Eutrophic shallow lakes are generally considered as a contributor to the emission of nitrous oxide(N_(2)O),while regional and global estimates have remained imprecise.This due to a lack of data and insufficient unders...Eutrophic shallow lakes are generally considered as a contributor to the emission of nitrous oxide(N_(2)O),while regional and global estimates have remained imprecise.This due to a lack of data and insufficient understanding of the multiple contributing factors.This study characterized the spatiotemporal variability in N_(2)O concentrations and N_(2)O diffusive fluxes and the contributing factors in LakeWuliangsuhai,a typical shallow eutrophic and seasonally frozen lake in Inner Mongolia with cold and arid climate.Dissolved N_(2)O concentrations of the lake exhibited a range of 4.5 to 101.2 nmol/L,displaying significant spatiotemporal variations.The lowest and highest concentrations were measured in summer and winter,respectively.The spatial distribution of N_(2)Ofluxwas consistent with that of N_(2)O concentrations.Additionally,the hotspots of N_(2)O emissions were detected within close to the main inflow of lake.The wide spatial and temporal variation in N_(2)O emissions indicate the complexity and its relative importance of factors influencing emissions.N_(2)O emissions in different lake zones and seasons were regulated by diverse factors.Factors influencing the spatial and temporal distribution of N_(2)O concentrations and fluxes were identified as WT,WD,DO,Chl-a,SD and COD.Interestingly,the same factor demonstrated opposing effects on N_(2)O emission in various seasons or zones.This research improves our understanding of N_(2)O emissions in shallow eutrophic lakes in cold and arid areas.展开更多
Ensuring a harmonious coexistence between man and nature is crucial for China’s economic and social development.However,with increasing industrialization and urbanization,there is a growing mismatch between China’s ...Ensuring a harmonious coexistence between man and nature is crucial for China’s economic and social development.However,with increasing industrialization and urbanization,there is a growing mismatch between China’s ecological resilience(ER)and economic level(EL)of development,which poses a notable social threat.Currently,the link between ER and EL in China remains unclear,especially in terms of spatial dislocation(SD),referring to the disconnect between the locations where environmental impacts occur and those where economic benefits or activities are concentrated.Therefore,this paper aims to provide theoretical support and an empirical basis for policy-based solutions to address this gap.Based on the SD theory,this study systematically discusses the temporal changes,spatial patterns,and SD characteristics of China’s ER and EL using spatial auto-correlation and barycentric analysis to analyze data from 30 provinces covering the period 2011-2021.The key results are as follows.China’s ER shows a general trend of growth;however,its distribution is uneven.The spatial pattern generally decreases from the southeastern coastal provinces to the northwest.Moreover,a gradually increasing positive correlation is observed between the ER and EL,but this correlation varies by region,with some showing regional linkages and others developing independently.Finally,the dislocation index of ER and EL presents divergent results based on region-the eastern and central regions primarily show a high level of dislocation,whereas the western and northeastern regions show a low level of dislocation.The results provide a comprehensive overview of the spatiotemporal patterns in the association between ER and EL in China.The results emphasize that to balance sustainable regional development and ecological governance,a region-specific approach must be employed,prioritizing innovation-driven strategies for high ER in more developed regions and market-oriented strategies in less developed regions.展开更多
Macrobenthic organisms are commonly employed as biomonitors for environmental risk assessment.In this study,we aimed to investigate the spatial and temporal patterns of the macrobenthic community,which is influenced b...Macrobenthic organisms are commonly employed as biomonitors for environmental risk assessment.In this study,we aimed to investigate the spatial and temporal patterns of the macrobenthic community,which is influenced by environmental factors of sediments and bottom water layer.We sampled a total of 12,11,10,and 11 stations in the Shengsi Archipelago during June 2010,August 2010,November 2020,and April 2021 respectively.A total of 124 species of macrobenthos were identified,with polychaetes being the dominant group.The abundance,biomass,and diversity indices exhibited no significant temporal differences.Similarly,biodiversity did not exhibit a clear spatial gradient,likely due to the small study area and the absence of significant differences in key factors such as depth.However,the stations with the lowest biodiversity values consistently appeared in the southwest region,possibly due to the impact of human activities.Significant differences in the macrobenthic community were observed between all months except between June and August,and mollusk Endopleura lubrica and polychaete Sigambra hanaokai were important contributors to these differences according to the results of the Similarity Percentages analysis.Suspended particulate matter(SPM)was identified as the primary driving factors of macrobenthic variability.In summary,the community structure underwent temporal changes influenced by complex current patterns,while biodiversity remained relatively stable.This study contributes to our understanding of the key environmental factors affecting macrobenthic communities and biodiversity.It also provides valuable data support for the long-term monitoring of macrobenthos and the environment in the Shengsi Archipelago.展开更多
The genetic regulation of hair density in animals remains poorly understood.The Dazu black goat,characterized by its black coarse hair and white skin,provides a unique model for dissecting coarse hair density(CHD).Usi...The genetic regulation of hair density in animals remains poorly understood.The Dazu black goat,characterized by its black coarse hair and white skin,provides a unique model for dissecting coarse hair density(CHD).Using high-resolution micro-camera imaging,this study analyzed 905 skin images,33 skin transcriptomes,272 whole-genome sequences,and 182 downloaded transcriptomes.Morphological assessment from juvenile to adult stages revealed the thickening of hair shafts accompanied by a progressive decline in density,largely attributable to rapid surface expansion of the trunk skin.Transcriptomic comparison between high-and low-CHD individuals identified 572 differentially expressed genes(DEGs).A genome-wide association study detected 25 significant single nucleotide polymorphisms(P<9.07e-8)and mapped 48 annotated genes,with the most prominent association signal located near GJA1 on chr9.15931585-18621011.Literature review and Venn analysis highlighted six genes(GJA1,GPRC5D,CD1D,CD207,TFAM,and CXCL12)with documented roles in skin and hair biology,and three genes(GJA1,GPRC5D,and ATP6V1B1)overlapped with DEGs.Multiple-tissue transcriptomic profiling,western blotting,immunohistochemical staining,and skin single-cell RNA sequencing confirmed that GJA1 and GPRC5D were highly and specifically expressed in skin,particularly within hair follicles.Expression was localized predominantly to follicular stem cells and dermal papilla cells,suggesting a significant role in folliculogenesis and structural maintenance.Cross-validation using four public datasets further demonstrated positive correlations between GJA1 and GPRC5D expression and hair follicle density.The innovative micro-camera application allowed the elucidation of spatiotemporal patterns and genes associated with CHD,thereby addressing a significant knowledge gap in animal hair density.展开更多
