Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en...Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.展开更多
The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying ge...The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches.展开更多
The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem...The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.展开更多
A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been deve...A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.展开更多
A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forwar...A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.展开更多
During fully mechanized caving mining of thick coal seams,a large amount of strain energy accumulates in the roof,especially when the roof is thick and hard,making it difficultfor the roof to collapse naturally.When t...During fully mechanized caving mining of thick coal seams,a large amount of strain energy accumulates in the roof,especially when the roof is thick and hard,making it difficultfor the roof to collapse naturally.When the roof eventually collapses,the accumulated energy is released instantaneously,exerting a strong impact on the roadway.To address this issue,we proposed the synergistic control method of directional comprehensive pressure relief and energy-absorbing support(PREA)for roadways with hard roofs.In this study,we developed a three-dimensional physical model test apparatus for roof cutting and pressure relief.The 122108 ventilation roadway at the Caojiatan Coal Mine,which has a thick and hard roof,was taken as the engineering example.We analyzed the evolution patterns of stress and displacement in both the stope and the roadway surrounding rocks under different schemes.The PREA reinforcement mechanism for the roadway was investigated through comparative model tests between the new and original methods.The results showed that,compared to the original method,the new method reduced surrounding rock stress by up to 60.4%,and the roadway convergence decreased by up to 52.1%.Based on these results,we proposed corresponding engineering recommendations,which can guide fieldreinforcement design and application.The results demonstrate that the PREA method effectively reduces stress and ensures the safety and stability of the roadway.展开更多
Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico.Basins affect the propagation of seismic waves through various mechanisms,and severa...Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico.Basins affect the propagation of seismic waves through various mechanisms,and several unique phenomena,such as the basin edge effect,basin focusing effect,and basin-induced secondary waves,have been observed.Understanding and quantitatively predicting these phenomena are crucial for earthquake disaster reduction.Some pioneering studies in this field have proposed a quantitative relationship between the basin effect on ground motion and basin depth.Unfortunately,basin effect phenomena predicted using a model based only on basin depth exhibit large deviations from actual distributions,implying the severe shortcomings of single-parameter basin effect modeling.Quaternary sediments are thick and widely distributed in the Beijing-Tianjin-Hebei region.The seismic media inside and outside of this basin have significantly different physical properties,and the basin bottom forms an interface with strong seismic reflections.In this study,we established a three-dimensional structure model of the Quaternary sedimentary basin based on the velocity structure model of the North China Craton and used it to simulate the ground motion under a strong earthquake following the spectral element method,obtaining the spatial distribution characteristics of the ground motion amplification ratio throughout the basin.The back-propagation(BP)neural network algorithm was then introduced to establish a multi-parameter mathematical model for predicting ground motion amplification ratios,with the seismic source location,physical property ratio of the media inside and outside the basin,seismic wave frequency,and basin shape as the input parameters.We then examined the main factors influencing the amplification of seismic ground motion in basins based on the prediction results,and concluded that the main factors influencing the basin effect are basin shape and differences in the physical properties of media inside and outside the basin.展开更多
The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially i...The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially in the presence of sharp thermal gradients,such as when modeling subducting slabs and rising plumes.This phenomenon prohibits the correct representation of thermal evolution and may cause incorrect implications of geodynamic processes.After examining several approaches for removing these numerical oscillations,we show that the Lagrangian method provides an ideal way to solve this problem.In this study,we propose a particle-in-cell method as a strategy for improving the solution to the energy equation and demonstrate its effectiveness in both one-dimensional and three-dimensional thermal problems,as well as in a global spherical simulation with data assimilation.We have implemented this method in the open-source finite-element code CitcomS,which features a spherical coordinate system,distributed memory parallel computing,and data assimilation algorithms.展开更多
