期刊文献+
共找到369,333篇文章
< 1 2 250 >
每页显示 20 50 100
Emittance optimization of gridded thermionic‑cathode electron gun for high‑quality beam injectors
1
作者 Xiao‑Yu Peng Hao Hu +3 位作者 Tong‑Ning Hu Jian Pang Jian‑Jun Deng Guang‑Yao Feng 《Nuclear Science and Techniques》 2026年第1期119-129,共11页
Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced... Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced by the injector critically influences the performance of the entire accelerator-based scientific research apparatus.The injectors of such facilities usually use photocathode and thermionic-cathode electron guns.Although the photocathode injector can produce electron beams of excellent quality,its associated laser system is massive and intricate.The thermionic-cathode electron gun,especially the gridded electron gun injector,has a simple structure capable of generating numerous electron beams.However,its emittance is typically high.In this study,methods to reduce beam emittance are explored through a comprehensive analysis of various grid structures and preliminary design results,examining the evolution of beam phase space at different grid positions.An optimization method for reducing the emittance of a gridded thermionic-cathode electron gun is proposed through theoretical derivation,electromagnetic-field simulation,and beam-dynamics simulation.A 50%reduction in emittance was achieved for a 50 keV,1.7 A electron gun,laying the foundation for the subsequent design of a high-current,low-emittance injector. 展开更多
关键词 Electron gun Gridded Beam injector Beam dynamics Emittance optimization
在线阅读 下载PDF
Multi-objective spatial optimization by considering land use suitability in the Yangtze River Delta region
2
作者 CHENG Qianwen LI Manchun +4 位作者 LI Feixue LIN Yukun DING Chenyin XIAO Lishan LI Weiyue 《Journal of Geographical Sciences》 2026年第1期45-78,共34页
Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method f... Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers. 展开更多
关键词 multi-objective spatial optimization multi-scenario simulation ecological protection importance comprehensive agricultural productivity urban sustainable development land-use suitability
原文传递
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System 被引量:1
3
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
4
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption Structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
Enhanced Lead and Zinc Removal via Prosopis Cineraria Leaves Powder: A Study on Isotherms and RSM Optimization 被引量:1
5
作者 Rakesh Namdeti Gaddala Babu Rao +7 位作者 Nageswara Rao Lakkimsetty Noor Mohammed Said Qahoor Naveen Prasad B.S Uma Reddy Meka Prema.P.M Doaa Salim Musallam Samhan Al-Kathiri Muayad Abdullah Ahmed Qatan Hafidh Ahmed Salim Ba Alawi 《Journal of Environmental & Earth Sciences》 2025年第1期292-305,共14页
This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Pro... This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Prosopis cineraria,commonly known as Khejri,is a drought-resistant tree with significant promise in environmental applications.The research employed a Central Composite Design(CCD)to examine the independent and combined effects of key process variables,including initial metal ion concentration,contact time,pH,and PCLP dosage.RSM was used to develop mathematical models that explain the relationship between these factors and the efficiency of metal removal,allowing the determination of optimal operating conditions.The experimental results indicated that the Langmuir isotherm model was the most appropriate for describing the biosorption of both metals,suggesting favorable adsorption characteristics.Additionally,the D-R isotherm confirmed that chemisorption was the primary mechanism involved in the biosorption process.For lead removal,the optimal conditions were found to be 312.23 K temperature,pH 4.72,58.5 mg L-1 initial concentration,and 0.27 g biosorbent dosage,achieving an 83.77%removal efficiency.For zinc,the optimal conditions were 312.4 K,pH 5.86,53.07 mg L-1 initial concentration,and the same biosorbent dosage,resulting in a 75.86%removal efficiency.These findings highlight PCLP’s potential as an effective,eco-friendly biosorbent for sustainable heavy metal removal in water treatment. 展开更多
关键词 Prosopis Cineraria LEAD ZINC Isotherms optimization
在线阅读 下载PDF
Mole-inspired Forepaw Design and Optimization Based on Resistive Force Theory 被引量:1
6
