期刊文献+
共找到431,488篇文章
< 1 2 250 >
每页显示 20 50 100
Damage location prediction of cement-sandstone combinations under axial force:Three-dimensional structure reconstruction and stress distribution simulation based onμ-CT
1
作者 Zhong Li Zhiming Yin +3 位作者 Xingquan Zhang Tao Gu Fubin Xin Zhiqiang Huang 《Natural Gas Industry B》 2025年第4期405-415,共11页
Effective isolation between the cement sheath and the sandstone is crucial for the development and production of oil and gas wells in sandstone formations.In this study,a cement-sandstone composite(CSC)was prepared,an... Effective isolation between the cement sheath and the sandstone is crucial for the development and production of oil and gas wells in sandstone formations.In this study,a cement-sandstone composite(CSC)was prepared,and based onμ-CT three-dimensional reconstruction imaging and finite element analysis(FEA)techniques,the stress distribution and potential failure mechanism at the cement-sandstone bonding interface under axial loading were analyzed.The key findings are as follows:(1)stress concentrations are highly likely to form at the gap between the cement and sandstone interface and around interfacial voids,with Von Mises stress reaching critical levels of 18.0-20.0 MPa at these locations,significantly exceeding the stress magnitudes in well-bonded regions;(2)the phenomenon of local stress concentration driven by interfacial defects can be identified as the main basis for predicting damage location in interfacial debonding and continuous shear under axial load;(3)ensuring tight cementation at the cement-sandstone interface and minimizing interfacial voids are paramount for preventing stress-induced failure;(4)the critical Von Mises stress value of 20 MPa at the interface defect can be used as a benchmark for material selection and designed to ensure long-term integrity in oil and gas well applications subjected to similar axial loads.These findings contribute to a more accurate understanding of the failure mechanism of the cement-sandstone interface and to the precise design of material properties,thereby ensuring the long-term integrity of oil and gas well applications subjected to similar axial loads. 展开更多
关键词 Cement-sandstone combination μ-CT Stress distribution simulation Damage location prediction
在线阅读 下载PDF
A three-dimensional CFD numerical simulation study on pressurized oxy-fuel gasification of poultry manure in an industrial-scale gasifier
2
作者 Qinwen Liu Guoqing Lian +4 位作者 Wenli Dong Yu Su Wei Quan Leong Chi-Hwa Wang Wenqi Zhong 《Chinese Journal of Chemical Engineering》 2025年第5期115-127,共13页
As a renewable energy source,the thermal conversion of poultry manure,is a promising waste treatment solution that can generate circular economic outputs such as energy and reduce greenhouse gas emissions.Currently,pr... As a renewable energy source,the thermal conversion of poultry manure,is a promising waste treatment solution that can generate circular economic outputs such as energy and reduce greenhouse gas emissions.Currently,pressurized gasification of poultry manure is still a novel research field,especially when combined with a novel technological route of oxy-fuel gasification.Oxy-fuel gasification is a newly proposed and promising gasification technology for power generation that facilitates future carbon capture and storage.In this work,based on a commercially operated industrial-scale chicken manure gasification power plant in Singapore,we presented an interesting first exploration of the coupled pressurization technology for oxy-fuel gasification of poultry manure using CFD numerical simulation,analyzed the effects of pressure and oxygen enrichment concentration as well as the coupling mechanism between them,and discussed the conversion and emission of nitrogen-and sulfur-containing pollutants.The results indicate that under oxy-fuel gasification condition(Oxy-30,i.e.,30%O_(2)/70%CO_(2)),as the pressure increases from 0.1 to 0.5 MPa,the CO concentration in the syngas increases slightly,the H_(2)concentration increases to approximately 25%,and the CH4 concentration(less than 1%)decreases,resulting in an increase in the calorific value of syngas from 5.2 to 5.6 MJ·m^(-3).Compared to atmospheric pressure conditions,a relatively higher oxygen-enriched concentration interval(Oxy-40 to Oxy-50)under pressurized conditions is advantageous for autothermal gasification.Pressurization increases NO precursors production and also promotes homogeneous and heterogeneous reduction of NO,and provides favorable conditions for self-desulfurization.This work offers reference for the realization of a highly efficient and low-energy-consumption thermochemical treatment of livestock manure coupled with negative carbon emission technology. 展开更多
关键词 Oxy-fuel gasification Pressurized gasification Poultry manure Carbon negative CFD numerical simulation
在线阅读 下载PDF
Improved Simulation of Tropical Cyclone Soudelor(2015)Using a Modified Three-Dimensional Turbulence Parameterization
3
作者 Gengjiao YE Xu ZHANG +3 位作者 Shanghong WANG Hui YU Xuesong ZHU Mengjuan LIU 《Advances in Atmospheric Sciences》 2025年第7期1407-1422,共16页