The essential for microseismic monitoring is fast and accurate calculation of seismic wave source location. The precision of most traditional microseismic monitoring processes of mines, using TDOA location method in t...The essential for microseismic monitoring is fast and accurate calculation of seismic wave source location. The precision of most traditional microseismic monitoring processes of mines, using TDOA location method in two-dimensional space to position the microseismic events, as well as the accuracy of positioning microseismic events, may be reduced by the two-dimensional model and simple method, and ill-conditioned equations produced by TDOA location method will increase the positioning error. This article, based on inversion theory, studies the mathematical model of TDOA location method, polariza- tion analysis location method, and comprehensive difference location method of adding angle factor in the traditional TDOA location method. The feasibility of three methods is verified by numerical simulation and analysis of the positioning error of them. The results show that the comprehensive location method of adding angle difference has strong positioning stability and high positioning accuracy, and it may reduce the impact effectively about ill-conditioned equations to positioning results. Comprehensive location method with the data of actual measure may get better positioning results.展开更多
This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has be...This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has been recently extended by the authors to account for coupled convective econductive heat flow and transport, and to enable full hydro-thermal fluidesolid coupled modeling.The application of the work is on enhanced geothermal systems(EGSs), and hydraulic fracturing of hot dry rock(HDR) is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convectiveeconductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.展开更多
The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the tim...The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures.展开更多
In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method wit...In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method with the k-ε turbulence mathematical model. Then, the water hydrodynamic characteristics and transport processes for BOD_5, NH_(3^-)N and TP were analyzed. The results showed that the water surface of convex bank was a little lower than that of concave bank due to the centrifugal force near the bend, and most concentrations were inferior to the type Ⅴ standard indexes of surface water environmental quality. The model validation indicated that the errors between the simulated and monitored values were comparatively small, satisfying the application demands and providing scientific basis and decision support for the restoration and protection of water quality.展开更多
Digital elevation models (DEMs) are widely used to define the flow direction in distributed hydrological models for simulation of streamflow. In recent decades, numerous methods for flow direction determination have...Digital elevation models (DEMs) are widely used to define the flow direction in distributed hydrological models for simulation of streamflow. In recent decades, numerous methods for flow direction determination have been applied successfully to mountainous regions. Nevertheless, some problems still exist when those methods are used for flat or gently sloped areas The present study reviews the conventional methods of determining flow direction for such landscapes and analyzes the problems of these methods. Two different methods of determining flow direction are discussed and were applied to the Xitiaoxi Catchment, located in the Taihu Basin in southern China, which has both mountainous and flat terrain. Both the agree method and the shortest path method use drainage networks derived from a remote sensing image to determine the correct location of the stream. The results indicate that the agree method provides a better fit with the DEM for the hilly region than the shortest path method. For the flat region where the flow has been diverted and rerouted by land managers, both methods require observation of the drainage network to determine the flow direction. In order to clarify the applicability of the two methods, both are employed in catchment hydrological models conceptually based on the Xinanjiang model and implemented with PCRaster. The simulation results show that both methods can be successfully applied in hydrological modeling. There are no evident differences in the modeled discharge when using the two methods at different spatial scales.展开更多
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ...In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.展开更多
A three-dimensional numerical tsunami model is developed to analyze the nonlinear behavior of flow around obstacles with the Marker and Cell (MAC) method based on the Navier-Stokes equations. Tnrough a comparison wi...A three-dimensional numerical tsunami model is developed to analyze the nonlinear behavior of flow around obstacles with the Marker and Cell (MAC) method based on the Navier-Stokes equations. Tnrough a comparison with experimental data for the cases of dam break and solitary wave propagation, verification of the three-dimensional numerical model is given. Numerical experiment is performed for the analysis of the nonlinear behavior of flow around obstacles and compared with experimental data. The velocity and pressure around obstacles are presented with sufficient accuracy for tstmami propagation passing through an obstacle.展开更多