This paper created an evaluation index system for agricultural green resilience,consisting of five dimensions:resistibility,recoverability,adaptability,innovatability,and reconstructability.We used the entropy method ...This paper created an evaluation index system for agricultural green resilience,consisting of five dimensions:resistibility,recoverability,adaptability,innovatability,and reconstructability.We used the entropy method to measure the agricultural green resilience levels of 30 provinces(municipalities/autonomous regions)in China from 2007 to 2021 and employed spatial Markov chains and geographic detectors to reveal the dynamics and evolution of the patterns and influencing factors of the agricultural green resilience.The study shows that the level of agricultural green resilience in China displayed a slight upward trend from 2007 to 2021,but the overall level remained low.Spatially,a distribution pattern of“eastern China>central China>northeastern China>western China”was observed.The transfer process for agricultural green resilience exhibited a“path dependence”characteristic that maintained its initial state,while it also showed a“trickle-down effect.”This means that the regions adjacent to provinces(municipalities/autonomous regions)with higher levels of agricultural green resilience tend to have an increased probability of an upward movement in their ranking.However,such movements are not leapfrogging and only occur at the adjacent levels.The spatial differentiations in the agricultural green resilience levels are primarily driven by the technological innovation capacity and market maturity,with interactions between these factors exhibiting both dual-factor enhancements and nonlinear enhancements.Accordingly,efforts should be made to strengthen support for the less-developed regions,increase research and development investment in the agricultural sector,and improve the market systems for agricultural products to enhance agricultural green resilience.展开更多
The Sichuan Basin(SCB),China has a high incidence of extremely persistent heavy rainfall(EPHR)events.The EPHR events from 2009 to 2019 in the SCB were mainly concentrated over the northern and northwestern windward sl...The Sichuan Basin(SCB),China has a high incidence of extremely persistent heavy rainfall(EPHR)events.The EPHR events from 2009 to 2019 in the SCB were mainly concentrated over the northern and northwestern windward slopes and the central basin.They occurred from June to September,but especially in July,and peaked at 0300 LST.ERA5 reanalysis data and objective classification were used to investigate the synoptic patterns and their effects.There were three synoptic patterns during EPHR events,all accompanied by a Southwest Vortex.The location and intensity of the Southwest Vortex,thermal forcing of the Tibetan Plateau(TP),and low-level winds can greatly affect the intensity and spatial distribution of EPHR.When the Southwest Vortex was located in the western SCB and there were southerly low-level jets(LLJs),convergence and upslope wind would lead to EPHR over the northwestern or northern windward slopes.If there was no LLJ and the whole SCB was under the center of the Southwest Vortex,nocturnal EPHR was controlled by the internal circulation of the Southwest Vortex and the updraft generated by the thermal forcing of the TP,and the rainfall was weaker.The southeastern entrance of the SCB was a key area where the low-level wind dominated the nocturnal peak of EPHR.The nocturnal strengthened southeasterly wind in the key area is attributable to inertial oscillation,and the topographic friction plays an essential role in transporting momentum and moisture into the basin by generating easterly and northeasterly ageostrophic winds.展开更多
Drought significantly constrains vegetation growth and reduces terrestrial carbon sinks.Currently,the spatiotemporal patterns and mechanisms of the differential impacts of soil and meteorological droughts on vegetatio...Drought significantly constrains vegetation growth and reduces terrestrial carbon sinks.Currently,the spatiotemporal patterns and mechanisms of the differential impacts of soil and meteorological droughts on vegetation productivity remain inadequately understood.In this study,we analyzed soil moisture(SM),vapor pressure deficit(VPD),and gross primary productivity(GPP)to investigate their spatiotemporal patterns and the combined effects on GPP over China.The results revealed that:(1)Soil drought and meteorological drought generally exhibited temporally synchronous trends across China.(2)GPP was predominantly affected by the combined and synchronous effects of both SM and VPD,although their effects displayed directional variability differences in certain regions.(3)SM demonstrated a greater relative importance on GPP than VPD across more than half of the regions in China,whereas deciduous broadleaf forests were the only vegetation type primarily affected by VPD.(4)Under the lag effects,both SM and VPD exhibited bidirectional Granger causality with GPP,with the interaction between VPD and GPP proving more pronounced than that of SM.Our research provides valuable insights into the mechanisms through which SM and VPD influence GPP,contributing to improved predictions vegetation productivity and implementing ecological restoration.展开更多
Coal-measure gas is a primary target with significant potential for the exploration of unconventional hydrocarbon resources.However,the spatiotemporal distribution and combination patterns of multi-type coal-measure g...Coal-measure gas is a primary target with significant potential for the exploration of unconventional hydrocarbon resources.However,the spatiotemporal distribution and combination patterns of multi-type coal-measure gases are yet to be clarified,directly impeding the sweet spot evaluation and exploration deployment of coal-measure gas.This study discussed the characteristics and distribution patterns of coal-measure gases in the Daniudi gas field in northeastern Ordos Basin,China,with abundant drilling data.The results indicate that the coal seams variably thin upward and are mainly seen in the first and second members of the Taiyuan Formation(also referred to as the Tai 1 and Tai 2 members,respectively)and the first member of the Shanxi Formation(Shan 1 Member).Nos.8,5 and 3 coal seams are laterally continuous,and significantly thicker in its southern part compared to the northern part.Moreover,carbonaceous mudstones and shales are better developed in the southern part,where limestones are only observed in the Tai 1 Member.Based on the