作者 Tao Zhang Zhaofeng Liang +8 位作者 Hongmin Zheng Zibiao Chen Kunquan Zheng Ran Xu Jiabin Liu Haifei Zhu Yisheng Guan Kun Xu Xilun Ding 《Journal of Bionic Engineering》 2025年第1期171-180,共10页
Moles exhibit highly effective capabilities due to their unique body structures and digging techniques,making them ideal models for biomimetic research.However,a major challenge for mole-inspired robots lies in overco... Moles exhibit highly effective capabilities due to their unique body structures and digging techniques,making them ideal models for biomimetic research.However,a major challenge for mole-inspired robots lies in overcoming resistance in granular media when burrowing with forelimbs.In the absence of effective forepaw design strategies,most robotic designs rely on increased power to enhance performance.To address this issue,this paper employs Resistive Force Theory to optimize mole-inspired forepaws,aiming to enhance burrowing efficiency.By analyzing the relationship between geometric parameters and burrowing forces,we propose several forepaw design variations.Through granular resistance assessments,an effective forepaw configuration is identified and further refined using parameters such as longitudinal and transverse curvature.Subsequently,the Particle Swarm Optimization algorithm is applied to determine the optimal forepaw design.In force-loading tests,the optimized forepaw demonstrated a 79.44%reduction in granular lift force and a 22.55%increase in propulsive force compared with the control group.In robotic burrowing experiments,the optimized forepaw achieved the longest burrow displacement(179.528 mm)and the lowest burrowing lift force(0.9355 mm/s),verifying its effectiveness in reducing the lift force and enhancing the propulsive force. 展开更多
关键词 Resistive force theory Mole-inspired forepaw design Structural optimization Bioinspired robot
在线阅读 下载PDF
Optimization method of heat transfer architecture for aircraft fuel thermal management systems 被引量:1
7
作者 Jiangtao XU Haotian TAN +3 位作者 Jitao WU Jiayi HAN Sirong SU Hongqing LYU 《Chinese Journal of Aeronautics》 2025年第8期300-312,共13页
Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers ... Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture. 展开更多
关键词 Fuel thermal management systems Architecture optimization Graph theory Fuel heat sink Fuel distribution
原文传递
Multi-Timescale Optimization Scheduling of Distribution Networks Based on the Uncertainty Intervals in Source-Load Forecasting 被引量:1
8
作者 Huanan Yu Chunhe Ye +3 位作者 Shiqiang Li He Wang Jing Bian Jinling Li 《Energy Engineering》 2025年第6期2417-2448,共32页
With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation ... With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load.Accounting for these issues,this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks.First,the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts,based on which,the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed.Subsequently,a multi-timescale optimization framework was constructed,incorporating the generation and load forecast uncertainties.This framework included optimization models for dayahead scheduling,intra-day optimization,and real-time adjustments,aiming to meet flexibility needs across different timescales and improve the economic efficiency of the grid.Furthermore,an improved soft actor-critic algorithm was introduced to enhance the uncertainty exploration capability.Utilizing a centralized training and decentralized execution framework,a multi-agent SAC network model was developed to improve the decision-making efficiency of the agents.Finally,the effectiveness and superiority of the proposed method were validated using a modified IEEE-33 bus test system. 展开更多
关键词 Renewable energy distribution networks source-load uncertainty interval flexible scheduling soft actor-critic algorithm optimization model
在线阅读 下载PDF
Online Optimization to Suppress the Grid-Injected Power Deviation of Wind Farms with Battery-Hydrogen Hybrid Energy Storage Systems 被引量:1
9
作者 Min Liu Qiliang Wu +4 位作者 Zhixin Li Bo Zhao Leiqi Zhang Junhui Li Xingxu Zhu 《Energy Engineering》 2025年第4期1403-1424,共22页
To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy... To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency. 展开更多
关键词 Battery-hydrogen hybrid energy storage systems grid-injected power deviations measurement feedback online optimization energy states
在线阅读 下载PDF