Cosmetic safety evaluation employs a series of toxicological tests, on both qualitative and quantitative levels, to assess the potential risks for the daily use of selected cosmetic ingredients and final products. Tra...Cosmetic safety evaluation employs a series of toxicological tests, on both qualitative and quantitative levels, to assess the potential risks for the daily use of selected cosmetic ingredients and final products. Traditionally, safety evaluation of cosmetics uses animal tests. With the development of in vitro science and the 3R (Reduction, Replacement and Refinement) principle, three-dimensional reconstructed human epidermis (3D-RHE) models have been developed and widely applied in cosmetic safety evaluation. Reconstructed human skin models possess anatomy and metabolism biology similar to real human tissue. This paper reviews the current application of 3D-RHE models in the safety evaluation of skin irritation, eye irritation, phototoxicity and genotoxicity potential of cosmetic ingredients/formulas. The advantages and disadvantages of using skin models are also discussed, and comments and suggestions are given for its future development.展开更多
This paper presents a methodology for calibrating discrete element method input parameters for simulating cohesive materials.The Plackett-Burman method was initially employed to identify the sig-nificant input paramet...This paper presents a methodology for calibrating discrete element method input parameters for simulating cohesive materials.The Plackett-Burman method was initially employed to identify the sig-nificant input parameters.Subsequently,the performances of response surface methodology(RSM),artificial neural networks(ANN),and random forest(RF)models for calibration were compared.The results demonstrated that the random forest model outperformed the two other models,achieving an RMSE of 1.89,an R-squared of 94%,and an MAE of 1.63.The ANN model followed closely,with an RMSE of 3.12,an R-squared of 89%,and an MAE of 2.18,while the RSM model exhibited lower performance with an RMSE of 6.84,an R-squared of 86%,and an MAE of 5.41.This study presents a framework for enhancing the accuracy of DEM simulations.Finally,the robustness and adaptability of the calibration approach were demonstrated by applying calibrated parameters from one particle size to another.展开更多
The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are ...The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are important to establish the extent to which those models can capture realistic rock behaviors.Hitherto the focus in such comparison studies has either been on homogeneous specimens or use of two-dimensional(2D) models.In situ rock formations are often heterogeneous,thus exploring the ability of this type of models to capture heterogeneous material behavior is important to facilitate their use in design analysis.In situ stress states are basically three-dimensional(3D),and therefore it is important to develop 3D models for this purpose.This paper revisits an earlier experimental study on heterogeneous specimens,of which the relative proportions of weaker material(siltstone) and stronger,harder material(sandstone) were varied in a controlled manner.Using a 3D DEM model with the parallel bond model,virtual heterogeneous specimens were created.The overall responses in terms of variations in strength and stiffness with different percentages of weaker material(siltstone) were shown to agree with the experimental observations.There was also a good qualitative agreement in the failure patterns observed in the experiments and the simulations,suggesting that the DEM data enabled analysis of the initiation of localizations and micro fractures in the specimens.展开更多
The Z-Axis tiPPer eiectromagnetic (ZTEM) technique is based on a frequency-domain airbome electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the M...The Z-Axis tiPPer eiectromagnetic (ZTEM) technique is based on a frequency-domain airbome electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the Maxwell's equations, and the magnetic components at the center of each edge of the grid cell are evaluated by applying the staggered-grid finite-difference method. The tipper and its divergence are derived to complete the 3D ZTEM forward modeling algorithm. A synthetic model is then used to compare the responses with those of 2D finite-element forward modeling to verify the accuracy of the algorithm. ZTEM offers high horizontal resolution to both simple and complex distributions of conductivity. This work is the theoretical foundation for the interpretation of ZTEM data and the study of 3D ZTEM inversion.展开更多
基金supported by the National Natural Science Foundation of China(No.92371206)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.CX2023063).
文摘Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.
基金supported by a grant from the Research Grant Council of Hong Kong Special Administrative Region(Project No.11207724).
文摘The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches.
基金Project(51378006) supported by National Natural Science Foundation of ChinaProject(141076) supported by Huoyingdong Foundation of the Ministry of Education of China+1 种基金Project(2242015R30027) supported by Excellent Young Teacher Program of Southeast University,ChinaProject(BK20140109) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.
基金Projects(41674080,41674079)supported by the National Natural Science Foundation of China
文摘A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.
基金Project(60672042) supported by the National Natural Science Foundation of China
文摘A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.