main lithological types,we identified three lithologic roofs of coal seams,that is,limestone,mudstone,and sandstone,which determine the spatiotemporal distribution of coal-measure gases.Besides bauxite gas in the Benxi Formation,the coal-measure gases include tight-sand gas,coalbed methane(CBM),coal-measure shale gas,and tight-limestone gas,with CBM typically associated with coal-measure shale gas.The combinations of different types of coal-measure gas vary across different layers and regions.Tight-sand gas is well-developed in areas where tight sandstones are in contact with coal-measures.From the Taiyuan to the Shanxi formations,CBM gradually transitions into a combination of CBM and coal-measure shale gas,and coal-measure shale gas.Nos.8 and 5 coal seams in low-lying areas exhibit favorable gas-bearing properties due to their large thickness and favorable roof lithologies,serving as prospective play fairways.Mudstone and limestone roofs are more conducive to achieving good gas-bearing properties.The direct contact between sandstones and coal seams tends to result in the formation of tight-sand gas and a reduced gas content of CBM.While focusing on single types of gas reservoirs such as CBM and tight-sand gas,it is essential to consider the concurrent exploration of various coal-measure gas combinations to discover more additional gas resources and guide exploration deployment.展开更多
Dear Editor,This letter proposes a novel dynamic vision-enabled intelligent micro-vibration estimation method with spatiotemporal pattern consistency.Inspired by biological vision,dynamic vision data are collected by ...Dear Editor,This letter proposes a novel dynamic vision-enabled intelligent micro-vibration estimation method with spatiotemporal pattern consistency.Inspired by biological vision,dynamic vision data are collected by the event camera,which is able to capture the micro-vibration information of mechanical equipment,due to the significant advantage of extremely high temporal sampling frequency.展开更多
Brain lesions,such as those caused by stroke or traumatic brain injury(TBI),frequently result in persistent motor and cognitive impairments that significantly affect the individual patient's quality of life.Despit...Brain lesions,such as those caused by stroke or traumatic brain injury(TBI),frequently result in persistent motor and cognitive impairments that significantly affect the individual patient's quality of life.Despite differences in the mechanisms of injury,both conditions share a high prevalence of motor and cognitive impairments.These deficits show only limited natural recovery.展开更多
Tajikistan represents a core region of the biodiversity hotspot in Central Asian mountains and has exceptional vascular plant diversity.However,the species diversity of the country faces urgent conservation challenges...Tajikistan represents a core region of the biodiversity hotspot in Central Asian mountains and has exceptional vascular plant diversity.However,the species diversity of the country faces urgent conservation challenges.There has been a lack of a comprehensive and multidimensional assessment to inform strategic conservation planning.Therefore,this study integrated 4 key biodiversity indices including species richness(SR),phylogenetic diversity(PD),threatened species richness(TSR),and endemic species richness(ESR)to map species diversity distribution patterns,identify conservation gaps,and elucidate their effects of climatic factors.This study revealed that species diversity shows a clear trend of decreasing from the western region to the eastern region of Tajikistan.The central–western mountains(specifically the Gissar-Darvasian and Zeravshanian regions)emerge as irreplaceable biodiversity hotspots.However,we found a severe spatial mismatch between these priority areas and the existing protected areas(PAs).Protection coverage for all hotspots was alarmingly low,ranging from 31.00%to 38.00%.Consequently,a critical 64.80%of integrated priority areas fall outside of the current PAs,representing a major conservation gap.This study identified precipitation seasonality and isothermality as the principal drivers,collectively explaining over 50.00%of the diversity variation and suggesting high vulnerability to hydrological shifts.Furthermore,we detected significant geographic sampling bias in the public biodiversity databases,with the most critical hotspot being systematically under-sampled.This study provides a robust scientific basis for conservation action,highlighting the urgent need to strategically expand PAs in the under-protected southwestern region and to mitigate critical sampling gaps through targeted data digitization and field surveys.These measures are indispensable for securing Tajikistan’s unique biodiversity and achieving the Kunming-Montreal Global Biodiversity Framework Target 3(“30×30 Protection”).展开更多
BACKGROUND Drug utilization research has an important role in assisting the healthcare administration to know,compute,and refine the prescription whose principal objective is to enable the rational use of drugs.Resear...BACKGROUND Drug utilization research has an important role in assisting the healthcare administration to know,compute,and refine the prescription whose principal objective is to enable the rational use of drugs.Research in developing nations relating to the cost of treatment is scarce when compared with developed countries.Thus,the drug utilization research studies from developing nations are most needed,and their number has been growing.AIM To evaluate patterns of utilization of antipsychotic drugs and direct medical cost analysis in patients newly diagnosed with schizophrenia.METHODS The present study was observational in type and based on a retrospective cohort to evaluate patterns of utilization of antipsychotic drugs using World Health Organization(WHO)core prescribing indicators and anatomical therapeutic chemical/defined daily dose indicators.We also calculated direct medical costs for a period of 6 months.RESULTS This study has found that atypical antipsychotics are the mainstay of treatment for schizophrenia in every age group and subcategories of schizophrenia.The evaluation based on WHO prescribing indicators showed a low average number of drugs per prescription and low prescribing frequency of antipsychotics from the National List of Essential Medicines 2015 and the WHO Essential Medicines List 2019.The total mean drug cost of our study was 1396 Indian rupees.The total mean cost due to the investigation in our study was 1017.34 Indian rupees.Therefore,the total mean direct medical cost incurred on patients in our study was 4337.28 Indian rupees.CONCLUSION The information from the present study can be used for reviewing and updating treatment policy at the institutional level.展开更多
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In...Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.展开更多
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s...With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.展开更多
A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequen...A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequential pattern into abstract spatial feature representations. The bottom layer of TS-LM-SOFM, a modified self-organizing feature map, is used as a spatial feature detector. A learning matrix connects the two layers. Experiments show that the hybrid network can well capture the spatio-temporal features of input signals.展开更多