A modified three-dimensional turbulence parameterization scheme,implemented by replacing the conventional eddydiffusivity formulation with the H-gradient model,has shown good performance in representing the subgrid-sc... A modified three-dimensional turbulence parameterization scheme,implemented by replacing the conventional eddydiffusivity formulation with the H-gradient model,has shown good performance in representing the subgrid-scale(SGS)turbulent fluxes associated with convective clouds in idealized tropical cyclone(TC)simulations.To evaluate the capability of the modified scheme in simulating real TCs,two sets of simulations of TC Soudelor(2015),one with the modified scheme and the other with the original scheme,are conducted.Comparisons with observations and coarse-grained results from large eddy simulation benchmarks demonstrate that the modified scheme improves the forecasting of the intensity and structure,as well as the SGS turbulent fluxes of Soudelor.Using the modified turbulence scheme,a TC with stronger intensity,smaller size,a shallower but stronger inflow layer,and a more intense but less inclined convective updraft is simulated.The rapid intensification process and secondary eyewall features can also be captured better by the modified scheme.By analyzing the mechanism by which turbulent transport impacts the intensity and structure of TCs,it is shown that accurately representing the turbulent transport associated with convective clouds above the planetary boundary layer helps to initiate the TC spin-up process. 展开更多
关键词 tropical cyclone turbulence parameterization numerical simulation tropical cyclone intensity tropical cyclone structure tropical cyclone spin-up process
在线阅读 下载PDF
Bridging the gap:A scoping review of wet and dry lab simulation training in orthopaedic surgical education
4
作者 Sari Wathiq Al Hajaj Chandramohan Ravichandran +4 位作者 Karthic Swaminathan Sanjeevi Bharadwaj Vishnu V Nair Hussein Shoukry Sriram Srinivasan 《World Journal of Orthopedics》 2026年第1期132-139,共8页
BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints... BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care. 展开更多
关键词 Orthopaedic education Wet lab Dry lab simulation training Virtual reality Surgical procedure
在线阅读 下载PDF
Typhoon Kompasu(2118)simulation with planetary boundary layer and cloud physics parameterization improvements
5
作者 Xiaowei Tan Zhiqiu Gao Yubin Li 《Atmospheric and Oceanic Science Letters》 2026年第1期41-46,共6页
This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the pred... This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure. 展开更多
关键词 Tropical cyclone Numerical simulation Planetary boundary layer parameterization SCHEME Cloud physics scheme
在线阅读 下载PDF
Numerical Simulation of the Welding Deformation of Marine Thin Plates Based on a Temperature Gradient-thermal Strain Method
6
作者 Lin Wang Yugang Miao +3 位作者 Zhenjian Zhuo Chunxiang Lin Benshun Zhang Duanfeng Han 《哈尔滨工程大学学报(英文版)》 2026年第1期122-135,共14页
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t... Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates. 展开更多
关键词 Marine thin plate Welding deformation Numerical simulation Temperature gradient-thermal strain method Shell element
在线阅读 下载PDF
Three-Dimensional Finite Element Numerical Simulation and Physical Experiment for Magnetism-Stress Detecting in Oil Casing 被引量:2
7
作者 MENG Fanshun ZHANG Jie +2 位作者 YANG Chaoqun YU Weizhe CHEN Yuxi 《Journal of Ocean University of China》 SCIE CAS 2015年第4期669-674,共6页
The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil i... The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment. 展开更多
关键词 oil casing damage magnetism-stress detecting magnetic anisotropy finite element analysis physical experiment relative magnetic permeability ANSYS three-dimensional numerical simulation
在线阅读 下载PDF
Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling 被引量:2
8
作者 金秋雪 刘波 +8 位作者 刘燕 王维维 汪恒 许震 高丹 王青 夏洋洋 宋志棠 封松林 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期128-131,共4页
An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell ... An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current. 展开更多
关键词 PCRAM cell RESET three-dimensional simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling of by in with
原文传递
Carbon Footprint and Economic Analysis of LNG-fueled Fishing Vessel Using Real Engine Performance Simulation
9
作者 Momir Sjerić Maja Perčić +1 位作者 Ivana Jovanović Nikola Vladimir 《哈尔滨工程大学学报(英文版)》 2026年第1期259-276,共18页
Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This st... Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This study evaluates the carbon footprint(CF)and economic viability of a liquefied natural gas(LNG)-fueled fishing vessel,using real engine operation simulations to provide precise and dynamic evaluation of fuel consumption and GHG emissions.Operational profiles are obtained through the utilization of onboard monitoring systems,whereas engine performance is simulated using the 1D/0D AVL Boost^(TM)model.Life cycle assessment(LCA)is conducted to quantify the environmental impact,whereas life cycle cost assessment(LCCA)is performed to analyze the profitability of LNG as an alternative fuel.The potential impact of the future fuel price uncertainties is addressed using Monte Carlo simulations.The LCA findings indicate that LNG has the potential to reduce the CF of the vessel by 14%to 16%,in comparison to a diesel power system configuration that serves as the baseline scenario.The LCCA results further indicate that the total cost of an LNG-powered ship is lower by 9.5%-13.8%,depending on the share of LNG and pilot fuels.This finding highlights the potential of LNG to produce considerable environmental benefits while addressing economic challenges under diverse operational and fuel price conditions. 展开更多
