期刊文献+
共找到3,725篇文章
< 1 2 187 >
每页显示 20 50 100
A New Method to Calculate Nonlinear Optimal Perturbations for Ensemble Forecasting
1
作者 Junjie MA Wansuo DUAN +1 位作者 Zhuomin LIU Ye WANG 《Advances in Atmospheric Sciences》 2025年第5期952-967,共16页
Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly effi... Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly efficient calculations for O-CNOPs are still challenging in the field of ensemble forecasting.In this study,we combine a gradient-based iterative idea with the Gram‒Schmidt orthogonalization,and propose an iterative optimization method to compute O-CNOPs.This method is different from the original sequential optimization method,and allows parallel computations of O-CNOPs,thus saving a large amount of computational time.We evaluate this method by using the Lorenz-96 model on the basis of the ensemble forecasting ability achieved and on the time consumed for computing O-CNOPs.The results demonstrate that the parallel iterative method causes O-CNOPs to yield reliable ensemble members and to achieve ensemble forecasting skills similar to or even slightly higher than those produced by the sequential method.Moreover,the parallel method significantly reduces the computational time for O-CNOPs.Therefore,the parallel iterative method provides a highly effective and efficient approach for calculating O-CNOPs for ensemble forecasts.Expectedly,it can play an important role in the application of the O-CNOPs to realistic ensemble forecasts for high-impact weather and climate events. 展开更多
关键词 initial uncertainty conditional nonlinear optimal perturbation optimization method ensemble forecasting
在线阅读 下载PDF
Comparison of the City Water Consumption Short-Term Forecasting Methods 被引量:7
2
作者 刘洪波 张宏伟 《Transactions of Tianjin University》 EI CAS 2002年第3期211-215,共5页
There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and ... There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and predicting accuracy, speed, applicability. This article draws lessons from other realm mature methods after many years′ study. It′s systematically studied and compared to predict the water consumption in accuracy, speed, effect and applicability among the time series triangle function method, artificial neural network method, gray system theories method, wavelet analytical method. 展开更多
关键词 city water consumption short-term forecasting method comparison APPLICABILITY
在线阅读 下载PDF
A Literature Review of Wind Forecasting Methods 被引量:8
3
作者 Wen-Yeau Chang 《Journal of Power and Energy Engineering》 2014年第4期161-168,共8页
In this paper, an overview of new and current developments in wind forecasting is given where the focus lies upon principles and practical implementations. High penetration of wind power in the electricity system prov... In this paper, an overview of new and current developments in wind forecasting is given where the focus lies upon principles and practical implementations. High penetration of wind power in the electricity system provides many challenges to the power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help the power system operators reduce the risk of unreliability of electricity supply. This paper gives a literature survey on the categories and major methods of wind forecasting. Based on the assessment of wind speed and power forecasting methods, the future development direction of wind forecasting is proposed. 展开更多
关键词 LITERATURE SURVEY WIND forecasting CATEGORIES WIND SPEED and Power forecasting methodS
暂未订购
Improving the Seasonal Forecast of Summer Precipitation in China Using a Dynamical-Statistical Approach 被引量:3
4
作者 JIA Xiao-Jing ZHU Pei-Jun 《Atmospheric and Oceanic Science Letters》 2010年第2期100-105,共6页
A dynamical-statistical post-processing approach is applied to seasonal precipitation forecasts in China during the summer.The data are ensemble-mean seasonal forecasts in summer (June August) from four atmospheric ge... A dynamical-statistical post-processing approach is applied to seasonal precipitation forecasts in China during the summer.The data are ensemble-mean seasonal forecasts in summer (June August) from four atmospheric general circulation models (GCMs) in the second phase of the Canadian Historical Forecasting Project (HFP2) from 1969 to 2001.This dynamical-statistical approach is designed based on the relationship between the 500 geopotential height (Z500) forecast and the observed sea surface temperature (SST) to calibrate the precipitation forecasts.The results show that the post-processing can improve summer precipitation forecasts for many areas in China.Further examination shows that this post-processing approach is very effective in reducing the model-dependent part of the errors,which are associated with GCMs.The possible mechanisms behind the forecast's improvements are investigated. 展开更多
关键词 precipitation forecasts ensemble forecasts dynamical-statistical approach
在线阅读 下载PDF
Hourly traffic flow forecasting using a new hybrid modelling method 被引量:11
5
作者 LIU Hui ZHANG Xin-yu +2 位作者 YANG Yu-xiang LI Yan-fei YU Cheng-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1389-1402,共14页
Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t... Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series. 展开更多
关键词 traffic flow forecasting intelligent transportation system imperialist competitive algorithm variational mode decomposition group method of data handling bi-directional long and short term memory ELMAN
在线阅读 下载PDF
Comparison of Missing Data Imputation Methods in Time Series Forecasting 被引量:3
6
作者 Hyun Ahn Kyunghee Sun Kwanghoon Pio Kim 《Computers, Materials & Continua》 SCIE EI 2022年第1期767-779,共13页
Time series forecasting has become an important aspect of data analysis and has many real-world applications.However,undesirable missing values are often encountered,which may adversely affect many forecasting tasks.I... Time series forecasting has become an important aspect of data analysis and has many real-world applications.However,undesirable missing values are often encountered,which may adversely affect many forecasting tasks.In this study,we evaluate and compare the effects of imputationmethods for estimating missing values in a time series.Our approach does not include a simulation to generate pseudo-missing data,but instead perform imputation on actual missing data and measure the performance of the forecasting model created therefrom.In an experiment,therefore,several time series forecasting models are trained using different training datasets prepared using each imputation method.Subsequently,the performance of the imputation methods is evaluated by comparing the accuracy of the forecasting models.The results obtained from a total of four experimental cases show that the k-nearest neighbor technique is the most effective in reconstructing missing data and contributes positively to time series forecasting compared with other imputation methods. 展开更多
关键词 Missing data imputation method time series forecasting LSTM
在线阅读 下载PDF
Hybrid LEAP modeling method for long-term energy demand forecasting of regions with limited statistical data 被引量:4
7
作者 CHEN Rui RAO Zheng-hua LIAO Sheng-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2136-2148,共13页
An accurate long-term energy demand forecasting is essential for energy planning and policy making. However, due to the immature energy data collecting and statistical methods, the available data are usually limited i... An accurate long-term energy demand forecasting is essential for energy planning and policy making. However, due to the immature energy data collecting and statistical methods, the available data are usually limited in many regions. In this paper, on the basis of comprehensive literature review, we proposed a hybrid model based on the long-range alternative energy planning (LEAP) model to improve the accuracy of energy demand forecasting in these regions. By taking Hunan province, China as a typical case, the proposed hybrid model was applied to estimating the possible future energy demand and energy-saving potentials in different sectors. The structure of LEAP model was estimated by Sankey energy flow, and Leslie matrix and autoregressive integrated moving average (ARIMA) models were used to predict the population, industrial structure and transportation turnover, respectively. Monte-Carlo method was employed to evaluate the uncertainty of forecasted results. The results showed that the hybrid model combined with scenario analysis provided a relatively accurate forecast for the long-term energy demand in regions with limited statistical data, and the average standard error of probabilistic distribution in 2030 energy demand was as low as 0.15. The prediction results could provide supportive references to identify energy-saving potentials and energy development pathways. 展开更多
关键词 energy demand forecasting with limited data hybrid LEAP model ARIMA model Leslie matrix Monte-Carlo method
在线阅读 下载PDF
A New Multidimensional Time Series Forecasting Method Based on the EOF Iteration Scheme 被引量:3
8
作者 张邦林 刘洁 孙照渤 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1993年第2期243-247,共5页
In this paper a new .mnultidimensional time series forecasting scheme based on the empirical orthogonal function (EOF) stepwise iteration process is introduced. The scheme is tested in a series of forecast experiments... In this paper a new .mnultidimensional time series forecasting scheme based on the empirical orthogonal function (EOF) stepwise iteration process is introduced. The scheme is tested in a series of forecast experiments of Nino3 SST anomalies and Tahiti-Darwin SO index. The results show that the scheme is feasible and ENSO predictable. 展开更多
关键词 SST A New Multidimensional Time Series forecasting method Based on the EOF Iteration Scheme Nino EOF
在线阅读 下载PDF
Application of neural network model coupling with the partial least-squares method for forecasting watre yield of mine 被引量:2
9
作者 陈南祥 曹连海 黄强 《Journal of Coal Science & Engineering(China)》 2005年第1期40-43,共4页
Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, co... Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting. 展开更多
关键词 water yield of mine partial least square method neural network forecasting model