基金supported by the National Natural Science Foundation of China(Grant Nos.U24A2088 and 42277174)the Fundamental Research Funds for the Central Universities,China(Grant No.2024JCCXSB01).
文摘During fully mechanized caving mining of thick coal seams,a large amount of strain energy accumulates in the roof,especially when the roof is thick and hard,making it difficultfor the roof to collapse naturally.When the roof eventually collapses,the accumulated energy is released instantaneously,exerting a strong impact on the roadway.To address this issue,we proposed the synergistic control method of directional comprehensive pressure relief and energy-absorbing support(PREA)for roadways with hard roofs.In this study,we developed a three-dimensional physical model test apparatus for roof cutting and pressure relief.The 122108 ventilation roadway at the Caojiatan Coal Mine,which has a thick and hard roof,was taken as the engineering example.We analyzed the evolution patterns of stress and displacement in both the stope and the roadway surrounding rocks under different schemes.The PREA reinforcement mechanism for the roadway was investigated through comparative model tests between the new and original methods.The results showed that,compared to the original method,the new method reduced surrounding rock stress by up to 60.4%,and the roadway convergence decreased by up to 52.1%.Based on these results,we proposed corresponding engineering recommendations,which can guide fieldreinforcement design and application.The results demonstrate that the PREA method effectively reduces stress and ensures the safety and stability of the roadway.
基金funded by the General Program of the National Natural Science Foundation of China(No.42174070)the General Program of the Beijing Natural Science Foundation(No.8222035).
文摘Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico.Basins affect the propagation of seismic waves through various mechanisms,and several unique phenomena,such as the basin edge effect,basin focusing effect,and basin-induced secondary waves,have been observed.Understanding and quantitatively predicting these phenomena are crucial for earthquake disaster reduction.Some pioneering studies in this field have proposed a quantitative relationship between the basin effect on ground motion and basin depth.Unfortunately,basin effect phenomena predicted using a model based only on basin depth exhibit large deviations from actual distributions,implying the severe shortcomings of single-parameter basin effect modeling.Quaternary sediments are thick and widely distributed in the Beijing-Tianjin-Hebei region.The seismic media inside and outside of this basin have significantly different physical properties,and the basin bottom forms an interface with strong seismic reflections.In this study,we established a three-dimensional structure model of the Quaternary sedimentary basin based on the velocity structure model of the North China Craton and used it to simulate the ground motion under a strong earthquake following the spectral element method,obtaining the spatial distribution characteristics of the ground motion amplification ratio throughout the basin.The back-propagation(BP)neural network algorithm was then introduced to establish a multi-parameter mathematical model for predicting ground motion amplification ratios,with the seismic source location,physical property ratio of the media inside and outside the basin,seismic wave frequency,and basin shape as the input parameters.We then examined the main factors influencing the amplification of seismic ground motion in basins based on the prediction results,and concluded that the main factors influencing the basin effect are basin shape and differences in the physical properties of media inside and outside the basin.
基金the National Supercomputer Center in Tianjin for their patient assistance in providing the compilation environment.We thank the editor,Huajian Yao,for handling the manuscript and Mingming Li and another anonymous reviewer for their constructive comments.The research leading to these results has received funding from National Natural Science Foundation of China projects(Grant Nos.92355302 and 42121005)Taishan Scholar projects(Grant No.tspd20210305)others(Grant Nos.XDB0710000,L2324203,XK2023DXC001,LSKJ202204400,and ZR2021ZD09).
文摘The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially in the presence of sharp thermal gradients,such as when modeling subducting slabs and rising plumes.This phenomenon prohibits the correct representation of thermal evolution and may cause incorrect implications of geodynamic processes.After examining several approaches for removing these numerical oscillations,we show that the Lagrangian method provides an ideal way to solve this problem.In this study,we propose a particle-in-cell method as a strategy for improving the solution to the energy equation and demonstrate its effectiveness in both one-dimensional and three-dimensional thermal problems,as well as in a global spherical simulation with data assimilation.We have implemented this method in the open-source finite-element code CitcomS,which features a spherical coordinate system,distributed memory parallel computing,and data assimilation algorithms.
