The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 μm) channel imagery,where the traditional cloud motion wind technique fails....The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 μm) channel imagery,where the traditional cloud motion wind technique fails.A new tracer selection procedure,which we call the temporal difference technique,is demonstrated in this paper.This technique makes it possible to infer low-level wind by tracking features in the moisture pattern that appear as brightness temperature (TB) differences between consecutive sequences of 30-min-interval FY-2E IR2 images over cloud-free regions.The TB difference corresponding to a 10% change in water vapor density is computed with the Moderate Resolution Atmospheric Transmission (MODTRAN4) radiative transfer model.The total contribution from each of the 10 layers is analyzed under four typical atmospheric conditions:tropical,midlatitude summer,U.S.standard,and midlatitude winter.The peak level of the water vapor weighting function for the four typical atmospheres is assigned as a specific height to the TB "wind".This technique is valid over cloudfree ocean areas.The proposed algorithm exhibits encouraging statistical results in terms of vector difference (VD),speed bias (BIAS),mean vector difference (MVD),standard deviation (SD),and root-mean-square error (RMSE),when compared with the wind field of NCEP reanalysis data and rawinsonde observations.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.41175035 and 41005005)the National Basic Research Program of China (Grant No.2009CB421502)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 μm) channel imagery,where the traditional cloud motion wind technique fails.A new tracer selection procedure,which we call the temporal difference technique,is demonstrated in this paper.This technique makes it possible to infer low-level wind by tracking features in the moisture pattern that appear as brightness temperature (TB) differences between consecutive sequences of 30-min-interval FY-2E IR2 images over cloud-free regions.The TB difference corresponding to a 10% change in water vapor density is computed with the Moderate Resolution Atmospheric Transmission (MODTRAN4) radiative transfer model.The total contribution from each of the 10 layers is analyzed under four typical atmospheric conditions:tropical,midlatitude summer,U.S.standard,and midlatitude winter.The peak level of the water vapor weighting function for the four typical atmospheres is assigned as a specific height to the TB "wind".This technique is valid over cloudfree ocean areas.The proposed algorithm exhibits encouraging statistical results in terms of vector difference (VD),speed bias (BIAS),mean vector difference (MVD),standard deviation (SD),and root-mean-square error (RMSE),when compared with the wind field of NCEP reanalysis data and rawinsonde observations.