期刊文献+
共找到50,802篇文章
< 1 2 250 >
每页显示 20 50 100
THE DESIGN AND ANALYSIS OF ALGORITHM OF MINIMUM COST SPANNING TREE
1
作者 Xu Xusong Liu Dacheng Wu Lihua 《Acta Mathematica Scientia》 SCIE CSCD 1996年第3期296-301,共6页
This paper provides a method of producing a minimum cost spanning tree(MCST)using set operations.It studies the data structure for implementation of set operations and the algorithm to be applied to this structure and... This paper provides a method of producing a minimum cost spanning tree(MCST)using set operations.It studies the data structure for implementation of set operations and the algorithm to be applied to this structure and proves the correctness and the complexity of the algorithm.This algorithm uses the FDG(formula to divide elements into groups)to sort(the FDG sorts a sequence of n elements in expected tir O(n))and uses the method of path compression to find and to unite.Therefore.n produces an MCST of an undirected network having n vertices and e edges in expected time O(eG(n)). 展开更多
关键词 minimum cost spanning tree a sort using the FDG path compression set operation of find and unite algorithm analysis
在线阅读 下载PDF
Ultra-simplified design and quantitative analysis for the optical system of compact laser-induced breakdown spectroscopy
2
作者 Jiujiang YAN Ke LIU +3 位作者 Jinxiu MA Yang LI Kailong LI Hongwei WEI 《Plasma Science and Technology》 2025年第3期87-93,共7页
Optimization and simplification of optical systems represent a milestone in advancing the development of handheld and portable laser-induced breakdown spectroscopy(LIBS)systems towards smaller,more integrated forms.Th... Optimization and simplification of optical systems represent a milestone in advancing the development of handheld and portable laser-induced breakdown spectroscopy(LIBS)systems towards smaller,more integrated forms.This research,for the first time,conducted a comprehensive optimization design and comparative analysis of three compact LIBS system optical paths:the paraxial optical path(OP),the off-axis OP,and the reflective OP.The differences in spectral intensity and stability among these paths were revealed,providing a scientific basis for selecting the optimal OP for LIBS systems.The research found that the paraxial OP excels in spectral performance and quantitative analysis accuracy,making it the preferred choice for compact LIBS systems.Specifically,the paraxial OP significantly enhances spectral intensity,achieving a 6 times improvement over the off-axis OP and an even more remarkable 150 times increase compared to the reflective OP,greatly enhancing detection sensitivity.Additionally,the relative standard deviation,spectral stability index,maintains a consistently low level,ranging from 10.9%to 13.4%,significantly outperforming the other two OPs and ensuring the reliability of analytical results.In the field of quantitative analysis,the paraxial OP also demonstrates higher accuracy,precision,and sensitivity,comparing to other OPs.The quantitative analysis models for Si,Cu,and Ti elements exhibit excellent fitting,providing users with high-quality quantitative analysis results that are of great significance for applications in material science,environmental monitoring,industrial inspection,and other fields.In summary,this study not only confirms the enormous application potential of the paraxial OP in compact LIBS systems but also provides valuable practical experience and theoretical support for the miniaturization and integration of LIBS systems.Looking ahead,with continuous technological advancements,the design of the paraxial OP is expected to further propel the widespread adoption of LIBS technology in portable,on-site detection applications. 展开更多
关键词 compact LIBS optical path design spectral stability quantitative analysis
在线阅读 下载PDF
From Wave Energy to Electricity:Functional Design and Performance Analysis of Triboelectric Nanogenerators
3
作者 Ying Lou Mengfan Li +2 位作者 Aifang Yu Junyi Zhai Zhong Lin Wang 《Nano-Micro Letters》 2025年第12期33-73,共41页
Triboelectric nanogenerators(TENGs)offer a selfsustaining power solution for marine regions abundant in resources but constrained by energy availability.Since their pioneering use in wave energy harvesting in 2014,nea... Triboelectric nanogenerators(TENGs)offer a selfsustaining power solution for marine regions abundant in resources but constrained by energy availability.Since their pioneering use in wave energy harvesting in 2014,nearly a decade of advancements has yielded nearly thousands of research articles in this domain.Researchers have developed various TENG device structures with diverse functionalities to facilitate their commercial deployment.Nonetheless,there is a gap in comprehensive summaries and performance evaluations of TENG structural designs.This paper delineates six innovative structural designs,focusing on enhancing internal device output and adapting to external environments:high space utilization,hybrid generator,mechanical gain,broadband response,multi-directional operation,and hybrid energy-harvesting systems.We summarize the prevailing trends in device structure design identified by the research community.Furthermore,we conduct a meticulous comparison of the electrical performance of these devices under motorized,simulated wave,and real marine conditions,while also assessing their sustainability in terms of device durability and mechanical robustness.In conclusion,the paper outlines future research avenues and discusses the obstacles encountered in the TENG field.This review aims to offer valuable perspectives for ongoing research and to advance the progress and application of TENG technology. 展开更多
