针对长短码直接扩频序列(long and short code direct sequence spread spectrum, LSC-DSSS)信号序列估计难题,在已知LSC-DSSS信号参数的条件下,提出一种基于新信息准则(novel information criterion, NIC)神经网络联合梅西算法的长短...针对长短码直接扩频序列(long and short code direct sequence spread spectrum, LSC-DSSS)信号序列估计难题,在已知LSC-DSSS信号参数的条件下,提出一种基于新信息准则(novel information criterion, NIC)神经网络联合梅西算法的长短码信号序列估计方法。将LSC-DSSS信号输入NIC神经网络以估计随机采样起点,再通过不断输入数据训练NIC神经网络权值向量。当网络收敛时,权值向量的符号值即为LSC-DSSS信号的复合码序列片段。使用延迟相乘,消除幅度模糊与短扩频码序列的影响,再利用梅西算法获得扰码序列的生成多项式。仿真实验结果表明,NIC神经网络较特征值分解法的抗噪声性能提高6 dB,同时较Hebbian准则神经网络所需学习组数减少50%。展开更多
In distributed radar,most of existing radar networks operate in the tracking fusion mode which combines radar target tracks for a higher positioning accuracy.However,as the filtering covariance matrix indicating posit...In distributed radar,most of existing radar networks operate in the tracking fusion mode which combines radar target tracks for a higher positioning accuracy.However,as the filtering covariance matrix indicating positioning accuracy often occupies many bits,the communication cost from local sensors to the fusion is not always sufficiently low for some wireless communication chan-nels.This paper studies how to compress data for distributed tracking fusion algorithms.Based on the K-singular value decomposition(K-SVD)algorithm,a sparse coding algorithm is presented to sparsely represent the filtering covariance matrix.Then the least square quantization(LSQ)algo-rithm is used to quantize the data according to the statistical characteristics of the sparse coeffi-cients.Quantized results are then coded with an arithmetic coding method which can further com-press data.Numerical results indicate that this tracking data compression algorithm drops the com-munication bandwidth to 4%at the cost of a 16%root mean squared error(RMSE)loss.展开更多
文摘针对长短码直接扩频序列(long and short code direct sequence spread spectrum, LSC-DSSS)信号序列估计难题,在已知LSC-DSSS信号参数的条件下,提出一种基于新信息准则(novel information criterion, NIC)神经网络联合梅西算法的长短码信号序列估计方法。将LSC-DSSS信号输入NIC神经网络以估计随机采样起点,再通过不断输入数据训练NIC神经网络权值向量。当网络收敛时,权值向量的符号值即为LSC-DSSS信号的复合码序列片段。使用延迟相乘,消除幅度模糊与短扩频码序列的影响,再利用梅西算法获得扰码序列的生成多项式。仿真实验结果表明,NIC神经网络较特征值分解法的抗噪声性能提高6 dB,同时较Hebbian准则神经网络所需学习组数减少50%。
基金supported in part by the National Laboratory of Radar Signal Processing Xidian Univrsity,Xi’an 710071,China。
文摘In distributed radar,most of existing radar networks operate in the tracking fusion mode which combines radar target tracks for a higher positioning accuracy.However,as the filtering covariance matrix indicating positioning accuracy often occupies many bits,the communication cost from local sensors to the fusion is not always sufficiently low for some wireless communication chan-nels.This paper studies how to compress data for distributed tracking fusion algorithms.Based on the K-singular value decomposition(K-SVD)algorithm,a sparse coding algorithm is presented to sparsely represent the filtering covariance matrix.Then the least square quantization(LSQ)algo-rithm is used to quantize the data according to the statistical characteristics of the sparse coeffi-cients.Quantized results are then coded with an arithmetic coding method which can further com-press data.Numerical results indicate that this tracking data compression algorithm drops the com-munication bandwidth to 4%at the cost of a 16%root mean squared error(RMSE)loss.