We describe the temporal and spatial expression pattern of Sox 1 gene during Xenopus laevis early development and compare the expression patterns of Sox 1-3 in the developing eye and brain. Alignment of Sox 1-3 amino ...We describe the temporal and spatial expression pattern of Sox 1 gene during Xenopus laevis early development and compare the expression patterns of Sox 1-3 in the developing eye and brain. Alignment of Sox 1-3 amino acid sequences shows a high conservation within the HMG-box DNA binding domains. RT-PCR analysis indicates that Sox 1 is expressed throughout development from the unfertilized egg to at least the tadpole stage, although at different expression levels. The transcripts of XSox 1 are detected in the animal pole at cleavage and blastrula stages and mainly in the central nervous system (CNS) and the developing eye at neurula stages. The study of the developmental expression of XSox 1 will aid in the elucidation of the function of SoxB 1 subgroup genes in vertebrate neurogenesis.展开更多
The issue of China's energy supply security is not only the key problem which af- fects China's rapid and sustainable development in the 21st century, but also the one which international attention focuses on. Based...The issue of China's energy supply security is not only the key problem which af- fects China's rapid and sustainable development in the 21st century, but also the one which international attention focuses on. Based on the notable characteristic of spatial imbalance between energy production and consumption in China, this paper takes the evolution of China's primary energy resources development(excluding hydropower) from 1949 to 2007 as the study object, with the aim to sum up the evolutive characteristics and laws of China's energy resources development in the past nearly 60 years. Then, based on comprehensive considerations of coal's, oil's and natural gas's basic reserves, qualities, geological conditions production status, and ecological service function of every province, this paper adopts development potential index (DP)to evaluate the development potential of every province's en- ergy resources, and divide them into different ranks. Conclusions are drawn as follows: (1) Generally speaking, China's gross energy production was increasing in waves from 1949 to 2007. From the viewpoint of spatial patterns, China's energy resources development has shown a characteristic of "concentrating to the north and central areas, and evolving from linear-shaped to "T-shaped" pattern gradually since 1949. (2) The structure evolution of China's energy resources development in general has shown a trend of "coal proportion is dominant but decreasing, while oil and gas proportions are increasing" since 1949. (3) At the provincial scale, China's energy resources development potential could be divided into large, sub-large, general and small ranks, four in all. In the future, the spatial pattern of China's energy production will evolve from "T-shaped" to "R-shaped pattern". These conclusions will help to clarify the temporal and spatial characteristics and laws of China's energy resources development, and will be beneficial for China to design scientific and rational energy development strategies and plans, coordinate spatial imbalance of energy production and consumption, ensure national energy supply, avoid energy resources waste and disorderly development, and promote regional sustainable development under the globalization back-ground with changeful international energy market.展开更多
Daily maximum/minimum temperatures and relative humidity records from 510 stations in China for the period 1960–2008 were used to investigate geographical patterns and temporal variations of heatwave (HW) events. D...Daily maximum/minimum temperatures and relative humidity records from 510 stations in China for the period 1960–2008 were used to investigate geographical patterns and temporal variations of heatwave (HW) events. Dry and wet HW events were compared by different definitions. Regionally, both dry and wet HW events are commonly located in southeastern China in the monsoon area, with neither type occurring in the northeast part of Northeast China and Southwest China, while the north-northwest region of the country experiences dry HW events and a few wet HW events. In the southeast of the country, site dry HW events occurred from April to September and mostly in June, while site wet HW events occurred from April to October and mostly in September. In total, 163 regional wet HW events were identified. The ten longest regional wet HW events lasted for more than 20 days, while the mean duration for 163 events was about 11 days. For the top ten events, six occurred after the 1990s, compared with four before this time. Global surface warming was clear since 1979, but the frequency and severity of regional wet HW events were relatively low in the 1980s, increasing remarkably since the 1990s. Possible reasons for this might be the strong interdecadal and interannual variations in regional atmospheric circulations, as well as water transport related directly to temperature contrasts in different regions, rather than global-mean temperature changes.展开更多
Spatio-temporal patterns of drought from 1961 to 2013 over the Beijing-Tianjin-Hebei(BTH) region of China were analyzed using the Palmer Drought Severity index(PDSI) based on 21 meteorological stations. Overall, chang...Spatio-temporal patterns of drought from 1961 to 2013 over the Beijing-Tianjin-Hebei(BTH) region of China were analyzed using the Palmer Drought Severity index(PDSI) based on 21 meteorological stations. Overall, changes in the mean-state of drought detected in recent decades were due to decreases in precipitation and potential evapotranspiration. The Empirical Orthogonal Functions(EOF) method was used to decompose drought into spatio-temporal patterns, and the first two EOF modes were analyzed. According to the first leading EOF mode(48.5%), the temporal variability(Principal Components, PC1) was highly positively correlated with annual series of PDSI(r=+0.99). The variance decomposition method was further applied to explain the inter-decadal temporal and spatial variations of drought relative to the total variation. We find that 90% of total variance was explained by time variance, and both total and time variance dramatically decreased from 1982 to 2013. The total variance was consistent with extreme climate events at the inter-decadal scale(r=0.71, p<0.01). Comparing the influence of climate change on the annual drought in two different long-term periods characterized by dramatic global warming(P1: 1961–1989 and P2: 1990–2013), we find that temperature sensitivity in the P2 was three times more than that in the P1.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52260028,52060022,52260029,and 52160021)the National Key Research and Development Program of China(Nos.2017YFE0114800 and 2019YFC0409200)+1 种基金Inner Mongolia Autonomous Region Science and Technology Plan(No.2021GG0089)personal grant to Guohua Li by China Scholarship Council(CSC).