在线阅读 下载PDF
Time-Series Forecasting Using Autoregression Enhanced k-Nearest Neighbors Method 被引量:1
10
作者 潘峰 赵海波 刘华山 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第4期434-442,共9页
This study proposes two metrics using the nearest neighbors method to improve the accuracy of time-series forecasting. These two metrics can be treated as a hybrid forecasting approach to combine linear and non-linear... This study proposes two metrics using the nearest neighbors method to improve the accuracy of time-series forecasting. These two metrics can be treated as a hybrid forecasting approach to combine linear and non-linear forecasting techniques. One metric redefines the distance in k-nearest neighbors based on the coefficients of autoregression (AR) in time series. Meanwhile, an improvement to Kulesh's adaptive metrics in the nearest neighbors is also presented. To evaluate the performance of the two proposed metrics, three types of time-series data, namely deterministic synthetic data, chaotic time-series data and real time-series data, are predicted. Experimental results show the superiority of the proposed AR-enhanced k-nearest neighbors methods to the traditional k-nearest neighbors metric and Kulesh's adaptive metrics. 展开更多
关键词 time series forecasting nearest neighbors method autoregression (AR) metrics
原文传递
A New Type of Combination Forecasting Method Based on PLS——The Application of It in Cigarette Sales Forecasting 被引量:1
11
作者 Biao Luo Liang Wan +1 位作者 Wei-Wei Yan Jie-Jie Yu 《American Journal of Operations Research》 2012年第3期408-416,共9页
Cigarette market is a kind of monopoly market which is closed loop running, it depends on the plan mechanism to schedule producing, supplying and selling, but the “bullwhip effect” still exists. So it has a fundamen... Cigarette market is a kind of monopoly market which is closed loop running, it depends on the plan mechanism to schedule producing, supplying and selling, but the “bullwhip effect” still exists. So it has a fundamental significance to do sales forecasting work. It needs to considerate the double trend characteristics, history sales data and other main factors that affect cigarette sales. This paper depends on the panel data of A province’s cigarette sales, first we established three single forecasting models, after getting the predicted value of these single models, then using the combination forecasting method which based on PLS to predict the province’s cigarette sales of the next year. The results show that the prediction accuracy is good, which could provide a certain reference to cigarette sales forecasting in A province. 展开更多
关键词 PLS ARMA Time Series method Combination forecasting method SALES forecast
暂未订购
Forecasting available parking space with largest Lyapunov exponents method 被引量:3
12
作者 季彦婕 汤斗南 +2 位作者 郭卫红 BLYTHE T.Phil 王炜 《Journal of Central South University》 SCIE EI CAS 2014年第4期1624-1632,共9页
The techniques to forecast available parking space(APS) are indispensable components for parking guidance systems(PGS). According to the data collected in Newcastle upon Tyne, England, the changing characteristics of ... The techniques to forecast available parking space(APS) are indispensable components for parking guidance systems(PGS). According to the data collected in Newcastle upon Tyne, England, the changing characteristics of APS were studied. Thereafter, aiming to build up a multi-step APS forecasting model that provides richer information than a conventional one-step model, the largest Lyapunov exponents(largest LEs) method was introduced into PGS. By experimental tests conducted using the same dataset, its prediction performance was compared with traditional wavelet neural network(WNN) method in both one-step and multi-step processes. Based on the results, a new multi-step forecasting model called WNN-LE method was proposed, where WNN, which enjoys a more accurate performance along with a better learning ability in short-term forecasting, was applied in the early forecast steps while the Lyapunov exponent prediction method in the latter steps precisely reflect the chaotic feature in latter forecast period. The MSE of APS forecasting for one hour time period can be reduced from 83.1 to 27.1(in a parking building with 492 berths) by using largest LEs method instead of WNN and further reduced to 19.0 by conducted the new method. 展开更多
关键词 available parking space Lyapunov exponents wavelet neural network multi-step forecasting method
在线阅读 下载PDF
Forecasting Methods to Reduce Inventory Level in Supply Chain 被引量:1
13
作者 Tiantian Cai Xiaoshen Li 《Journal of Applied Mathematics and Physics》 2022年第2期301-310,共10页