关键词 1D/0D simulation Carbon footprint Fishing vessels Life cycle assessment Life cycle cost assessment Liquefied natural gas
在线阅读 下载PDF
Numerical simulations and comparative analysis of two- and three-dimensional circulating fluidized bed reactors for CO2 capture 被引量:1
10
作者 Yefeng Zhou Yifan Han +7 位作者 Yujian Lu Hongcun Bai Xiayi Hu Xincheng Zhang Fanghua Xie Xiao Luo Jingdai Wang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第12期2955-2967,共13页
Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.... Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.The numerical simulation by computational fluid dynamics(CFD)is believed as a promising tool to study CO2 adsorption process in CFBR.Although three-dimensional(3D)simulations were proved to have better predicting performance with the experimental results,two-dimensional(2D)simulations have been widely reported for qualitative and quantitative studies on gas-solid behavior in CFBR for its higher computational efficiency recently.However,the discrepancies between 2D and 3D simulations have rarely been evaluated by detailed study.Considering that the differences between the 2D and 3D simulations will vary substantially with the changes of independent operating conditions,it is beneficial to lower computational costs to clarify the effects of dimensionality on the numerical CO2 adsorption runs under various operating conditions.In this work,the comparative analysis for CO2 adsorption in 2D and 3D simulations was conducted to enlighten the effects of dimensionality on the hydrodynamics and reaction behaviors,in which the separation rate,species distribution and hydrodynamic characteristics were comparatively studied for both model frames.With both accuracy and computational costs considered,the viable suggestions were provided in selecting appropriate model frame for the studies on optimization of operating conditions,which directly affect the capture and energy efficiencies of cyclic CO2 capture process in CFBR. 展开更多
关键词 Two-and three-dimensional simulations Circulating fluidized bed reactor Carbon dioxide adsorption Computational fluid dynamics Operating conditions
在线阅读 下载PDF
Three-Dimensional and Cross-sectional Characteristics of Normal Grain Growth Based on Monte Carlo Simulation 被引量:3
11
作者 Xiaoyan Song Guoquan Liu(Material Science and Engineering School, University of Science and Technology Beijing, Beijing 100083, China)(Department of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1998年第3期129-133,139,共6页
An appropriate Monte Carlo method was developed to simulate the three-dimensional normal grain growth more completely. Comparative investigation on the three-dimensional and the cross-sectional characteristics of norm... An appropriate Monte Carlo method was developed to simulate the three-dimensional normal grain growth more completely. Comparative investigation on the three-dimensional and the cross-sectional characteristics of normal grain growth was done. It was found that the time exponent of grain growth determined from cross-section exhibits the same rule of increasing slowly with time and approaching the theoretical value n = 0.5 of steadygrain growth as the three-dimensional (3-D) system. From change of the number of grains per unit area with timemeasured in cross-section, the state of 3-D normal grain growth may be predicted. The gtain size distribution incross-section is different from that in 3-D system and can not express the evolution characteristic of the 3-D distribution. Furthermore, there exists statistical connection between the topological parameters in cross-section and thosein three-dimensions. 展开更多
关键词 Monte Carlo simulation normal grain growth three-dimension cross-section CHARACTERISTICS
在线阅读 下载PDF
Three-Dimensional Rigid-Plastic FEM Simulation of Bulk Forming Processes with New Contact and Remeshing Techniques 被引量:1
12
作者 Debin Shan and Youngsuk Kim School of Mechanical Engineering, Kyungpook National University, Taegu 702-70 1, South Korea Hyunsoo Kim Graduate School of Mechanical Engineering, Kyungpook National University, Taegu 702-701, South Korea E-mail: shandb@public 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第3期329-332,共4页
Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic... Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic FEM code has been developed. Isothermal forging process of a cylindrical housing has been simulated. The simulation results show that the given techniques and the FEM code are reasonable and feasible for three-dimensional bulk forming processes. 展开更多
关键词 three-dimensional Rigid-Plastic FEM simulation of Bulk Forming Processes with New Contact and Remeshing Techniques FEM simulation
在线阅读 下载PDF
Three-dimensional Cure Simulation of Stiffened Thermosetting Composite Panels 被引量:13
13
作者 Guangquan Yue,Boming Zhang ,Fuhong Dai and Shanyi Du Center for Composite Materials,Harbin Institute of Technology,Harbin 150080,China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2010年第5期467-471,共5页