关键词 Triboelectric nanogenerator Functional design Blue energy Electrical performance Sustainability analysis
在线阅读 下载PDF
Fuzzy Logic Based Evaluation of Hybrid Termination Criteria in the Genetic Algorithms for the Wind Farm Layout Design Problem
4
作者 Salman A.Khan Mohamed Mohandes +2 位作者 Shafiqur Rehman Ali Al-Shaikhi Kashif Iqbal 《Computers, Materials & Continua》 2025年第7期553-581,共29页
Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This ... Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This layout defines the specific locations of the turbines within the wind farm.The process of finding the optimal locations of turbines,in the presence of various technical and technological constraints,makes the wind farm layout design problem a complex optimization problem.This problem has traditionally been solved with nature-inspired algorithms with promising results.The performance and convergence of nature-inspired algorithms depend on several parameters,among which the algorithm termination criterion plays a crucial role.Timely convergence is an important aspect of efficient algorithm design because an inefficient algorithm results in wasted computational resources,unwarranted electricity consumption,and hardware stress.This study provides an in-depth analysis of several termination criteria while using the genetic algorithm as a test bench,with its application to the wind farm layout design problem while considering various wind scenarios.The performance of six termination criteria is empirically evaluated with respect to the quality of solutions produced and the execution time involved.Due to the conflicting nature of these two attributes,fuzzy logic-based multi-attribute decision-making is employed in the decision process.Results for the fuzzy decision approach indicate that among the various criteria tested,the criterion Phi achieves an improvement in the range of 2.44%to 32.93%for wind scenario 1.For scenario 2,Best-worst termination criterion performed well compared to the other criteria evaluated,with an improvement in the range of 1.2%to 9.64%.For scenario 3,Hitting bound was the best performer with an improvement of 1.16%to 20.93%. 展开更多
关键词 Wind energy wind farm layout design performance evaluation genetic algorithms fuzzy logic multi-attribute decision-making
在线阅读 下载PDF
Structural Design and Analysis of Lower Limb Exoskeleton Robotics
5
作者 Mingshuo ZHANG Yutong LI +2 位作者 Sheng ZHANG Yuanhai DING Chuanqi LI 《Mechanical Engineering Science》 2025年第1期20-25,共6页
With the acceleration of the global aging process and the increase of cardiovascular ancerebrovascular diseases,more and more patients are paralyzed due to accidents,so theexoskeleton robot began to appear in people&#... With the acceleration of the global aging process and the increase of cardiovascular ancerebrovascular diseases,more and more patients are paralyzed due to accidents,so theexoskeleton robot began to appear in people's sight,and the lower limb exoskeleton robot withrehabilitation training is also favored by more and more people.In this paper,the structural designand analysis of the lower limb exoskeleton robot are carried out in view of the patients'expectation ofnormal walking.First,gait analysis and structural design of lower limb exoskeleton robot.Based onthe analysis of the walking gait of normal people,the freedom of the three key joints of the lower limbexoskeleton robot hip joint,knee joint and ankle joint is determined.at the same time,according tothe structuralcharacteristics of each joint,the three key joints are modeled respectively,and theoverall model assembly of the lower limb exoskeleton robot is completed.Secondly,the kinematicsanalysis of the lower limb exoskeleton robot was carried out to obtain the relationship between thelinear displacement,linear speed and acceleration of each joint,so as to ensure the coordination ofthe model with the human lower limb movement.Thirdly,the static analysis of typical gait of hipjoint,knee joint and ankle joint is carried out to verify the safety of the design model under thepremise of ensuring the structural strength requirements.Finally,the parts of the model were 3Dprinted,and the rationality of the design was further verified in the process of assembling the model. 展开更多
关键词 Exoskeleton Robots Mechanical Structure design Finite Element analysis Motion Simulation
在线阅读 下载PDF
Study on the Evaluation Methodology of Landslide Susceptibility Based on Spatial-scale Analysis
6