文摘The essential for microseismic monitoring is fast and accurate calculation of seismic wave source location. The precision of most traditional microseismic monitoring processes of mines, using TDOA location method in two-dimensional space to position the microseismic events, as well as the accuracy of positioning microseismic events, may be reduced by the two-dimensional model and simple method, and ill-conditioned equations produced by TDOA location method will increase the positioning error. This article, based on inversion theory, studies the mathematical model of TDOA location method, polariza- tion analysis location method, and comprehensive difference location method of adding angle factor in the traditional TDOA location method. The feasibility of three methods is verified by numerical simulation and analysis of the positioning error of them. The results show that the comprehensive location method of adding angle difference has strong positioning stability and high positioning accuracy, and it may reduce the impact effectively about ill-conditioned equations to positioning results. Comprehensive location method with the data of actual measure may get better positioning results.
基金Financial support provided by the U.S. Department of Energy under DOE Grant No. DE-FE0002760
文摘This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has been recently extended by the authors to account for coupled convective econductive heat flow and transport, and to enable full hydro-thermal fluidesolid coupled modeling.The application of the work is on enhanced geothermal systems(EGSs), and hydraulic fracturing of hot dry rock(HDR) is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convectiveeconductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.
基金supported by the Joint Fund of Seismological Science(Grant No.U1839206)the National R&D Program on Monitoring,Early Warning and Prevention of Major Natural Disaster(Grant No.2017YFC1500301)+2 种基金supported by IGGCAS Research Start-up Funds(Grant No.E0515402)National Natural Science Foundation of China(Grant No.E1115401)supported by National Natural Science Foundation of China(Grant No.11971258).
文摘The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures.
基金Supported by the Innovative Research Groups of National Natural Science Foundation of China(No.51321065)the Major Science and Technology Program for Water Pollution Control and Treatment(2012ZX07101-008)the National Natural Science Foundation of China(No.51439005)
文摘In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method with the k-ε turbulence mathematical model. Then, the water hydrodynamic characteristics and transport processes for BOD_5, NH_(3^-)N and TP were analyzed. The results showed that the water surface of convex bank was a little lower than that of concave bank due to the centrifugal force near the bend, and most concentrations were inferior to the type Ⅴ standard indexes of surface water environmental quality. The model validation indicated that the errors between the simulated and monitored values were comparatively small, satisfying the application demands and providing scientific basis and decision support for the restoration and protection of water quality.
基金supported by the Studies and Research in Sustainability Program (Deutscher Akademischer Austausch Dienst, DAAD)
文摘Digital elevation models (DEMs) are widely used to define the flow direction in distributed hydrological models for simulation of streamflow. In recent decades, numerous methods for flow direction determination have been applied successfully to mountainous regions. Nevertheless, some problems still exist when those methods are used for flat or gently sloped areas The present study reviews the conventional methods of determining flow direction for such landscapes and analyzes the problems of these methods. Two different methods of determining flow direction are discussed and were applied to the Xitiaoxi Catchment, located in the Taihu Basin in southern China, which has both mountainous and flat terrain. Both the agree method and the shortest path method use drainage networks derived from a remote sensing image to determine the correct location of the stream. The results indicate that the agree method provides a better fit with the DEM for the hilly region than the shortest path method. For the flat region where the flow has been diverted and rerouted by land managers, both methods require observation of the drainage network to determine the flow direction. In order to clarify the applicability of the two methods, both are employed in catchment hydrological models conceptually based on the Xinanjiang model and implemented with PCRaster. The simulation results show that both methods can be successfully applied in hydrological modeling. There are no evident differences in the modeled discharge when using the two methods at different spatial scales.
基金Supported by the Beijing Municipal Science&Technology Commission(Z211100004421012),the Key Reaserch and Development Pro⁃gram of China(2022YFF0605902)。
文摘In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.