Simulation and Optimization of Coupling Dynamic Response of Steel Catenary Riser for a Semi-Submersible Platform Under Harsh Conditions in the South China Sea 被引量:1
10
作者 YIN Qi-shuai YAN Xin-ye +6 位作者 ZHU Hong CHEN Ke-jin YANG Jin LIU Lu-yao GAO Bing-zhen GUO Ying-ying MA Yong-qi 《China Ocean Engineering》 2025年第5期917-927,共11页
Steel catenary riser represents the pioneering riser technology implemented in China’s deep-sea oil and gas opera-tions.Given the complex mechanical conditions of the riser,extensive research has been conducted on it... Steel catenary riser represents the pioneering riser technology implemented in China’s deep-sea oil and gas opera-tions.Given the complex mechanical conditions of the riser,extensive research has been conducted on its dynamic analysis and structural design.This study investigates a deep-sea oil and gas field by developing a coupled model of a semi-submersible platform and steel catenary riser to analyze it mechanical behavior under extreme marine condi-tions.Through multi-objective optimization methodology,the study compares and analyzes suspension point tension and touchdown point stress under various conditions by modifying the suspension position,suspension angle,and catenary length.The optimal configuration parameters were determined:a suspension angle of 12°,suspension position in the southwest direction of the column,and a catenary length of approximately 2000 m.These findings elucidate the impact of configuration parameters on riser dynamic response and establish reasonable parameter layout ranges for adverse sea conditions,offering valuable optimization strategies for steel catenary riser deployment in domestic deep-sea oil and gas fields. 展开更多
关键词 steel catenary riser(SCR) multi-objective optimization riser configuration parameters harsh condi-tions dynamic analysis South China Sea
在线阅读 下载PDF
A novel optimization scheme for structure and balance of compound balanced beam pumping units using the PSO, GA, and GWO algorithms
11
作者 Jie Wang Quan-Ying Guo +3 位作者 Cheng-Long Fu Gang Dai Cheng-Yu Xia Li-Qin Qian 《Petroleum Science》 2025年第3期1340-1359,共20页
The beam pumping unit(BPU)remains the most stable and reliable equipment for crude oil lifting.Despite its simple four-link mechanism,the structural design of the BPU presents a constrained single-objective optimizati... The beam pumping unit(BPU)remains the most stable and reliable equipment for crude oil lifting.Despite its simple four-link mechanism,the structural design of the BPU presents a constrained single-objective optimization problem.Currently,a comprehensive framework for the structural design and optimization of compound balanced BPUs is lacking.Therefore,this study proposes a novel structural design scheme for BPUs,aiming to meet the practical needs of designers and operators by sequentially optimizing both the dynamic characteristics and balance properties of the BPUs.A dynamic model of compound balanced BPU was established based on D'Alembert's principle.The constraints for structural dimensions were formulated based on the actual operational requirements and design experience with BPUs.To optimize the structure,three algorithms were employed:the particle swarm optimization(PSO)algorithm,the genetic algorithm(GA),and the gray wolf optimization(GWO)algorithm.Each newly generated individuals are regulated by constraints to ensure the rationality of the outcomes.Furthermore,the integration of three algorithms ensures the increased likelihood of attaining the global optimal solution.The polished rod acceleration of the optimized structure is significantly reduced,and the dynamic characteristics of the up and down strokes are essentially symmetrical.Additionally,these three algorithms are also applied to the balance optimization of BPUs based on the measured dynamometer card.The calculation results demonstrate that the GWO-based optimization method exhibits excellent robustness in terms of structural optimization by enhancing the operational smoothness of the BPU,as well as in balance optimization by achieving energy conservation.By applying the optimization scheme proposed in this paper,the CYJW7-3-23HF type of BPU was designed,achieving a maximum polished rod acceleration of±0.675 m/s^(2) when operating at a stroke of 6 min^(−1).When deployed in two wells,the root-mean-square(RMS)torque was minimized,reaching values of 7.539 kN·m and 12.921 kN·m,respectively.The proposed design method not only contributes to the personalized customization but also improves the design efficiency of compound balanced BPUs. 展开更多