作者 Zijing Lin Jian Tang +2 位作者 Yiling Dai Bing Luo Anqi Chen 《Journal of World Architecture》 2025年第1期47-52,共6页
Landslides are significant natural geological hazards.Landslide susceptibility evaluation involves the quantitative assessment and prediction of potential landslide locations and their probabilities.Research has explo... Landslides are significant natural geological hazards.Landslide susceptibility evaluation involves the quantitative assessment and prediction of potential landslide locations and their probabilities.Research has explored susceptibility assessment methods based on spatial-scale analysis.This evaluation integrates two models—global and local scale—using a CNN model and a PSO-CNN coupled model.Key aspects include selecting evaluation factors and optimizing model parameters for landslide susceptibility at different scales.A major focus of current landslide research is utilizing prediction results to enhance prevention and control measures. 展开更多
关键词 Landslide susceptibility evaluation Spatial-scale analysis Lixian county Geographical weighted regression Particle swarm algorithm
在线阅读 下载PDF
Anti-Crack Analysis and Reinforcement Design of Transverse Diaphragm Based on Layered Modeling Analysis Method
7
作者 Yuanyin Song Wenwei Wang 《Structural Durability & Health Monitoring》 2025年第3期549-574,共26页
To meticulously dissect the cracking issue in the transverse diaphragm concrete,situated at the anchor point of a colossal large-span,single cable plane cable-stayed bridge,this research paper adopts an innovative lay... To meticulously dissect the cracking issue in the transverse diaphragm concrete,situated at the anchor point of a colossal large-span,single cable plane cable-stayed bridge,this research paper adopts an innovative layered modeling analysis methodology for numerical simulations.The approach is structured into three distinct layers,each tailored to address specific aspects of the cracking phenomenon.The foundational first layer model operates under the assumption of linear elasticity,adhering to the Saint Venant principle.It narrows its focus to the crucial zone between the Bp20 transverse diaphragm and the central axis of pier 4’s support,encompassing the critically cracked diaphragm beneath the N1 cable anchor.This layer provides a preliminary estimate of potential cracking zones within the concrete,serving as a baseline for further analysis.The second layer model builds upon this foundation by incorporating material plasticity into its considerations.It pinpoints its investigation to the immediate vicinity of the cracked transverse diaphragm associated with the N1 cable,aiming to capture the intricate material behavior under stress.This layer’s predictions of crack locations and patterns exhibit a remarkable alignment with actual detection results,confirming its precision and reliability.The third and most intricate layer delves deep into the heart of the matter,examining the cracked transverse diaphragm precisely where the cable force attains its maximum intensity.By leveraging advanced extended finite element technology,this layer offers an unprecedented level of detail in tracing the progression of concrete cracks.Its findings reveal a close correlation between predicted and observed crack widths,validating the model’s proficiency in simulating real-world cracking dynamics.Crucially,the boundary conditions for each layer are meticulously aligned with those of the overarching model,ensuring consistency and integrity throughout the analysis.These results not only enrich our understanding of the cracking mechanisms but also underscore the efficacy of reinforcing cracked concrete sections with external steel plates.In conclusion,this study represents a significant contribution to the field of bridge engineering,offering both theoretical insights and practical solutions for addressing similar challenges. 展开更多
关键词 Single-cable plane cable-stayed bridge anti-crack checking analysis cracked transverse diaphragm steel plate strengthening reinforcement design
在线阅读 下载PDF
Sensitivity Analysis of Structural Dynamic Behavior Based on the Sparse Polynomial Chaos Expansion and Material Point Method
8
作者 Wenpeng Li Zhenghe Liu +4 位作者 Yujing Ma Zhuxuan Meng Ji Ma Weisong Liu Vinh Phu Nguyen 《Computer Modeling in Engineering & Sciences》 2025年第2期1515-1543,共29页
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-... This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems. 展开更多
关键词 Structural dynamics DEFORMATION material point method sparse polynomial chaos expansion adaptive randomized greedy algorithm sensitivity analysis
在线阅读 下载PDF
The MDOF equivalent linear system and its applications in seismic analysis and design of framed structures
9
作者 E.V.Muho N.A.Kalapodis +1 位作者 G.A.Papagiannopoulos D.E.Beskos 《Resilient Cities and Structures》 2024年第4期107-125,共19页
