In this paper,we propose a numerical calculation model of the multigroup neutron diffusion equation in 3D hexagonal geometry using the nodal Green's function method and verified it.We obtained one-dimensional tran...In this paper,we propose a numerical calculation model of the multigroup neutron diffusion equation in 3D hexagonal geometry using the nodal Green's function method and verified it.We obtained one-dimensional transverse integrated equations using the transverse integration procedure over 3D hexagonal geometry and denoted the solutions as a nodal Green's functions under the Neumann boundary condition.By applying a quadratic polynomial expansion of the transverse-averaged quantities,we derived the net neutron current coupling equation,equation for the expansion coefficients of the transverse-averaged neutron flux,and formulas for the coefficient matrix of these equations.We formulated the closed system of equations in correspondence with the boundary conditions.The proposed model was tested by comparing it with the benchmark for the VVER-440 reactor,and the numerical results were in good agreement with the reference solutions.展开更多
In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured ...In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured data. Inspired by the classical Landweber iterative method and Fourier truncation technique, we develops a modified Landweber iterative regularization method to restore the continuous dependence of solution on the measurement data. Under the a-priori and a-posteriori choice rules for the regularized parameter, the convergence estimates for the regularization method are derived. Some results of numerical simulation are provided to verify the stability and feasibility of our method in dealing with the considered problem.展开更多
Based on the law of mass conservation, a general three-dimensional diffusion equation of suspended sediment due to waves and currents, adaptable to estuarial and coastal areas, is derived by decomposing the instantane...Based on the law of mass conservation, a general three-dimensional diffusion equation of suspended sediment due to waves and currents, adaptable to estuarial and coastal areas, is derived by decomposing the instantaneous velocities and concentrations into three-dif-ferent-time-scale components respectively. A three-dimensional suspended sediment展开更多
We use the incremental unknowns method in conjunction with the iterative methods to approximate the solution of the nonsymmetric and positive-definite linear systems generated from a multilevel discretization of three...We use the incremental unknowns method in conjunction with the iterative methods to approximate the solution of the nonsymmetric and positive-definite linear systems generated from a multilevel discretization of three-dimensional convection-diffusion equations. The condition numbers of incremental unknowns matrices associated with the convection-diffusion equations and the number of iterations needed to attain an acceptable accuracy are estimated. Numerical results are presented with two-level approximations, which demonstrate that the incremental unknowns method when combined with some iter- ative methods is very effcient.展开更多
Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many ...Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation as- suming turbulence parameterization for realistic physical scenarios. We present the general steady three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.展开更多
In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-...In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.展开更多
Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations ...Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations depend on the analogy of the governing laws of diffusion of the thermal, electrical, and magnetic energies and newly defined natures of the electric charges and magnetic flux as energy, or as electromagnetic waves, that have electric and magnetic potentials. The introduced diffusion equations of the electric charges and magnetic flux involve Laplacian operator and the introduced diffusivities. Both equations are applied to determine the electric and magnetic fields in conductors as the heat diffusion equation which is applied to determine the thermal field in steady and unsteady heat diffusion conditions. The use of electric networks for experimental modeling of thermal networks represents sufficient proof of similarity of the diffusion equations of both fields. By analysis of the diffusion phenomena of the three considered modes of energy transfer;the rates of flow of these energies are found to be directly proportional to the gradient of their volumetric concentration, or density, and the proportionality constants in such relations are the diffusivity of each energy. Such analysis leads also to find proportionality relations between the potentials of such energies and their volumetric concentrations. Validity of the introduced diffusion equations is verified by correspondence their solutions to the measurement results of the electric and magnetic fields in microwave ovens.展开更多
The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference oper...The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.展开更多
A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,whic...A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,which is used for the scrambling,substitution and diffusion processes.The three-dimensional Fisher-Yates scrambling,S-box substitution and diffusion are employed for the first round of encryption.The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round.Then,three-dimensional filter is applied to diffusion for further useful information hiding.The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters.It improves resisting ability of plaintext attacks.The security analysis shows that the algorithm is effective and efficient.It can resist common attacks.In addition,the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research.展开更多
In this paper,we study the self-similar solutions of the degenerate diffusion equation ut-div(|▽u^(m)|^(p-2)▽u^(m))=0 of polytropic filtration diffusion in R^(N)×(0,±∞)or(R^(N)/{0})×(0,±∞)with ...In this paper,we study the self-similar solutions of the degenerate diffusion equation ut-div(|▽u^(m)|^(p-2)▽u^(m))=0 of polytropic filtration diffusion in R^(N)×(0,±∞)or(R^(N)/{0})×(0,±∞)with N≥1,m>0,p>1,such that m(p-1)>1.We give a clear classification of the self-similar solutions of the form u(x,t)=(βt)^(-α/β)((βt)^(-1/β)|x|)withα∈R andβ=α[m(p-1)-1]+p,regular or singular at the origin point.The existence and uniqueness of some solutions are established by the phase plane analysis method,and the asymptotic properties of the solutions near the origin and the infinity are also described.This paper extends the classical results of self-similar solutions for degeneratep-Laplace heat equation by Bidaut-Véron[Proc Royal Soc Edinburgh,2009,139:1-43]to the doubly nonlinear degenerate diffusion equations.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open ...In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out.展开更多