关键词 Compound balanced BPU Dynamic model Structural optimization Balance optimization CONSTRAINTS
原文传递
Research on the Performance Optimization of a Hydraulic PTO System for a“Dolphin 1”Oscillating-Body Wave Energy Converter
12
作者 LAI Wen-bin LI Jia-long +2 位作者 RONG Si-zhang YANG Hong-kun ZHENG Xiong-bo 《China Ocean Engineering》 2025年第1期166-178,共13页
In this work,an oscillating-body wave energy converter(OBWEC)with a hydraulic power take-off(PTO)system named“Dolphin 1”is designed,in which the hydraulic PTO system is equivalent to a transfer station and plays a c... In this work,an oscillating-body wave energy converter(OBWEC)with a hydraulic power take-off(PTO)system named“Dolphin 1”is designed,in which the hydraulic PTO system is equivalent to a transfer station and plays a crucial role in ensuring the stability of the electrical energy output and the efficiency of the overall system.A corresponding mathematical model for the hydraulic PTO system has been established,the factors that influence its performance have been studied,and an algorithm for solving the optimal working pressure has been derived in this paper.Moreover,a PID control method to enable the hydraulic PTO system to automatically achieve optimal performance under different wave conditions has been designed.The results indicate that,compared with single-chamber hydraulic cylinders,double-chamber hydraulic cylinders have a wider application range and greater performance;the accumulator can stabilize the output power of the hydraulic PTO system and slightly increase it;excessively large or small hydraulic motor displacement hinders system performance;and each wave condition corresponds to a unique optimal working pressure for the hydraulic PTO system.In addition,the relationship between the optimal working pressure P_(m)and the pressure P_(h)of the wave force acting on the piston satisfies P_(m)^(2)=∫_(t_(1))^(t_(2))P_(h)^(2)dt/(t_(2)-t_(1)).Furthermore,adjusting the hydraulic motor displacement automatically via a PID controller ensures that the actual working pressure of the hydraulic PTO system consistently reaches or approaches its theoretically optimal value under various wave conditions,which is a very effective control method for enhancing the performance of the hydraulic PTO system. 展开更多
关键词 hydraulic PTO system performance optimization wave energy converter optimal working pressure PID control
在线阅读 下载PDF
Inversion of Rayleigh wave dispersion curves based on the Osprey Optimization Algorithm
13
作者 Zhi Li Hang-yu Yue +3 位作者 De-xi Ma Yu Fu Jing-yang Ni Jin-jun Pi 《Applied Geophysics》 2025年第3期804-819,896,897,共18页
In Rayleigh wave exploration,the inversion of dispersion curves is a crucial step for obtaining subsurface stratigraphic information,characterized by its multi-parameter and multi-extremum nature.Local optimization al... In Rayleigh wave exploration,the inversion of dispersion curves is a crucial step for obtaining subsurface stratigraphic information,characterized by its multi-parameter and multi-extremum nature.Local optimization algorithms used in dispersion curve inversion are highly dependent on the initial model and are prone to being trapped in local optima,while classical global optimization algorithms often suffer from slow convergence and low solution accuracy.To address these issues,this study introduces the Osprey Optimization Algorithm(OOA),known for its strong global search and local exploitation capabilities,into the inversion of dispersion curves to enhance inversion performance.In noiseless theoretical models,the OOA demonstrates excellent inversion accuracy and stability,accurately recovering model parameters.Even in noisy models,OOA maintains robust performance,achieving high inversion precision under high-noise conditions.In multimode dispersion curve tests,OOA effectively handles higher modes due to its efficient global and local search capabilities,and the inversion results show high consistency with theoretical values.Field data from the Wyoming region in the United States and a landfill site in Italy further verify the practical applicability of the OOA.Comprehensive test results indicate that the OOA outperforms the Particle Swarm Optimization(PSO)algorithm,providing a highly accurate and reliable inversion strategy for dispersion curve inversion. 展开更多