文摘A three-dimensional numerical tsunami model is developed to analyze the nonlinear behavior of flow around obstacles with the Marker and Cell (MAC) method based on the Navier-Stokes equations. Tnrough a comparison with experimental data for the cases of dam break and solitary wave propagation, verification of the three-dimensional numerical model is given. Numerical experiment is performed for the analysis of the nonlinear behavior of flow around obstacles and compared with experimental data. The velocity and pressure around obstacles are presented with sufficient accuracy for tstmami propagation passing through an obstacle.
文摘Cosmetic safety evaluation employs a series of toxicological tests, on both qualitative and quantitative levels, to assess the potential risks for the daily use of selected cosmetic ingredients and final products. Traditionally, safety evaluation of cosmetics uses animal tests. With the development of in vitro science and the 3R (Reduction, Replacement and Refinement) principle, three-dimensional reconstructed human epidermis (3D-RHE) models have been developed and widely applied in cosmetic safety evaluation. Reconstructed human skin models possess anatomy and metabolism biology similar to real human tissue. This paper reviews the current application of 3D-RHE models in the safety evaluation of skin irritation, eye irritation, phototoxicity and genotoxicity potential of cosmetic ingredients/formulas. The advantages and disadvantages of using skin models are also discussed, and comments and suggestions are given for its future development.
基金support of the Natural Sciences and Engineering Research Council of Canada(NSERC)is gratefully acknowledged.
文摘This paper presents a methodology for calibrating discrete element method input parameters for simulating cohesive materials.The Plackett-Burman method was initially employed to identify the sig-nificant input parameters.Subsequently,the performances of response surface methodology(RSM),artificial neural networks(ANN),and random forest(RF)models for calibration were compared.The results demonstrated that the random forest model outperformed the two other models,achieving an RMSE of 1.89,an R-squared of 94%,and an MAE of 1.63.The ANN model followed closely,with an RMSE of 3.12,an R-squared of 89%,and an MAE of 2.18,while the RSM model exhibited lower performance with an RMSE of 6.84,an R-squared of 86%,and an MAE of 5.41.This study presents a framework for enhancing the accuracy of DEM simulations.Finally,the robustness and adaptability of the calibration approach were demonstrated by applying calibrated parameters from one particle size to another.
文摘The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are important to establish the extent to which those models can capture realistic rock behaviors.Hitherto the focus in such comparison studies has either been on homogeneous specimens or use of two-dimensional(2D) models.In situ rock formations are often heterogeneous,thus exploring the ability of this type of models to capture heterogeneous material behavior is important to facilitate their use in design analysis.In situ stress states are basically three-dimensional(3D),and therefore it is important to develop 3D models for this purpose.This paper revisits an earlier experimental study on heterogeneous specimens,of which the relative proportions of weaker material(siltstone) and stronger,harder material(sandstone) were varied in a controlled manner.Using a 3D DEM model with the parallel bond model,virtual heterogeneous specimens were created.The overall responses in terms of variations in strength and stiffness with different percentages of weaker material(siltstone) were shown to agree with the experimental observations.There was also a good qualitative agreement in the failure patterns observed in the experiments and the simulations,suggesting that the DEM data enabled analysis of the initiation of localizations and micro fractures in the specimens.
基金supported by the Natural Science Foundation of China(No.41374078)Geological Survey Projects of Ministry of Land and Resources of China(No.12120113086100 and 12120113101300)
文摘The Z-Axis tiPPer eiectromagnetic (ZTEM) technique is based on a frequency-domain airbome electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the Maxwell's equations, and the magnetic components at the center of each edge of the grid cell are evaluated by applying the staggered-grid finite-difference method. The tipper and its divergence are derived to complete the 3D ZTEM forward modeling algorithm. A synthetic model is then used to compare the responses with those of 2D finite-element forward modeling to verify the accuracy of the algorithm. ZTEM offers high horizontal resolution to both simple and complex distributions of conductivity. This work is the theoretical foundation for the interpretation of ZTEM data and the study of 3D ZTEM inversion.