This paper reviews the applications of the multi degree-of-freedom(MDOF)equivalent linear system in seismic analysis and design of planar steel and reinforced concrete framed structures.An equivalent MDOF linear struc... This paper reviews the applications of the multi degree-of-freedom(MDOF)equivalent linear system in seismic analysis and design of planar steel and reinforced concrete framed structures.An equivalent MDOF linear structure,analogous to the original MDOF nonlinear structure,is constructed,which has the same mass and elastic stiffness as the original structure and modal damping ratios that account for the effects of geometrical and material nonlinearities.The equivalence implies a balance between the viscous damping work of the equivalent linear structure and that of the nonlinearities in the original nonlinear structure.This work balance is established with the aid of a transfer function in the frequency domain.Thus,equivalent modal damping ratios can be explicitly determined in terms of the period and deformation levels of the structure as well as the soil types.Use of these equivalent modal damping ratios can help address a variety of seismic analysis and design problems associated with planar steel and reinforced concrete framed structures in a rational and accurate manner.These include force-based seismic design with the aid of acceleration response spectra characterized by high amounts of damping,improved direct displacement-based seismic design and the development of advanced seismic intensity measures.The equivalent modal damping ratios are also utilized in the context of linear modal analysis for the definition and construction of the MDOF response spectrum.Furthermore,the equivalent modal damping ratios are employed in a seismic retrofit method for steel-framed structures with viscous dampers.Finally,it is demonstrated that modal behavior(or strength reduction)factors can be easily constructed based on these modal damping ratios for a more rational and accurate force-based seismic design,including the determination of inelastic displacement profiles. 展开更多
关键词 Seismic analysis Seismic design Steel-framed structures Reinforced concrete-framed structures MDof equivalent linear system Modal damping ratios Modal strength reduction factors Seismic intensity measures MDof response spectrum
在线阅读 下载PDF
Information mining and mechanical analysis of new-generation aero-engine turbine discs with industrial computed laminography reverse engineering
10
作者 Yenan GAO 《Chinese Journal of Aeronautics》 2025年第4期361-377,共17页
Aero engines are key power components that provide thrust for the aircraft.The cerme turbine disc allows the new-generation domestic fighter aircraft to increase the overall thrust of the aero engine.Quantifying coati... Aero engines are key power components that provide thrust for the aircraft.The cerme turbine disc allows the new-generation domestic fighter aircraft to increase the overall thrust of the aero engine.Quantifying coatings and analyzing the stress on the teeth play critical roles in improving the turbine disc’s performance,which are two issues must be solved urgently.First,this work pro poses a quantitative analysis algorithm to conduct the Three-Dimensional(3D)distribution informa tion mining of the extracted coatings.Then,it proposes an Industrial Computed Laminography(ICL)reconstruction algorithm for non-destructively reconstructing the turbine disc’s high-quality3D morphological actual feature.Finally,a Finite Element Analysis(FEA)under the ultimate thrus is conducted on ICL reconstruction to verify the working status of the new-generation aero-engine turbine disc.The results show that the proposed quantitative analysis algorithm digitizes the aggre gated conditions of the coating with a statistically normalized Z_(1)value of–2.15 and a confidence leve higher than 95%.Three image-quality quantitative indicators:Peak Signal-to-Noise Ratio(PSNR)Structural Similarity Index Measure(SSIM),and Normalized Mean Square Distance(NMSD)of the proposed ICL reconstruction algorithm on turbine disc laminographic image are 26.45,0.88,and 0.73respectively,which are better than other algorithms.The mechanical analysis of ICL more realisti cally reflects the stress and deformation than that of 3D modeling.This work provides new ideas for the iterative research of new-generation aero-engine turbine discs. 展开更多
关键词 Aero engines Quantitative analysis algorithm Information mining Industrial computed laminography reconstruction algorithm Finite element analysis
原文传递
SL-COA:Hybrid Efficient and Enhanced Coati Optimization Algorithm for Structural Reliability Analysis
11
作者 Yunhan Ling Huajun Peng +4 位作者 Yiqing Shi Chao Xu Jingzhen Yan Jingjing Wang Hui Ma 《Computer Modeling in Engineering & Sciences》 2025年第4期767-808,共42页
Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence spee... Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence speed of structural reliability analysis,an improved coati optimization algorithm(COA)is proposed in this paper.In this study,the social learning strategy is used to improve the coati optimization algorithm(SL-COA),which improves the convergence speed and robustness of the newheuristic optimization algorithm.Then,the SL-COAis comparedwith the latest heuristic optimization algorithms such as the original COA,whale optimization algorithm(WOA),and osprey optimization algorithm(OOA)in the CEC2005 and CEC2017 test function sets and two engineering optimization design examples.The optimization results show that the proposed SL-COA algorithm has a high competitiveness.Secondly,this study introduces the SL-COA algorithm into the MPP(Most Probable Point)search process based on FORM and constructs a new reliability analysis method.Finally,the proposed reliability analysis method is verified by four mathematical examples and two engineering examples.The results show that the proposed SL-COA-assisted FORM exhibits fast convergence and avoids premature convergence to local optima as demonstrated by its successful application to problems such as composite cylinder design and support bracket analysis. 展开更多
关键词 Hybrid reliability analysis single-loop interactive hybrid analysis most probability point metaheuristic algorithms coati optimization algorithm
在线阅读 下载PDF
Analysis and Research on Monitoring Devices for Deformation of Wind Turbine Pitch Bearing
12
作者 Xiangyue Xu 《Journal of Electronic Research and Application》 2025年第4期48-52,共5页
The pitch bearing is a component in wind turbine units used to adjust the angle of the fan blades to adapt to the wind direction,so as to maximize the utilization of wind energy.Due to the different working mode of th... The pitch bearing is a component in wind turbine units used to adjust the angle of the fan blades to adapt to the wind direction,so as to maximize the utilization of wind energy.Due to the different working mode of the pitch bearing itself compared with ordinary small bearings and the harsh working environment,the pitch bearing is prone to faults such as cracking and deformation.In severe cases,it will lead to overall damage to the pitch bearing,causing the blade to fall from a high altitude and even injuring personnel.Therefore,this paper conducts a patent analysis and technical decomposition of the deformation monitoring device for pitch bearings,analyzes and summarizes the development process of existing deformation monitoring devices for pitch bearings.Combined with the TRIZ evolution theory and based on the S-curve,it is concluded that the current deformation monitoring device for pitch bearings is in the transitional stage between the infant period and the growth period,and discusses the possible subsequent evolution directions.Through reviewing relevant literature,it is found that inner ring cracks first appear near the upper and lower surfaces of the bolt holes in the inner ring of the pitch bearing.To this end,a new type of deformation monitoring device for pitch bearings is designed.The fiber optic displacement sensor is used for qualitative monitoring of initial cracks near the surface of the bolt holes in the inner ring of the pitch bearing.After cracks are detected,the eddy current sensor is used for quantitative monitoring of whether there are extended cracks between the cracked bolt holes and adjacent bolt holes.Finally,the work done in this paper is summarized and prospected. 展开更多
关键词 Pitch bearing TRIZ evolution analysis Patent analysis Innovative design
在线阅读 下载PDF
Research on risk identification of railway subgrade deformation based on Bayesian and ICA theories
13
作者 Yi Liu Fengyan Yang +3 位作者 Hu Wang Xuanqi Wang Chengwen Wu Hongsheng Yu 《Railway Sciences》 2025年第6期711-728,共18页
Purpose–This paper conducts a joint analysis of monitoring data in the hidden danger areas of railway subgrade deformation using a data-driven method,thereby realizing the systematic risk identification of regional h... Purpose–This paper conducts a joint analysis of monitoring data in the hidden danger areas of railway subgrade deformation using a data-driven method,thereby realizing the systematic risk identification of regional hidden dangers.Design/methodology/approach–The paper proposes a regional systematic risk identification method based on Bayesian and independent component analysis(ICA)theories.Firstly,the Gray Wolf Optimization(GWO)algorithm is used to partition each group of monitoring data in the hidden danger area,so that the data distribution characteristics within each sub-block are similar.Then,a distributed ICA early warning model is constructed to obtain prior knowledge such as control limits and statistics of the area under normal conditions.For the online evaluation process,the input data is partitioned following the above-mentioned procedure and the ICA statistics of each sub-block are calculated.The Bayesian method is applied to fuse online parameters with offline parameters,yielding statistics under a specific confidence interval.These statistics are then compared with the control limits–specifically,checking whether they exceed the pre-set confidence parameters–thus realizing the systematic risk identification of the hidden danger area.Findings–Through simulation experiments,the proposed method can integrate prior knowledge such as control limits and statistics to effectively determine the overall stability status of the area,thereby realizing the systematic risk identification of the hidden danger area.Originality/value–The proposed method leverages Bayesian theory to fuse online process parameters with offline parameters and further compares them with confidence parameters,thereby effectively enhancing the utilization efficiency of monitoring data and the robustness of the analytical model. 展开更多