关键词 surface wave exploration dispersion curve inversion Osprey optimization Algorithm Particle Swarm optimization geophysical inversion
在线阅读 下载PDF
Parameters Optimization of Decoy-State Phase-Matching Quantum Key Distribution Based on the Nature-Inspired Algorithms
14
作者 Chang Liu Yue Li +4 位作者 Haoyang Wang Kaiyi Shi Duo Ma Yujia Zhang Haiqiang Ma 《Chinese Physics Letters》 2025年第1期23-27,共5页
Phase-matching quantum-key distribution(PM-QKD)has achieved significant results in various practical applications.However,real-time communication requires dynamic adjustment and optimization of key parameters during c... Phase-matching quantum-key distribution(PM-QKD)has achieved significant results in various practical applications.However,real-time communication requires dynamic adjustment and optimization of key parameters during communication.In this letter,we predict the PM-QKD parameters using nature-inspired algorithms(NIAs).The results are obtained from an exhaustive traversal algorithm(ETA),which serves as a benchmark.We mainly study the parameter optimization effects of the two NIAs:ant colony optimization(ACO)and the genetic algorithm(GA).The configuration of the inherent parameters of these algorithms in the decoy-state PM-QKD is also discussed.The simulation results indicate that the parameters obtained by the ACO exhibit superior convergence and stability,whereas the GA results are relatively scattered.Nevertheless,more than 97%of the key rates predicted by both algorithms are highly consistent with the optimal key rate.Moreover,the relative error of the key rates remained below 10%.Furthermore,NIAs maintain power consumption below 8 W and require three orders of magnitude less computing time than ETA. 展开更多
关键词 optimization SCATTERED LETTER
原文传递
Research on the Optimal Scheduling Model of Energy Storage Plant Based on Edge Computing and Improved Whale Optimization Algorithm
15
作者 Zhaoyu Zeng Fuyin Ni 《Energy Engineering》 2025年第3期1153-1174,共22页
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ... Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function. 展开更多
关键词 Energy storage plant edge computing optimal energy scheduling improved whale optimization algorithm
在线阅读 下载PDF
Research on the balance optimization algorithm of image recognition accuracy and speed based on autocollimator measurement
16
作者 LI Renpu MA Long +3 位作者 CUI Jiwen GUO Junqi Andrei KULIKOV WEN Dandan 《Optoelectronics Letters》 2025年第2期121-128,共8页
The autocollimator is an important device for achieving precise,small-angle,non-contact measurements.It primarily obtains angular parameters of a plane target mirror indirectly by detecting the position of the imaging... The autocollimator is an important device for achieving precise,small-angle,non-contact measurements.It primarily obtains angular parameters of a plane target mirror indirectly by detecting the position of the imaging spot.There is limited report on the core algorithmic techniques in current commercial products and recent scientific research.This paper addresses the performance requirements of coordinate reading accuracy and operational speed in autocollimator image positioning.It proposes a cross-image center recognition scheme based on the Hough transform and another based on Zernike moments and the least squares method.Through experimental evaluation of the accuracy and speed of both schemes,the optimal image recognition scheme balancing measurement accuracy and speed for the autocollimator is determined.Among these,the center recognition method based on Zernike moments and the least squares method offers higher measurement accuracy and stability,while the Hough transform-based method provides faster measurement speed. 展开更多
关键词 image optimization RECOGNITION
原文传递
Optimization of Laminating Angles for Skirt Panels of EMUs Front Using Composite Materials Based on the Cheetah Optimizer
17
作者 Yuqing Ma Chunge Nie Siqun Ma 《Journal of Electronic Research and Application》 2025年第5期1-6,共6页