文摘Eutrophic shallow lakes are generally considered as a contributor to the emission of nitrous oxide(N_(2)O),while regional and global estimates have remained imprecise.This due to a lack of data and insufficient understanding of the multiple contributing factors.This study characterized the spatiotemporal variability in N_(2)O concentrations and N_(2)O diffusive fluxes and the contributing factors in LakeWuliangsuhai,a typical shallow eutrophic and seasonally frozen lake in Inner Mongolia with cold and arid climate.Dissolved N_(2)O concentrations of the lake exhibited a range of 4.5 to 101.2 nmol/L,displaying significant spatiotemporal variations.The lowest and highest concentrations were measured in summer and winter,respectively.The spatial distribution of N_(2)Ofluxwas consistent with that of N_(2)O concentrations.Additionally,the hotspots of N_(2)O emissions were detected within close to the main inflow of lake.The wide spatial and temporal variation in N_(2)O emissions indicate the complexity and its relative importance of factors influencing emissions.N_(2)O emissions in different lake zones and seasons were regulated by diverse factors.Factors influencing the spatial and temporal distribution of N_(2)O concentrations and fluxes were identified as WT,WD,DO,Chl-a,SD and COD.Interestingly,the same factor demonstrated opposing effects on N_(2)O emission in various seasons or zones.This research improves our understanding of N_(2)O emissions in shallow eutrophic lakes in cold and arid areas.
基金funded by the National Natural Science Foundation of China[Grant No.71963030]a subproject of China’s third comprehensive scientific expedition to Xinjiang[Grant No.SQ2021xjkk01800]+1 种基金a major science and technology project in the Xinjiang Uygur Autonomous Region[Grant No.2022A01003]a scientific research innovation project for excellent doctoral students of Xinjiang University[Grant No.XJU2022BS010].
文摘Ensuring a harmonious coexistence between man and nature is crucial for China’s economic and social development.However,with increasing industrialization and urbanization,there is a growing mismatch between China’s ecological resilience(ER)and economic level(EL)of development,which poses a notable social threat.Currently,the link between ER and EL in China remains unclear,especially in terms of spatial dislocation(SD),referring to the disconnect between the locations where environmental impacts occur and those where economic benefits or activities are concentrated.Therefore,this paper aims to provide theoretical support and an empirical basis for policy-based solutions to address this gap.Based on the SD theory,this study systematically discusses the temporal changes,spatial patterns,and SD characteristics of China’s ER and EL using spatial auto-correlation and barycentric analysis to analyze data from 30 provinces covering the period 2011-2021.The key results are as follows.China’s ER shows a general trend of growth;however,its distribution is uneven.The spatial pattern generally decreases from the southeastern coastal provinces to the northwest.Moreover,a gradually increasing positive correlation is observed between the ER and EL,but this correlation varies by region,with some showing regional linkages and others developing independently.Finally,the dislocation index of ER and EL presents divergent results based on region-the eastern and central regions primarily show a high level of dislocation,whereas the western and northeastern regions show a low level of dislocation.The results provide a comprehensive overview of the spatiotemporal patterns in the association between ER and EL in China.The results emphasize that to balance sustainable regional development and ecological governance,a region-specific approach must be employed,prioritizing innovation-driven strategies for high ER in more developed regions and market-oriented strategies in less developed regions.
基金The Scientific Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources,China under contract Nos SZ2302 and JG2209.
文摘Macrobenthic organisms are commonly employed as biomonitors for environmental risk assessment.In this study,we aimed to investigate the spatial and temporal patterns of the macrobenthic community,which is influenced by environmental factors of sediments and bottom water layer.We sampled a total of 12,11,10,and 11 stations in the Shengsi Archipelago during June 2010,August 2010,November 2020,and April 2021 respectively.A total of 124 species of macrobenthos were identified,with polychaetes being the dominant group.The abundance,biomass,and diversity indices exhibited no significant temporal differences.Similarly,biodiversity did not exhibit a clear spatial gradient,likely due to the small study area and the absence of significant differences in key factors such as depth.However,the stations with the lowest biodiversity values consistently appeared in the southwest region,possibly due to the impact of human activities.Significant differences in the macrobenthic community were observed between all months except between June and August,and mollusk Endopleura lubrica and polychaete Sigambra hanaokai were important contributors to these differences according to the results of the Similarity Percentages analysis.Suspended particulate matter(SPM)was identified as the primary driving factors of macrobenthic variability.In summary,the community structure underwent temporal changes influenced by complex current patterns,while biodiversity remained relatively stable.This study contributes to our understanding of the key environmental factors affecting macrobenthic communities and biodiversity.It also provides valuable data support for the long-term monitoring of macrobenthos and the environment in the Shengsi Archipelago.
基金supported by the National Key Research and Development Program of China(2022YFD1300202)Collection,Utilization,and Innovation of Animal Resources by Research Institutes and Enterprises of Chongqing(Cqnyncw-kqlhtxm),Chongqing Modern Agricultural Industry Technology System(CQMAITS202413)National Training Program of Innovation and Entrepreneurship for Undergraduates(S202310635040)。
文摘The genetic regulation of hair density in animals remains poorly understood.The Dazu black goat,characterized by its black coarse hair and white skin,provides a unique model for dissecting coarse hair density(CHD).Using high-resolution micro-camera imaging,this study analyzed 905 skin images,33 skin transcriptomes,272 whole-genome sequences,and 182 downloaded transcriptomes.Morphological assessment from juvenile to adult stages revealed the thickening of hair shafts accompanied by a progressive decline in density,largely attributable to rapid surface expansion of the trunk skin.Transcriptomic comparison between high-and low-CHD individuals identified 572 differentially expressed genes(DEGs).A genome-wide association study detected 25 significant single nucleotide polymorphisms(P<9.07e-8)and mapped 48 annotated genes,with the most prominent association signal located near GJA1 on chr9.15931585-18621011.Literature review and Venn analysis highlighted six genes(GJA1,GPRC5D,CD1D,CD207,TFAM,and CXCL12)with documented roles in skin and hair biology,and three genes(GJA1,GPRC5D,and ATP6V1B1)overlapped with DEGs.Multiple-tissue transcriptomic profiling,western blotting,immunohistochemical staining,and skin single-cell RNA sequencing confirmed that GJA1 and GPRC5D were highly and specifically expressed in skin,particularly within hair follicles.Expression was localized predominantly to follicular stem cells and dermal papilla cells,suggesting a significant role in folliculogenesis and structural maintenance.Cross-validation using four public datasets further demonstrated positive correlations between GJA1 and GPRC5D expression and hair follicle density.The innovative micro-camera application allowed the elucidation of spatiotemporal patterns and genes associated with CHD,thereby addressing a significant knowledge gap in animal hair density.