A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for...A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.展开更多
In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for c...In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for considered schemes are derived in the norm stronger than L^2-norm.展开更多
In this paper,a streamline diffusion F.E.M. for linear Sobolev equations with convection dominated term is given.According to the range of space time F.E mesh parameter h ,two choices for artifical diffusion par...In this paper,a streamline diffusion F.E.M. for linear Sobolev equations with convection dominated term is given.According to the range of space time F.E mesh parameter h ,two choices for artifical diffusion parameter δ are presented,and for the corresponding computation schemes the stability and error estimates in suitable norms are estabilished.展开更多
This paper is devoted to investigating exact solutions of a generalized fractional nonlinear anomalousdiffusion equation in radical symmetry.The presence of external force and absorption is also considered.We firstinv...This paper is devoted to investigating exact solutions of a generalized fractional nonlinear anomalousdiffusion equation in radical symmetry.The presence of external force and absorption is also considered.We firstinvestigate the nonlinear anomalous diffusion equations with one-fractional derivative and then multi-fractional ones.Inboth situations,we obtain the corresponding exact solutions,and the solutions found here can have a compact behavioror a long tailed behavior.展开更多
The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations ...The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations admit the second-order generalized conditional symmetries and the first-order sign-invariants on the solutions. Several types of different generalized conditional symmetries and first-order sign-invariants for the equations with diffusion of power law are obtained. Exact solutions to the resulting equations are constructed.展开更多
The asymptotic behavior of the solutions to a class of pseudoparabolic viscous diffusion equation with periodic initial condition is studied by using the spectral method. The semidiscrete Fourier approximate solution ...The asymptotic behavior of the solutions to a class of pseudoparabolic viscous diffusion equation with periodic initial condition is studied by using the spectral method. The semidiscrete Fourier approximate solution of the problem is constructed and the error estimation between spectral approximate solution and exact solution on large time is also obtained. The existence of the approximate attractor AN and the upper semicontinuity d(AN,A) → 0 are proved.展开更多
Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the movi...Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the moving Kriging inter- polation is developed for a two-dimensional time-fractional diffusion equation. The shape function and its derivatives are obtained by the moving Kriging interpolation technique. For possessing the Kronecker delta property, this technique is very efficient in imposing the essential boundary conditions. The governing time-fractional diffusion equations are transformed into a standard weak formulation by the Galerkin method. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard central difference method. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in detail.展开更多
文摘In this paper,we propose a numerical calculation model of the multigroup neutron diffusion equation in 3D hexagonal geometry using the nodal Green's function method and verified it.We obtained one-dimensional transverse integrated equations using the transverse integration procedure over 3D hexagonal geometry and denoted the solutions as a nodal Green's functions under the Neumann boundary condition.By applying a quadratic polynomial expansion of the transverse-averaged quantities,we derived the net neutron current coupling equation,equation for the expansion coefficients of the transverse-averaged neutron flux,and formulas for the coefficient matrix of these equations.We formulated the closed system of equations in correspondence with the boundary conditions.The proposed model was tested by comparing it with the benchmark for the VVER-440 reactor,and the numerical results were in good agreement with the reference solutions.
基金supported by the NSF of Ningxia(2022AAC03234)the NSF of China(11761004),the Construction Project of First-Class Disciplines in Ningxia Higher Education(NXYLXK2017B09)the Postgraduate Innovation Project of North Minzu University(YCX23074).
文摘In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured data. Inspired by the classical Landweber iterative method and Fourier truncation technique, we develops a modified Landweber iterative regularization method to restore the continuous dependence of solution on the measurement data. Under the a-priori and a-posteriori choice rules for the regularized parameter, the convergence estimates for the regularization method are derived. Some results of numerical simulation are provided to verify the stability and feasibility of our method in dealing with the considered problem.
文摘Based on the law of mass conservation, a general three-dimensional diffusion equation of suspended sediment due to waves and currents, adaptable to estuarial and coastal areas, is derived by decomposing the instantaneous velocities and concentrations into three-dif-ferent-time-scale components respectively. A three-dimensional suspended sediment
基金This work was supported by the Foundation of Gansu Natural Science (3ZS041-A25-011).
文摘We use the incremental unknowns method in conjunction with the iterative methods to approximate the solution of the nonsymmetric and positive-definite linear systems generated from a multilevel discretization of three-dimensional convection-diffusion equations. The condition numbers of incremental unknowns matrices associated with the convection-diffusion equations and the number of iterations needed to attain an acceptable accuracy are estimated. Numerical results are presented with two-level approximations, which demonstrate that the incremental unknowns method when combined with some iter- ative methods is very effcient.
文摘Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation as- suming turbulence parameterization for realistic physical scenarios. We present the general steady three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.
基金supported by National Natural Science Foundation of China(12271277)the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,China.