With the development of composite materials,their lightweight and high-strength characteristics have caused more widespread use from aerospace applications to automotive and rail transportation sectors,significantly r... With the development of composite materials,their lightweight and high-strength characteristics have caused more widespread use from aerospace applications to automotive and rail transportation sectors,significantly reducing the energy consumption during the operation of EMUs(Electric Multiple Units).This study aims to explore the application of composite materials in the lightweight design of EMU front skirts and proposes a design method based on threedimensional Hashin failure criteria and the Cheetah Optimizer(CO)to achieve maximum lightweight efficiency.The UMAT subroutine was developed based on the three-dimensional Hashin failure criteria to calculate failure parameters,which were used as design parameters in the CO.The model calculations and result extraction were implemented in MATLAB,and the Cheetah Optimizer iteratively determined the optimal laminating angle design that minimized the overall failure factor.After 100 iterations,ensuring structural integrity,the optimized design reduced the weight of the skirt panel by 60% compared to the original aluminum alloy structure,achieving significant lightweight benefits.This study provides foundational data for the lightweight design of EMUs. 展开更多
关键词 Composite Cheetah Optimizer EMU FEA
在线阅读 下载PDF
Structural Optimization and Innovative Practice in the Mechanical Design of Amusement Equipment
18
作者 Bin Liu 《Journal of Electronic Research and Application》 2025年第5期93-99,共7页
Materials mechanics and structural dynamics provide theoretical support for the structural optimization of amusement facilities.The design code system guides the design process,covering aspects such as strength and fa... Materials mechanics and structural dynamics provide theoretical support for the structural optimization of amusement facilities.The design code system guides the design process,covering aspects such as strength and fatigue life.This paper introduces optimization methods like standardized module interfaces and variable density methods,as well as topics related to finite element simulation,reliability enhancement,innovative practices,and their significance. 展开更多
关键词 Amusement equipment Structural optimization Mechanical design
在线阅读 下载PDF
Research on the Optimization of China’s Pharmacovigilance Organization Management
19
作者 Zhang Zhi Sun Lihua 《Asian Journal of Social Pharmacy》 2025年第1期10-19,共10页
Objective To analyze the problems of China’s pharmacovigilance organization system,and to provide targeted suggestions for improving it.Methods The relevant literature at home and abroad was reviewed to compared the ... Objective To analyze the problems of China’s pharmacovigilance organization system,and to provide targeted suggestions for improving it.Methods The relevant literature at home and abroad was reviewed to compared the differences in pharmacovigilance organizations in the United States,the European Union,Japan and China.Then,the problems of China’s pharmacovigilance organization management were found out.Results and Conclusion China’s pharmacovigilance organizational system has problems such as inadequate organizational setup,immature institutional construction,no coordination mechanism for pharmacovigilance practice,and industry associations of third-party organizations having no role to play.It is recommended to carry out theoretical and methodological research on the pharmacovigilance organizational system to provide practical guidance for optimizing the system with Chinese characteristics. 展开更多
关键词 pharmacovigilance organization system optimization policy suggestion
暂未订购
Research on the Collaborative Optimization of the Upgrading,Transformation and Maintenance of Large Equipment for Offshore Oil Extraction
20
作者 Yanhong Guo 《Journal of Electronic Research and Application》 2025年第6期186-193,共8页
This study investigates the collaborative optimization of upgrading,retrofitting,and maintaining large offshore oil extraction equipment.It examines the key challenges and interdependencies inherent in these processes... This study investigates the collaborative optimization of upgrading,retrofitting,and maintaining large offshore oil extraction equipment.It examines the key challenges and interdependencies inherent in these processes and proposes integrated solutions,including sensor-network-based monitoring and digital twin-driven management platforms.The findings demonstrate notable improvements in operational efficiency and reductions in equipment downtime,underscoring both the economic and safety benefits of the proposed approach and providing a reference framework for future optimization strategies in offshore engineering. 展开更多
关键词 Offshore oil extraction Equipment optimization COLLABORATIVE
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部