Stiffened thermosetting composite panels were fabricated with co-curing processing.In the co-curing processing,the temperature distribution in the composite panels was nonuniform.An investigation into the threedimensi... Stiffened thermosetting composite panels were fabricated with co-curing processing.In the co-curing processing,the temperature distribution in the composite panels was nonuniform.An investigation into the threedimensional cure simulation of T-shape stiffened thermosetting composite panels was presented.Flexible tools and locating tools were considered in the cure simulation.Temperature distribution in the composites was predicted as a function of the autoclave temperature history.A nonlinear transient heat transfer finite element model was developed to simulate the curing process of stiffened thermosetting composite panels.And a simulation example was presented to demonstrate the use of the present finite element procedure for analyzing composite curing process.The glass/polyester structure was investigated to provide insight into the nonuniform cure process and the effect of flexible tools and locating tools on temperature distribution.Temperature gradient in the intersection between the skin and the flange was shown to be strongly dependent on the structure of the flexible tools and the thickness of the skin. 展开更多
关键词 Thermosetting composite Stiffened panels CO-CURING Numerical simulation
原文传递
A Preconditioned Multigrid Method for Efficient Simulation of Three-dimensional Compressible and Incompressible Flows 被引量:15
14
作者 Han Zhonghua He Fei Song Wenping Qiao Zhide 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第4期289-296,共8页
To develop an efficient and robust aerodynamic analysis method for numerical optimization designs of wing and complex configuration, a combination of matrix preconditioning and multigrid method is presented and invest... To develop an efficient and robust aerodynamic analysis method for numerical optimization designs of wing and complex configuration, a combination of matrix preconditioning and multigrid method is presented and investigated. The time derivatives of three-dimensional Navier-Stokes equations are preconditioned by Choi-Merkle preconditioning matrix that is originally designed for two-dimensional low Mach number viscous flows. An extension to three-dimensional viscous flow is implemented, and a method improving the convergence for transonic flow is proposed. The space discretizaition is performed by employing a finite-volume cell-centered scheme and using a central difference. The time marching is based on an explicit Rtmge-Kutta scheme proposed by Jameson. An efficient FAS multigrid method is used to accelerate the convergence to steady-state solutions. Viscous flows over ONERA M6 wing and M100 wing are numerically simulated with Mach numbers ranging from 0.010 to 0.839. The inviscid flow over the DLR-F4 wing-body configuration is also calculated to preliminarily examine the performance of the presented method for complex configuration. The computed results are compared with the experimental data and good agreement is achieved. It is shown that the presented method is efficient and robust for both compressible and incompressible flows and is very attractive for aerodynamic optimization designs of wing and complex configuration. 展开更多
关键词 Navier-Stokes equations preconditioning method multigrid method numerical simulation
在线阅读 下载PDF
Numerical Simulation of Nonlinear Three-Dimensional Waves in Water of Arbitrary Varying Topography 被引量:10
15
作者 Hong, Guangwen Zhang, Hongsheng Feng, Weibing 《China Ocean Engineering》 SCIE EI 1998年第4期383-404,共22页
The numerical simulation is based on the authors' high-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth. Corresponding finite-difference equations and general condit... The numerical simulation is based on the authors' high-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth. Corresponding finite-difference equations and general conditions for open and fixed natural boundaries with an arbitrary reflection coefficient and phase shift are also given in this paper. The systematical tests of numerical simulation show that the theoretical models, the finite-difference algorithms and the boundary conditions can give good calculation results for the wave propagating in shallow and deep water with an arbitrary slope varying from gentle to steep. 展开更多
关键词 numerical simulation NONLINEAR 3D waves boundary conditions
在线阅读 下载PDF
Three-Dimensional Tidal Model and Its Application to Numerical Simulation of Water Quality in Coastal Waters 被引量:7
16
作者 Shen Yongming , Li Yucheng and Zhao Wenqian Associate Professor, Department of Civil Engineering, Dalian University of Technology, Dalian 116023 Professor, Department of Civil Engineering, Dalian University of Technology, Dalian 116023 Professor, Department of Civil Engineering, Sichuan Union University, Chengdu 610065 《China Ocean Engineering》 SCIE EI 1994年第4期425-436,共12页
