This paper proposes the modeling and simulation technique to analyze and design a Boost converter using generalized minimum variance method with discrete-time quasi-sliding mode to adjust the converter switch through ...This paper proposes the modeling and simulation technique to analyze and design a Boost converter using generalized minimum variance method with discrete-time quasi-sliding mode to adjust the converter switch through a pulse width modulation (PWM), so as to enhance a stable output voltage. The control objective is to maintain the sensed output voltage stable, constant and equal to some constant reference voltage (8 volt) in the load resistance variation (24, 48, 240) Ω and input voltage variation (20, 24, 28) volt circumstances. This control strategy is very appropriate for the digitally controlled power converter and for the system requirement accomplishment, resulting high output voltage accuracy. The performance degradation in practical implementation can be expected due to noise, PWM nonlinearities, and components imperfection. The digital simulation using MATHLAB/Simulink is performed to validate the functionality of the system.展开更多
为了测量反应堆内中子注量率分布,保证反应堆内活化55 M n-58 Ni合金探测片γ计数测量的可靠性,本文研制了中子注量率分布测量装置中9通道放大甄别器。多通道放大甄别器性能指标测试与应用测试结果表明:每个通道放大器增益1~21连续...为了测量反应堆内中子注量率分布,保证反应堆内活化55 M n-58 Ni合金探测片γ计数测量的可靠性,本文研制了中子注量率分布测量装置中9通道放大甄别器。多通道放大甄别器性能指标测试与应用测试结果表明:每个通道放大器增益1~21连续可调、甄别器阈值独立连续可调,具有最大计数率高、灵敏度高、稳定性好、系统抗串扰能力强等优点;放大器增益长期稳定性≤1%,甄别器最小输入脉冲宽度≥0.1μs ,甄别器最大计数率≤4×106 s-1,能用于实时长期稳定测量反应堆内中子注量率分布。展开更多
文摘This paper proposes the modeling and simulation technique to analyze and design a Boost converter using generalized minimum variance method with discrete-time quasi-sliding mode to adjust the converter switch through a pulse width modulation (PWM), so as to enhance a stable output voltage. The control objective is to maintain the sensed output voltage stable, constant and equal to some constant reference voltage (8 volt) in the load resistance variation (24, 48, 240) Ω and input voltage variation (20, 24, 28) volt circumstances. This control strategy is very appropriate for the digitally controlled power converter and for the system requirement accomplishment, resulting high output voltage accuracy. The performance degradation in practical implementation can be expected due to noise, PWM nonlinearities, and components imperfection. The digital simulation using MATHLAB/Simulink is performed to validate the functionality of the system.