Based on the two-level supply chain composed of suppliers and retailers, we assume that market demand is subject to an ARIMA(1, 1, 1). The supplier uses the minimum mean square error method (MMSE), the simple moving a... Based on the two-level supply chain composed of suppliers and retailers, we assume that market demand is subject to an ARIMA(1, 1, 1). The supplier uses the minimum mean square error method (MMSE), the simple moving average method (SMA) and the weighted moving average method (WMA) respectively to forecast the market demand. According to the statistical properties of stationary time series, we calculate the mean square error between supplier forecast demand and market demand. Through the simulation, we compare the forecasting effects of the three methods and analyse the influence of the lead-time L and the moving average parameter N on prediction. The results show that the forecasting effect of the MMSE method is the best, of the WMA method is the second, and of the SMA method is the last. The results also show that reducing the lead-time and increasing the moving average parameter improve the prediction accuracy and reduce the supplier inventory level. 展开更多
关键词 Supply Chain forecasting method ARIMA(1 1 1) Model Mean Square Error
在线阅读 下载PDF
Study and application of time series forecasting based on rough set and Kernel method
14
作者 杨淑霞 《Journal of Central South University》 SCIE EI CAS 2008年第S2期336-340,共5页
A support vector machine time series forecasting model based on rough set data preprocessing was proposed by combining rough set attribute reduction and support vector machine regression algorithm. First, remove the r... A support vector machine time series forecasting model based on rough set data preprocessing was proposed by combining rough set attribute reduction and support vector machine regression algorithm. First, remove the redundant attribute for forecasting from condition attribute by rough set method; then use the minimum condition attribute set obtained after the reduction and the corresponding initial data, reform a new training sample set which only retain the important attributes influencing the forecasting accuracy; study and train the support vector machine with the training sample obtained after reduction, and then input the reformed testing sample set according to the minimum condition attribute and corresponding initial data. The model was tested and the mapping relation was got between the condition attribute and forecasting variable. Eventually, power supply and demand were forecasted in this model. The average absolute error rates of power consumption of the whole society and yearly maximum load are respectively 14.21% and 13.23%. It shows that RS-SVM time series forecasting model has high forecasting accuracy. 展开更多
关键词 KERNEL method support VECTOR MACHINE ROUGH SET forecasting
在线阅读 下载PDF
Adaptive Modeling and Forecasting of Time Series by Combining the Methods of Temporal Differences with Neural Networks
15
作者 杨璐 洪家荣 黄梯云 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第1期94-98,共5页
This paper discusses the modeling method of time series with neural network. In order to improve the adaptability of direct multi-step prediction models, this paper proposes a method of combining the temporal differen... This paper discusses the modeling method of time series with neural network. In order to improve the adaptability of direct multi-step prediction models, this paper proposes a method of combining the temporal differences methods with back-propagation algorithm for updating the parameters continuously on the basis of recent data. This method can make the neural network model fit the recent characteristic of the time series as close as possible, therefore improves the prediction accuracy. We built models and made predictions for the sunspot series. The prediction results of adaptive modeling method are better than that of non-adaptive modeling methods. 展开更多
关键词 ss: NEURAL network TIME SERIES forecasting TEMPORAL DIFFERENCES methodS
在线阅读 下载PDF
TIME SERIES NEURAL NETWORK FORECASTING METHODS
16
作者 文新辉 陈开周 《Journal of Electronics(China)》 1995年第1期1-8,共8页
This paper has discussed the possibility and key problem to construct the neural network time series model, and three time series neural network forecasting methods has been proposed, i. e. a neural network nonlinear ... This paper has discussed the possibility and key problem to construct the neural network time series model, and three time series neural network forecasting methods has been proposed, i. e. a neural network nonlinear time series model, a neural network multi-dimension time series model and a neural network combining predictive model. These three methods are applied to real problems. The results show that these methods are better than the traditional one. Furthermore, the neural network methods are compared with the traditional method, and the constructed model of intellectual information forecasting system is given. 展开更多
关键词 INFORMATION THEORY INFORMATION PROCESSING NEURAL NETWORK forecasting method
在线阅读 下载PDF
Tide forecasting method based on dynamic weight distribution for operational evaluation
17
作者 Shao-wei QIU Zeng-chuan DONG +2 位作者 Fen XU Li SUN Sheng CHEN 《Water Science and Engineering》 EI CAS 2009年第1期25-31,共7页