文摘In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
文摘Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations depend on the analogy of the governing laws of diffusion of the thermal, electrical, and magnetic energies and newly defined natures of the electric charges and magnetic flux as energy, or as electromagnetic waves, that have electric and magnetic potentials. The introduced diffusion equations of the electric charges and magnetic flux involve Laplacian operator and the introduced diffusivities. Both equations are applied to determine the electric and magnetic fields in conductors as the heat diffusion equation which is applied to determine the thermal field in steady and unsteady heat diffusion conditions. The use of electric networks for experimental modeling of thermal networks represents sufficient proof of similarity of the diffusion equations of both fields. By analysis of the diffusion phenomena of the three considered modes of energy transfer;the rates of flow of these energies are found to be directly proportional to the gradient of their volumetric concentration, or density, and the proportionality constants in such relations are the diffusivity of each energy. Such analysis leads also to find proportionality relations between the potentials of such energies and their volumetric concentrations. Validity of the introduced diffusion equations is verified by correspondence their solutions to the measurement results of the electric and magnetic fields in microwave ovens.
文摘The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.
文摘A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,which is used for the scrambling,substitution and diffusion processes.The three-dimensional Fisher-Yates scrambling,S-box substitution and diffusion are employed for the first round of encryption.The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round.Then,three-dimensional filter is applied to diffusion for further useful information hiding.The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters.It improves resisting ability of plaintext attacks.The security analysis shows that the algorithm is effective and efficient.It can resist common attacks.In addition,the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research.
基金supported by the NSFC(12271178,12171166)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J2022)the TCL Young Scholar(2024-2027).
文摘In this paper,we study the self-similar solutions of the degenerate diffusion equation ut-div(|▽u^(m)|^(p-2)▽u^(m))=0 of polytropic filtration diffusion in R^(N)×(0,±∞)or(R^(N)/{0})×(0,±∞)with N≥1,m>0,p>1,such that m(p-1)>1.We give a clear classification of the self-similar solutions of the form u(x,t)=(βt)^(-α/β)((βt)^(-1/β)|x|)withα∈R andβ=α[m(p-1)-1]+p,regular or singular at the origin point.The existence and uniqueness of some solutions are established by the phase plane analysis method,and the asymptotic properties of the solutions near the origin and the infinity are also described.This paper extends the classical results of self-similar solutions for degeneratep-Laplace heat equation by Bidaut-Véron[Proc Royal Soc Edinburgh,2009,139:1-43]to the doubly nonlinear degenerate diffusion equations.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
基金supported by the Fundamental Research Funds for the Central Universities(No.2022YJS094)。
文摘In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out.
基金The Importent Study Profect of the National Natural Science Poundation of China(90211004)The Natural Sciences Foundation of Zheiiang(102009)
文摘A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.
基金Project supported by National Natural Science Foundation of China and China State Key project for Basic Researchcs.
文摘In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for considered schemes are derived in the norm stronger than L^2-norm.
基金Supported by the National Natural Sciences Foundation of China(1 8971 0 51 )
文摘In this paper,a streamline diffusion F.E.M. for linear Sobolev equations with convection dominated term is given.According to the range of space time F.E mesh parameter h ,two choices for artifical diffusion parameter δ are presented,and for the corresponding computation schemes the stability and error estimates in suitable norms are estabilished.
基金Supported by National Natural Science Foundation of China under Grant No.60641006the National Science Foundation of Shandong Province under Grant No.Y2007A06
文摘This paper is devoted to investigating exact solutions of a generalized fractional nonlinear anomalousdiffusion equation in radical symmetry.The presence of external force and absorption is also considered.We firstinvestigate the nonlinear anomalous diffusion equations with one-fractional derivative and then multi-fractional ones.Inboth situations,we obtain the corresponding exact solutions,and the solutions found here can have a compact behavioror a long tailed behavior.
基金The project supported in part by National Natural Science Foundation of China under Grant No.19901027the Natural Science Foundation of Shaanxi Province of China
文摘The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations admit the second-order generalized conditional symmetries and the first-order sign-invariants on the solutions. Several types of different generalized conditional symmetries and first-order sign-invariants for the equations with diffusion of power law are obtained. Exact solutions to the resulting equations are constructed.
基金This work was supported by the National Science Foundation of China(10271034)
文摘The asymptotic behavior of the solutions to a class of pseudoparabolic viscous diffusion equation with periodic initial condition is studied by using the spectral method. The semidiscrete Fourier approximate solution of the problem is constructed and the error estimation between spectral approximate solution and exact solution on large time is also obtained. The existence of the approximate attractor AN and the upper semicontinuity d(AN,A) → 0 are proved.
基金Project supported by the National Natural Science Foundation of China(Grant No.11072117)the Natural Science Foundation of Ningbo City,China(GrantNo.2013A610103)+2 种基金the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6090131)the Disciplinary Project of Ningbo City,China(GrantNo.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China
文摘Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the moving Kriging inter- polation is developed for a two-dimensional time-fractional diffusion equation. The shape function and its derivatives are obtained by the moving Kriging interpolation technique. For possessing the Kronecker delta property, this technique is very efficient in imposing the essential boundary conditions. The governing time-fractional diffusion equations are transformed into a standard weak formulation by the Galerkin method. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard central difference method. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in detail.