conclusion,this method offers advantages in enhancing the performance and microstructural uniformity of 7050 aluminum forgings,presenting new opportunities for applications in the aluminum forging industry.
基金Sponsored by the Project of Sichuan Landscape and Recreation Research Center(JGYQ2020037).
文摘In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.
基金Supported by the Zhejiang Medical Science and Technology Project,No.2022KY1325 and No.2023KY381Public Welfare Project of Jinhua Science and Technology Plan,No.2023-4-084Major Project of Jinhua Science and Technology Plan,No.2023-3-066.
文摘BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.
基金supported by the National Natural Science Foundation of China to Jiping Huang(12035004 and 12320101004)the Innovation Program of the Shanghai Municipal Education Commission to Jiping Huang(2023ZKZD06)+2 种基金the National Natural Science Foundation of China to Ying Li(92163123 and 52250191)the Zhejiang Provincial Natural Science Foundation of China to Ying Li(LZ24A050002)the National Natural Science Foundation of China to Liujun Xu(12375040,12088101,and U2330401).
文摘Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.
基金supported by the National Science Foundation of China(Grant Nos.42374205 and 41974179)the Specialized Research Fund of the National Space Science Center,Chinese Academy of Sciences(Grant No.E4PD3010)supported by the Specialized Research Fund for State Key Laboratories.
文摘The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
文摘Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.
基金supported by the National Natural Science Foundation of China(No.51334006)。
文摘To explore ambient strengthening and high temperature ductility,a combined forming approach of multidirectional forging and asymmetric rolling was proposed.A novel multicomponent ultralight Mg-3.11Li-2.31Al-1.95Sn-0.94Y-0.45Er alloy was fabricated.The microstructural evolution and mechanical properties were investigated by microstructural characterization and tensile test.The combined forming results in remarkable grain refinement.The ultimate tensile strength and elongation of(255±7)MPa and 24.9%,respectively,were obtained at room temperature.The contribution of various strengthening mechanisms of the rolled alloy was obtained.Microstructural examination revealed the occurrence of dynamic recrystallization at 473-573 K and dynamic grain growth at 573-623 K.The maximum elongation of 293.9%was demonstrated at 623 K and 5×10^(-4)s^(-1).The dominate deformation mechanism at elevated temperatures is dislocation viscous glide.
文摘Today,I want to share how international standards can forge trust and fuel innovation,laying the foundation for a future where AI benefits everyone,everywhere.First,AI standards,developed jointly by ISO and IEC-the International Electrotechnical Commission-help build global trust and enable responsible innovation by bringing clarity and coherence to an ever-changing AI landscape.As developments in AI continue to emerge at speed,regulation is struggling to keep up and the proliferation of competing standards has created confusion rather than clarity.ISO and our partner IEC are addressing this challenge through the work of our expert committee on AI,SC 42,which takes a holistic,cohesive approach to AI standardization.