基金supported by the Research on the Mechanisms and Policies for the Collaborative Promotion of High-Quality Development in the Private Enterprises of Fujian Province Through Digital Finance and Green Finance(FJ2024MGCA021)a key project of basic theory research in philosophy and social sciences guided by Marxism in universities in Fujian Province and Research on the Mechanism and Pathways for Empowering Green Innovation in Fujian Province Through the Deep Integration of Digital Economy and Real Economy(FJKX-2023XKB003)a Science and Technology Innovation Think Tank Research Project of Fujian Association for Science and Technology.
文摘This paper created an evaluation index system for agricultural green resilience,consisting of five dimensions:resistibility,recoverability,adaptability,innovatability,and reconstructability.We used the entropy method to measure the agricultural green resilience levels of 30 provinces(municipalities/autonomous regions)in China from 2007 to 2021 and employed spatial Markov chains and geographic detectors to reveal the dynamics and evolution of the patterns and influencing factors of the agricultural green resilience.The study shows that the level of agricultural green resilience in China displayed a slight upward trend from 2007 to 2021,but the overall level remained low.Spatially,a distribution pattern of“eastern China>central China>northeastern China>western China”was observed.The transfer process for agricultural green resilience exhibited a“path dependence”characteristic that maintained its initial state,while it also showed a“trickle-down effect.”This means that the regions adjacent to provinces(municipalities/autonomous regions)with higher levels of agricultural green resilience tend to have an increased probability of an upward movement in their ranking.However,such movements are not leapfrogging and only occur at the adjacent levels.The spatial differentiations in the agricultural green resilience levels are primarily driven by the technological innovation capacity and market maturity,with interactions between these factors exhibiting both dual-factor enhancements and nonlinear enhancements.Accordingly,efforts should be made to strengthen support for the less-developed regions,increase research and development investment in the agricultural sector,and improve the market systems for agricultural products to enhance agricultural green resilience.
基金supported by the National Natural Science Foundation of China(Grant Nos.42330610 and 42075010)。
文摘The Sichuan Basin(SCB),China has a high incidence of extremely persistent heavy rainfall(EPHR)events.The EPHR events from 2009 to 2019 in the SCB were mainly concentrated over the northern and northwestern windward slopes and the central basin.They occurred from June to September,but especially in July,and peaked at 0300 LST.ERA5 reanalysis data and objective classification were used to investigate the synoptic patterns and their effects.There were three synoptic patterns during EPHR events,all accompanied by a Southwest Vortex.The location and intensity of the Southwest Vortex,thermal forcing of the Tibetan Plateau(TP),and low-level winds can greatly affect the intensity and spatial distribution of EPHR.When the Southwest Vortex was located in the western SCB and there were southerly low-level jets(LLJs),convergence and upslope wind would lead to EPHR over the northwestern or northern windward slopes.If there was no LLJ and the whole SCB was under the center of the Southwest Vortex,nocturnal EPHR was controlled by the internal circulation of the Southwest Vortex and the updraft generated by the thermal forcing of the TP,and the rainfall was weaker.The southeastern entrance of the SCB was a key area where the low-level wind dominated the nocturnal peak of EPHR.The nocturnal strengthened southeasterly wind in the key area is attributable to inertial oscillation,and the topographic friction plays an essential role in transporting momentum and moisture into the basin by generating easterly and northeasterly ageostrophic winds.
基金National Key Research and Development Program,No.2021xjkk0303。
文摘Drought significantly constrains vegetation growth and reduces terrestrial carbon sinks.Currently,the spatiotemporal patterns and mechanisms of the differential impacts of soil and meteorological droughts on vegetation productivity remain inadequately understood.In this study,we analyzed soil moisture(SM),vapor pressure deficit(VPD),and gross primary productivity(GPP)to investigate their spatiotemporal patterns and the combined effects on GPP over China.The results revealed that:(1)Soil drought and meteorological drought generally exhibited temporally synchronous trends across China.(2)GPP was predominantly affected by the combined and synchronous effects of both SM and VPD,although their effects displayed directional variability differences in certain regions.(3)SM demonstrated a greater relative importance on GPP than VPD across more than half of the regions in China,whereas deciduous broadleaf forests were the only vegetation type primarily affected by VPD.(4)Under the lag effects,both SM and VPD exhibited bidirectional Granger causality with GPP,with the interaction between VPD and GPP proving more pronounced than that of SM.Our research provides valuable insights into the mechanisms through which SM and VPD influence GPP,contributing to improved predictions vegetation productivity and implementing ecological restoration.
基金funded by SINOPEC Science and Technology Research Program(No.P23206No.P23230).