关键词 Bayesian theory Grey Wolf algorithm Independent component analysis Railway subgrade Deformation analysis
在线阅读 下载PDF
Ensemble learning-driven multi-objective optimization of the co-pyrolysis process of biomass and coal for high economic and environmental performance
14
作者 Qingchun Yang Dongwen Rong +2 位作者 Qiwen Guo Runjie Bao Dawei Zhang 《Chinese Journal of Chemical Engineering》 2025年第8期23-34,共12页
The biomass and coal co-pyrolysis (BCP) technology combines the advantages of both resources, achieving efficient resource complementarity, reducing reliance on coal, and minimizing pollutant emissions. However, this ... The biomass and coal co-pyrolysis (BCP) technology combines the advantages of both resources, achieving efficient resource complementarity, reducing reliance on coal, and minimizing pollutant emissions. However, this process still encounters numerous challenges in attaining optimal economic and environmental performance. Therefore, an ensemble learning (EL) framework is proposed for the BCP process in this study to optimize the synergistic benefits while minimizing negative environmental impacts. Six different ensemble learning models are developed to investigate the impact of input features, such as biomass characteristics, coal characteristics, and pyrolysis conditions on the product profit and CO_(2) emissions of the BCP processes. The Optuna method is further employed to automatically optimize the hyperparameters of BCP process models for enhancing their predictive accuracy and robustness. The results indicate that the categorical boosting (CAB) model of the BCP process has demonstrated exceptional performance in accurately predicting its product profit and CO_(2) emission (R2>0.92) after undergoing five-fold cross-validation. To enhance the interpretability of this preferred model, the Shapley additive explanations and partial dependence plot analyses are conducted to evaluate the impact and importance of biomass characteristics, coal characteristics, and pyrolysis conditions on the product profitability and CO_(2) emissions of the BCP processes. Finally, the preferred model coupled with a reference vector guided evolutionary algorithm is carried to identify the optimal conditions for maximizing the product profit of BCP process products while minimizing CO_(2) emissions. It indicates the optimal BCP process can achieve high product profits (5290.85 CNY·t−1) and low CO_(2) emissions (7.45 kg·t^(−1)). 展开更多
关键词 BIOMASS PYROLYSIS Optimal design Ensemble learning Economic analysis
在线阅读 下载PDF
Bayesian-based analysis of sequence activity characteristics in the Bohai Rim region
15
作者 Bi Jin-Meng Song Cheng Cao Fu-Yang 《Applied Geophysics》 2025年第2期237-251,554,共16页
Disaster mitigation necessitates scientifi c and accurate aftershock forecasting during the critical 2 h after an earthquake. However, this action faces immense challenges due to the lack of early postearthquake data ... Disaster mitigation necessitates scientifi c and accurate aftershock forecasting during the critical 2 h after an earthquake. However, this action faces immense challenges due to the lack of early postearthquake data and the unreliability of forecasts. To obtain foundational data for sequence parameters of the land-sea adjacent zone and establish a reliable and operational aftershock forecasting framework, we combined the initial sequence parameters extracted from envelope functions and incorporated small-earthquake information into our model to construct a Bayesian algorithm for the early postearthquake stage. We performed parameter fitting and early postearthquake aftershock occurrence rate forecasting and effectiveness evaluation for 36 earthquake sequences with M ≥ 4.0 in the Bohai Rim region since 2010. According to the results, during the early stage after the mainshock, earthquake sequence parameters exhibited relatively drastic fl uctuations with signifi cant errors. The integration of prior information can mitigate the intensity of these changes and reduce errors. The initial and stable sequence parameters generally display advantageous distribution characteristics, with each parameter’s distribution being relatively concentrated and showing good symmetry and remarkable consistency. The sequence parameter p-values were relatively small, which indicates the comparatively slow attenuation of signifi cant earthquake events in the Bohai Rim region. A certain positive correlation was observed between earthquake sequence parameters b and p. However, sequence parameters are unrelated to the mainshock magnitude, which implies that their statistical characteristics and trends are universal. The Bayesian algorithm revealed a good forecasting capability for aftershocks in the early postearthquake period (2 h) in the Bohai Rim region, with an overall forecasting effi cacy rate of 76.39%. The proportion of “too low” failures exceeded that of “too high” failures, and the number of forecasting failures for the next three days was greater than that for the next day. 展开更多