The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water qu... The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water quality. The eddy viscosities and diffusivities are computed from the Prandtl mixing length model. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter. The model simulates full oxygen and nutrient balance, primary productivity and the transport, reaction mechanism and fate of pollutants over tidal time-scales. The model is applied to numerical simulation of tidal flows and water quality in Dalian Bay. The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data. 展开更多
关键词 three-dimension tidal flows water quality ECOSYSTEM mixing length model coastal waters
在线阅读 下载PDF
Three-dimensional simulation of sintering crunodes of metal powders or fibers by level set method 被引量:1
17
作者 谌东东 郑洲顺 +2 位作者 王建忠 汤慧萍 曲选辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2446-2455,共10页
The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equatio... The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equation, and the model is numerically solved by the level set method. The three-dimensional numerical simulations of two metal powders and fibers(the fiber angle is 0° or 90°) are implemented by this mathematical model, respectively. The numerical simulation results accord with the experimental ones. The sintering neck growth trends of metal powders and metal fibers are similar. The sintering neck radius of metal fibers is larger than that of metal powders. The difference of the neck radius is caused by the difference of geometric structure which makes an important influence on the curvature affecting the migration rate of atoms. 展开更多
关键词 metal fiber metal powder sintering crunodes mean curvature three-dimensional simulation
在线阅读 下载PDF
Numerical Simulation of Water Exchange Characteristics of the Jiaozhou Bay Based on A Three-Dimensional Lagrangian Model 被引量:15
18
作者 王翠 张学庆 孙英兰 《China Ocean Engineering》 SCIE EI 2009年第2期277-290,共14页
Based on theory of three-dimensional hydrodynamics, an Euler-Lagrangian particle model is established to study the transport and water exchange capability in the Jiaozhou Bay. The three-dimensional hydrodynamic model,... Based on theory of three-dimensional hydrodynamics, an Euler-Lagrangian particle model is established to study the transport and water exchange capability in the Jiaozhou Bay. The three-dimensional hydrodynamic model, driven by tide and wind, is used to study the effects of wetting and drying of estuarine intertidal flats by the dry-wet grid technology based on the Estuarine, Coastal and Ocean Model (ECOM). The particle model includes the advection and the diffusion processes, of which the advection process is simulated with a certain method, and the diffusion process is simulated with the random walk method. The effect of the intertidal zone, the turbulent diffusion and the timescales of the water exchange are also discussed. The results show that a moving boundary model can simulate the transport process of the particle in the intertidal zone, where the particles are transported for a longer distance than that of the stationary result. Simulations with and without the turbulent random walk show that the effect of turbulent diffusion is very effective at spreading particles throughout the estuary and speeding up the particle movement. The spatial distribution of residence time is given to quantify the water exchange capability that has very important ramifications to water quality. The effect of wind on the water exchange is also examined and the southeasterly wind in summer tends to block the water exchange near the northeast coast, while the northerly wind in winter speeds up the transport process. These results indicate that the Lagrangian particle model is applicable and has a large potential to help understanding the water exchange capability in estuaries, which can also be useful to simulate the transport process of contaminant. 展开更多
关键词 water exchange residence time numerical simulation turbulent diffusion Lagrangian particle tracking Jiaozhou Bay
在线阅读 下载PDF
Simulation-Based Construction of Three-Dimensional Process Model for Punching Cartridge Cases 被引量:1
19
作者 Zhifang Wei Yechang Hu +1 位作者 Wu Lyu Jianzhong Gao 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期276-284,共9页
A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching a... A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching and forming process of cartridge cases are established,and the corresponding simulation result model of each intermediate procedure is obtained by continuously performing the forming process simulation. The simulation model cannot annotate size and process information due to poor interface between DEFORM software and CAD software. Thus,a 3D annotation module is developed with secondary development technology of UG NX software. Consequently,the final process model with dimension and process information is obtained. Then,with the current 3D process management system,the 3D punching and forming process design of cartridge cases can be completed further. An example is also provided to illustrate that the relative error between the simulation process model and the physical model is less than 2%,which proves the validity and reliability of the proposed method in this study. 展开更多
关键词 punching three-dimensional process model finite element simulation three-dimensional annotation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部