文摘Coal-measure gas is a primary target with significant potential for the exploration of unconventional hydrocarbon resources.However,the spatiotemporal distribution and combination patterns of multi-type coal-measure gases are yet to be clarified,directly impeding the sweet spot evaluation and exploration deployment of coal-measure gas.This study discussed the characteristics and distribution patterns of coal-measure gases in the Daniudi gas field in northeastern Ordos Basin,China,with abundant drilling data.The results indicate that the coal seams variably thin upward and are mainly seen in the first and second members of the Taiyuan Formation(also referred to as the Tai 1 and Tai 2 members,respectively)and the first member of the Shanxi Formation(Shan 1 Member).Nos.8,5 and 3 coal seams are laterally continuous,and significantly thicker in its southern part compared to the northern part.Moreover,carbonaceous mudstones and shales are better developed in the southern part,where limestones are only observed in the Tai 1 Member.Based on the main lithological types,we identified three lithologic roofs of coal seams,that is,limestone,mudstone,and sandstone,which determine the spatiotemporal distribution of coal-measure gases.Besides bauxite gas in the Benxi Formation,the coal-measure gases include tight-sand gas,coalbed methane(CBM),coal-measure shale gas,and tight-limestone gas,with CBM typically associated with coal-measure shale gas.The combinations of different types of coal-measure gas vary across different layers and regions.Tight-sand gas is well-developed in areas where tight sandstones are in contact with coal-measures.From the Taiyuan to the Shanxi formations,CBM gradually transitions into a combination of CBM and coal-measure shale gas,and coal-measure shale gas.Nos.8 and 5 coal seams in low-lying areas exhibit favorable gas-bearing properties due to their large thickness and favorable roof lithologies,serving as prospective play fairways.Mudstone and limestone roofs are more conducive to achieving good gas-bearing properties.The direct contact between sandstones and coal seams tends to result in the formation of tight-sand gas and a reduced gas content of CBM.While focusing on single types of gas reservoirs such as CBM and tight-sand gas,it is essential to consider the concurrent exploration of various coal-measure gas combinations to discover more additional gas resources and guide exploration deployment.
文摘Dear Editor,This letter proposes a novel dynamic vision-enabled intelligent micro-vibration estimation method with spatiotemporal pattern consistency.Inspired by biological vision,dynamic vision data are collected by the event camera,which is able to capture the micro-vibration information of mechanical equipment,due to the significant advantage of extremely high temporal sampling frequency.
基金supported by the Defitech Foundation(Morges,CH)to FCHthe Bertarelli Foundation-Catalyst program(Gstaad,CH)to FCH+2 种基金the Wyss Center for Bio and Neuroengineering the Lighthouse Partnership for AI-guided Neuromodulation to FCHthe Fonds de recherche du Quebec-Sante(FRQS#342969)to CEPthe Neuro X Postdoctoral Fellowship Program to CEP。
文摘Brain lesions,such as those caused by stroke or traumatic brain injury(TBI),frequently result in persistent motor and cognitive impairments that significantly affect the individual patient's quality of life.Despite differences in the mechanisms of injury,both conditions share a high prevalence of motor and cognitive impairments.These deficits show only limited natural recovery.
基金the Chinese Academy of Sciences Research Center for Ecology and Environment of Central Asia(RCEECA),the construction and joint research for the China-Tajikistan“Belt and Road”Joint Laboratory on Biodiversity Conservation and Sustainable Use(2024YFE0214200)the Shanghai Cooperation Organization Partnership and International Technology Cooperation Plan of Science and Technology Projects(2023E01018,2025E01056)the Chinese Academy of Sciences President’s International Fellowship Initiative(PIFI)(2024VBC0006).
文摘Tajikistan represents a core region of the biodiversity hotspot in Central Asian mountains and has exceptional vascular plant diversity.However,the species diversity of the country faces urgent conservation challenges.There has been a lack of a comprehensive and multidimensional assessment to inform strategic conservation planning.Therefore,this study integrated 4 key biodiversity indices including species richness(SR),phylogenetic diversity(PD),threatened species richness(TSR),and endemic species richness(ESR)to map species diversity distribution patterns,identify conservation gaps,and elucidate their effects of climatic factors.This study revealed that species diversity shows a clear trend of decreasing from the western region to the eastern region of Tajikistan.The central–western mountains(specifically the Gissar-Darvasian and Zeravshanian regions)emerge as irreplaceable biodiversity hotspots.However,we found a severe spatial mismatch between these priority areas and the existing protected areas(PAs).Protection coverage for all hotspots was alarmingly low,ranging from 31.00%to 38.00%.Consequently,a critical 64.80%of integrated priority areas fall outside of the current PAs,representing a major conservation gap.This study identified precipitation seasonality and isothermality as the principal drivers,collectively explaining over 50.00%of the diversity variation and suggesting high vulnerability to hydrological shifts.Furthermore,we detected significant geographic sampling bias in the public biodiversity databases,with the most critical hotspot being systematically under-sampled.This study provides a robust scientific basis for conservation action,highlighting the urgent need to strategically expand PAs in the under-protected southwestern region and to mitigate critical sampling gaps through targeted data digitization and field surveys.These measures are indispensable for securing Tajikistan’s unique biodiversity and achieving the Kunming-Montreal Global Biodiversity Framework Target 3(“30×30 Protection”).
文摘BACKGROUND Drug utilization research has an important role in assisting the healthcare administration to know,compute,and refine the prescription whose principal objective is to enable the rational use of drugs.Research in developing nations relating to the cost of treatment is scarce when compared with developed countries.Thus,the drug utilization research studies from developing nations are most needed,and their number has been growing.AIM To evaluate patterns of utilization of antipsychotic drugs and direct medical cost analysis in patients newly diagnosed with schizophrenia.METHODS The present study was observational in type and based on a retrospective cohort to evaluate patterns of utilization of antipsychotic drugs using World Health Organization(WHO)core prescribing indicators and anatomical therapeutic chemical/defined daily dose indicators.We also calculated direct medical costs for a period of 6 months.RESULTS This study has found that atypical antipsychotics are the mainstay of treatment for schizophrenia in every age group and subcategories of schizophrenia.The evaluation based on WHO prescribing indicators showed a low average number of drugs per prescription and low prescribing frequency of antipsychotics from the National List of Essential Medicines 2015 and the WHO Essential Medicines List 2019.The total mean drug cost of our study was 1396 Indian rupees.The total mean cost due to the investigation in our study was 1017.34 Indian rupees.Therefore,the total mean direct medical cost incurred on patients in our study was 4337.28 Indian rupees.CONCLUSION The information from the present study can be used for reviewing and updating treatment policy at the institutional level.