关键词 earthquake sequences Bayesian algorithm model parameters correlation analysis effectiveness evaluation
在线阅读 下载PDF
Hybrid deep learning and isogeometric analysis for bearing capacity assessment of sand over clay
16
作者 Toan Nguyen-Minh Tram Bui-Ngoc +2 位作者 Jim Shiau Tan Nguyen Trung Nguyen-Thoi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期5240-5265,共26页
In this paper,Isogeometric analysis(IGA)is effectively integrated with machine learning(ML)to investigate the bearing capacity of strip footings in layered soil profiles,with a focus on a sand-over-clay configuration.... In this paper,Isogeometric analysis(IGA)is effectively integrated with machine learning(ML)to investigate the bearing capacity of strip footings in layered soil profiles,with a focus on a sand-over-clay configuration.The study begins with the generation of a comprehensive dataset of 10,000 samples from IGA upper bound(UB)limit analyses,facilitating an in-depth examination of various material and geometric conditions.A hybrid deep neural network,specifically the Whale Optimization Algorithm-Deep Neural Network(WOA-DNN),is then employed to utilize these 10,000 outputs for precise bearing capacity predictions.Notably,the WOA-DNN model outperforms conventional ML techniques,offering a robust and accurate prediction tool.This innovative approach explores a broad range of design parameters,including sand layer depth,load-to-soil unit weight ratio,internal friction angle,cohesion,and footing roughness.A detailed analysis of the dataset reveals the significant influence of these parameters on bearing capacity,providing valuable insights for practical foundation design.This research demonstrates the usefulness of data-driven techniques in optimizing the design of shallow foundations within layered soil profiles,marking a significant stride in geotechnical engineering advancements. 展开更多
关键词 UB limit analysis Isogeometric analysis(IGA) Hybrid deep neural network Whale optimization algorithm
在线阅读 下载PDF
Controllable Energy Absorption Design and 3D Printing of High Energy Absorbing Biomimetic Double-Layer Impact-Resistant Structure
17
作者 Leilei Wang Zhiqiang Tong +4 位作者 Facheng Song Wencheng Yin Ling Wang Kai Miao Dichen Li 《Additive Manufacturing Frontiers》 2025年第1期29-40,共12页
In engineering,the demand for high energy absorption by structures subjected to impact loads is increasing.Balancing the limited space,manufacturing feasibility,and energy absorption capabilities is a key point in the... In engineering,the demand for high energy absorption by structures subjected to impact loads is increasing.Balancing the limited space,manufacturing feasibility,and energy absorption capabilities is a key point in the design of many enclosed structures with energy absorption requirements.To achieve a lightweight design and controllable energy absorption by the structures,within a limited space,this study proposes a bio-inspired double-layer impact-resistant structure that can be manufactured by an additive manufacturing method(powder bed fusion),inspired by the microstructure of a woodpecker’s head.The structure is composed of two basic structural units:a quasi-circular ring and an oblique cylinder.The controllable energy absorption capabilities of the structure were studied through a combination of theoretical analyses,numerical simulations,and physical experiments.The results showed that,for the quasi-circular ring structure,the specific energy absorption range of 13-72 J/g could be effectively regulated by adjusting the structural parameters.The specific energy absorption range of 11-137 J/g could be effectively regulated for oblique cylindrical structures.Finally,the structure was applied to the design of engineering impact-resistant devices,proving the effectiveness of the controllable energy absorption of the structure.Moreover,the design process of the structure was optimized,laying a foundation for the structure to better serve engineering design applications. 展开更多
关键词 Energy absorption Bionic design Additive manufacturing Finite element analysis
在线阅读 下载PDF
Global integration design method of acceleration and deceleration control schedule for variable cycle engine
18
作者 Ying CHEN Sangwei LU +1 位作者 Wenxiang ZHOU Jinquan HUANG 《Chinese Journal of Aeronautics》 2025年第5期248-261,共14页
Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of ... Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of control parameters present significant challenges in designing acceleration and deceleration control schedules.To thoroughly explore the performance potential of engine,a global integration design method for acceleration and deceleration control schedule based on inner and outer loop optimization is proposed.The outer loop optimization module employs Integrated Surrogate-Assisted Co-Differential Evolutionary(ISACDE)algorithm to optimize the variable geometry adjustment laws based on B-spline curve,and the inner loop optimization module adopts the fixed-state method to design the open-loop fuel–air ratio control schedules,which are aimed at minimizing the acceleration and deceleration time under multiple constraints.Simulation results demonstrate that the proposed global integration design method not only furthest shortens the acceleration and deceleration time,but also effectively safeguards the engine from overlimit. 展开更多
关键词 Control schedule design Acceleration and deceleration Variablecycle engine Fixed-states method Co-differential evolutionary algorithm
原文传递
Multi-objective optimal design of asymmetric base-isolated structures using NSGA-Ⅱ algorithm for improving torsional resistance
19
作者 Zhang Jiayu Qi Ai Yang Mianyue 《Earthquake Engineering and Engineering Vibration》 2025年第3期811-825,共15页
Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is... Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is cumbersome and inefficient.Thus,this work develops a multi-objective optimization method to enhance the torsional resistance of asymmetric base-isolated structures.The primary objective is to simultaneously minimize the interstory rotation of the superstructure,the rotation of the isolation layer,and the interstory displacement of the superstructure without exceeding the isolator displacement limits.A fast non-dominated sorting genetic algorithm(NSGA-Ⅱ)is employed to satisfy this optimization objective.Subsequently,the isolator arrangement,encompassing both positions and categories,is optimized according to this multi-objective optimization method.Additionally,an optimization design platform is developed to streamline the design operation.This platform integrates the input of optimization parameters,the output of optimization results,the finite element analysis,and the multi-objective optimization method proposed herein.Finally,the application of this multi-objective optimization method and its associated platform are demonstrated on two asymmetric base-isolated structures of varying heights and plan configurations.The results indicate that the optimal isolator arrangement derived from the optimization method can further improve the control over the lateral and torsional responses of asymmetric base-isolated structures compared to conventional conceptual design methods.Notably,the interstory rotation of the optimal base-isolated structure is significantly reduced,constituting only approximately 33.7%of that observed in the original base-isolated structure.The proposed platform facilitates the automatic generation of the optimal design scheme for the isolators of asymmetric base-isolated structures,offering valuable insights and guidance for the burgeoning field of intelligent civil engineering design. 展开更多
关键词 asymmetric base-isolated structures isolator arrangement multi-objective optimization NSGA-Ⅱalgorithm optimization design platform
在线阅读 下载PDF
Parameter influence analysis and optimization of wheel–rail creepage characteristics in high-speed railway curves
20
作者 Bolun An Jiapeng Liu +3 位作者 Guang Yang Feng shou Liu Tong Shi Ming Zhai 《Railway Sciences》 2025年第1期37-51,共15页
Purpose–To investigate the influence of vehicle operation speed,curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated opt... Purpose–To investigate the influence of vehicle operation speed,curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated optimization strategy to reduce wheel–rail contact fatigue damage.Design/methodology/approach–Taking a small-radius curve of a high-speed railway as the research object,field measurements were conducted to obtain track parameters and wheel–rail profiles.A coupled vehicle-track dynamics model was established.Multiple numerical experiments were designed using the Latin Hypercube Sampling method to extract wheel-rail creepage indicators and construct a parameter-creepage response surface model.Findings–Key service parameters affecting wheel–rail creepage were identified,including the matching relationship between curve geometry and vehicle speed and rail profile parameters.The influence patterns of various parameters on wheel–rail creepage were revealed through response surface analysis,leading to the establishment of parameter optimization criteria.Originality/value–This study presents the systematic investigation of wheel–rail creepage characteristics under multi-parameter coupling in high-speed railway curves.A response surface-based parameter-creepage relationship model was established,and a multi-parameter coordinated optimization strategy was proposed.The research findings provide theoretical guidance for controlling wheel–rail contact fatigue damage and optimizing wheel–rail profiles in high-speed railway curves. 展开更多
关键词 High-speed railway Curve track Wheel-rail creepage Parameter analysis Response surface methodology Optimization design
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部