Through analysis of operational evaluation factors for tide forecasting, the relationship between the evaluation factors and the weights of forecasters was examined. A tide forecasting method based on dynamic weight d... Through analysis of operational evaluation factors for tide forecasting, the relationship between the evaluation factors and the weights of forecasters was examined. A tide forecasting method based on dynamic weight distribution for operational evaluation was developed, and multiple-forecaster synchronous forecasting was realized while avoiding the instability cased by only one forecaster. Weights were distributed to the forecasters according to each one's forecast precision. An evaluation criterion for the professional level of the forecasters was also built. The eligibility rates of forecast results demonstrate the skill of the forecasters and the stability of their forecasts. With the developed tide forecasting method, the precision and reasonableness of tide forecasting are improved. The application of the present method to tide forecasting at the Huangpu Park tidal station demonstrates the validity of the method. 展开更多
关键词 tide forecasting method operational evaluation dynamic weight distribution evaluation factor
在线阅读 下载PDF
Medium Term Load Forecasting for Jordan Electric Power System Using Particle Swarm Optimization Algorithm Based on Least Square Regression Methods
18
作者 Mohammed Hattab Mohammed Ma’itah +2 位作者 Tha’er Sweidan Mohammed Rifai Mohammad Momani 《Journal of Power and Energy Engineering》 2017年第2期75-96,共22页
This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid ... This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid for year of 2015. Linear, quadratic and exponential forecast models have been examined to perform this study and compared with the Auto Regressive (AR) model. MTLF models were influenced by the weather which should be considered when predicting the future peak load demand in terms of months and weeks. The main contribution for this paper is the conduction of MTLF study for Jordan on weekly and monthly basis using real data obtained from National Electric Power Company NEPCO. This study is aimed to develop practical models and algorithm techniques for MTLF to be used by the operators of Jordan power grid. The results are compared with the actual peak load data to attain minimum percentage error. The value of the forecasted weekly and monthly peak loads obtained from these models is examined using Least Square Error (LSE). Actual reported data from NEPCO are used to analyze the performance of the proposed approach and the results are reported and compared with the results obtained from PSO algorithm and AR model. 展开更多
关键词 MEDIUM TERM Load forecasting Particle SWARM Optimization Least SQUARE Regression methods
暂未订购
A Type of Combination Forecasting Method Based on Time Series Method and PLS
19
作者 Liang Wan Biao Luo +1 位作者 Hong-Mei Ji Wei-Wei Yan 《American Journal of Operations Research》 2012年第4期467-472,共6页
This paper depends on the panel data of Anhui province and its 17 cities’ cigarette sales. First we established three single forecasting models (Holter-Wintel Season product model, Time series model decomposing model... This paper depends on the panel data of Anhui province and its 17 cities’ cigarette sales. First we established three single forecasting models (Holter-Wintel Season product model, Time series model decomposing model and Partial least square regression model), after getting the predicted value of cigarette sales from these single models, we then employ the combination forecasting method based on Time Series method and PLS to predict the province and its 17 cities’ cigarette sales of the next year. The results show that the accuracy of prediction is good which could provide a reliable reference to cigarette sales forecasting in Anhui province and its 17 cities. 展开更多
关键词 PLS Time SERIES method COMBINATION forecast method SALES forecasts
暂未订购
Research on relations between failure heights of overburden strata and ~] / mining face parameters and forecasting method
20
作者 尹增德 杨贵 《Journal of Coal Science & Engineering(China)》 2007年第3期332-335,共4页
The commercial FEM software ANSYS was used to analyze the failure characteristics of overburden strata under the conditions of different lengths of mining faces. It was shown that the parameters of mining faces, espec... The commercial FEM software ANSYS was used to analyze the failure characteristics of overburden strata under the conditions of different lengths of mining faces. It was shown that the parameters of mining faces, especially the length was the important factor to the failure heights and shapes of overburden strata. Fuzzy mathematics and statistical methods were used to analyze the forecasting method of the failure height of overburden strata influenced by the parameters of mining face based on the measured data under the conditions of fully-mechanized mining of general hardness cover rocks. On the basis of these analyses, a new forecasting formula was gotten. The forecasting result conforms to the in situ measured value. The result has a very important application value in safe and high-efficient mining, and has a very important advancing function to theoretical studies. 展开更多
关键词 overburden strata parameters of mining face forecasting method
在线阅读 下载PDF
上一页 1 2 187 下一页 到第
使用帮助 返回顶部