文摘Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.
基金funded by scientific research projects under Grant JY2024B011.
文摘With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.
文摘A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequential pattern into abstract spatial feature representations. The bottom layer of TS-LM-SOFM, a modified self-organizing feature map, is used as a spatial feature detector. A learning matrix connects the two layers. Experiments show that the hybrid network can well capture the spatio-temporal features of input signals.
文摘We describe the temporal and spatial expression pattern of Sox 1 gene during Xenopus laevis early development and compare the expression patterns of Sox 1-3 in the developing eye and brain. Alignment of Sox 1-3 amino acid sequences shows a high conservation within the HMG-box DNA binding domains. RT-PCR analysis indicates that Sox 1 is expressed throughout development from the unfertilized egg to at least the tadpole stage, although at different expression levels. The transcripts of XSox 1 are detected in the animal pole at cleavage and blastrula stages and mainly in the central nervous system (CNS) and the developing eye at neurula stages. The study of the developmental expression of XSox 1 will aid in the elucidation of the function of SoxB 1 subgroup genes in vertebrate neurogenesis.
基金Key Project of National Science and Technology Supporting Program, No.2006038053001 Key Project of National Natural Science Foundation of China, No.40535026 Environment Protection and Public Welfare Project of Ministry of Science and Technology, No.08L80370AJ
文摘The issue of China's energy supply security is not only the key problem which af- fects China's rapid and sustainable development in the 21st century, but also the one which international attention focuses on. Based on the notable characteristic of spatial imbalance between energy production and consumption in China, this paper takes the evolution of China's primary energy resources development(excluding hydropower) from 1949 to 2007 as the study object, with the aim to sum up the evolutive characteristics and laws of China's energy resources development in the past nearly 60 years. Then, based on comprehensive considerations of coal's, oil's and natural gas's basic reserves, qualities, geological conditions production status, and ecological service function of every province, this paper adopts development potential index (DP)to evaluate the development potential of every province's en- ergy resources, and divide them into different ranks. Conclusions are drawn as follows: (1) Generally speaking, China's gross energy production was increasing in waves from 1949 to 2007. From the viewpoint of spatial patterns, China's energy resources development has shown a characteristic of "concentrating to the north and central areas, and evolving from linear-shaped to "T-shaped" pattern gradually since 1949. (2) The structure evolution of China's energy resources development in general has shown a trend of "coal proportion is dominant but decreasing, while oil and gas proportions are increasing" since 1949. (3) At the provincial scale, China's energy resources development potential could be divided into large, sub-large, general and small ranks, four in all. In the future, the spatial pattern of China's energy production will evolve from "T-shaped" to "R-shaped pattern". These conclusions will help to clarify the temporal and spatial characteristics and laws of China's energy resources development, and will be beneficial for China to design scientific and rational energy development strategies and plans, coordinate spatial imbalance of energy production and consumption, ensure national energy supply, avoid energy resources waste and disorderly development, and promote regional sustainable development under the globalization back-ground with changeful international energy market.
基金supported jointly by the National Natural Science Foundation of China (Grant No.40975039),GYHY201006018the Key Technologies R&D Program (Grant No. 2009BAC51B00)
文摘Daily maximum/minimum temperatures and relative humidity records from 510 stations in China for the period 1960–2008 were used to investigate geographical patterns and temporal variations of heatwave (HW) events. Dry and wet HW events were compared by different definitions. Regionally, both dry and wet HW events are commonly located in southeastern China in the monsoon area, with neither type occurring in the northeast part of Northeast China and Southwest China, while the north-northwest region of the country experiences dry HW events and a few wet HW events. In the southeast of the country, site dry HW events occurred from April to September and mostly in June, while site wet HW events occurred from April to October and mostly in September. In total, 163 regional wet HW events were identified. The ten longest regional wet HW events lasted for more than 20 days, while the mean duration for 163 events was about 11 days. For the top ten events, six occurred after the 1990s, compared with four before this time. Global surface warming was clear since 1979, but the frequency and severity of regional wet HW events were relatively low in the 1980s, increasing remarkably since the 1990s. Possible reasons for this might be the strong interdecadal and interannual variations in regional atmospheric circulations, as well as water transport related directly to temperature contrasts in different regions, rather than global-mean temperature changes.
基金National Key Research and Development Program of China,No.2016YFC0401401,No.2016YFA0602402Key Program of the Chinese Academy of Sciences,No.ZDRW-ZS-2017-3-1+1 种基金The Chinese Academy of Sciences(CAS)Pioneer Hundred Talents ProgramNational Natural Science Foundation of China,No.41601035
文摘Spatio-temporal patterns of drought from 1961 to 2013 over the Beijing-Tianjin-Hebei(BTH) region of China were analyzed using the Palmer Drought Severity index(PDSI) based on 21 meteorological stations. Overall, changes in the mean-state of drought detected in recent decades were due to decreases in precipitation and potential evapotranspiration. The Empirical Orthogonal Functions(EOF) method was used to decompose drought into spatio-temporal patterns, and the first two EOF modes were analyzed. According to the first leading EOF mode(48.5%), the temporal variability(Principal Components, PC1) was highly positively correlated with annual series of PDSI(r=+0.99). The variance decomposition method was further applied to explain the inter-decadal temporal and spatial variations of drought relative to the total variation. We find that 90% of total variance was explained by time variance, and both total and time variance dramatically decreased from 1982 to 2013. The total variance was consistent with extreme climate events at the inter-decadal scale(r=0.71, p<0.01). Comparing the influence of climate change on the annual drought in two different long-term periods characterized by dramatic global warming(P1: 1961–1989 and P2: 1990–2013), we find that temperature sensitivity in the P2 was three times more than that in the P1.