By system analysis and imitating modeling authors show the most effective modern techniques for railway electric systems control. Modem measure technologies PMU-WAMS and smart grid allow to solve real time tasks of ce...By system analysis and imitating modeling authors show the most effective modern techniques for railway electric systems control. Modem measure technologies PMU-WAMS and smart grid allow to solve real time tasks of centralizing control of railway electric systems. Quantity characteristics of control effectiveness are determined. According to computer modeling the situation approach is available for practical tasks of railway electric system control.展开更多
Arsenic(As),classified as a Group I carcinogen by the International Agency for Research on Cancer(IARC),poses severe risks to ecosystems and human health through atmospheric exposure.This review synthesizes current kn...Arsenic(As),classified as a Group I carcinogen by the International Agency for Research on Cancer(IARC),poses severe risks to ecosystems and human health through atmospheric exposure.This review synthesizes current knowledge on the sources,health impacts,and control strategies of atmospheric arsenic,with an emphasis on its global transport and toxicity.Natural sources,such as volcanic eruptions and soil erosion,contribute approximately 2.1 Gg/year;however,anthropogenic activities,notably metal smelting and coal combustion,dominate emissions,with global anthropogenic releases reaching approximately 28.6 Gg/year.Atmospheric arsenic primarily exists in two forms:particulate matter(PM_(2.5)-bound As(Ⅴ)/As(Ⅲ)and methylated species)and gaseous forms(e.g.,AsH_(3),As_(2)O_(3)),facilitating long-range transport and cross-continental pollution,as evidenced by Asian emissions contributing 39% of Arctic deposition.Advanced techniques,such as inductively coupled plasma mass spectrometry(ICP-MS)and models like GEOS-Chem,enhance emission tracking;however,gaps persist in monitoring gaseous arsenic and refining emission inventories.Health risks include lung cancer,neurotoxicity,and cardiovascular diseases,exacerbated by inhalation and dietary exposure via contaminated crops.Control technologies,including calcium-and iron-based adsorbents and industrial scrubbers,show promise but face challenges related to efficiency and cost.Regional strategies,such as China’s tightened emission limits(0.5 mg/m^(3))and the EU’s Best Available Techniques(BAT),highlight progress,yet global cooperation remains vital for transboundary mitigation.Future research should prioritize low-cost sensors,elucidating speciation-toxicity relationships,and AI-driven emission management to address data gaps and optimize policies.Integrating multidisciplinary approaches—advanced science,stringent regulations,and international collaboration—is crucial to mitigate the environmental and public health impacts of arsenic amid growing industrialization and climate change.展开更多
Biological contaminants(BCs),including but not limited to various pathogens and their endogenous pol-lutants such as intracellular pathogens and antimicrobial resistance genes(ARGs),are ubiquitously detected in efflue...Biological contaminants(BCs),including but not limited to various pathogens and their endogenous pol-lutants such as intracellular pathogens and antimicrobial resistance genes(ARGs),are ubiquitously detected in effluent of wastewater and drinking water treatment systems which were originally designed to remove common indicator bacteria,resulting in potential impacts on public health.Although there are many emerging technologies that showing promising antimicrobial effects,few have progressed to the actual water scenarios.It’s crucial to understand the main knowledge gaps and thereby design the future developments to better meet engineering requirements.In this review,we first summarize the perfor-mance of conventional water treatment towards BCs removal.Then we showcase the advances of proof-of-concept strategies,including nanotechnology,advanced oxidation process,biological control process and integrated techniques,for BCs control in light of antimicrobial mechanisms,characteristics,proper niches in water treatment,challenges and latest improvements.Further,we proposed a semi-quantitative framework coupling life cycle assessment(LCA)and analytic hierarchy process(AHP)to assess and compare the application potential of representative pilot technologies,in which the antimicro-bial effects,economic issues and sustainability are comprehensively considered.For wastewater treat-ment,non-thermal plasma weights highest among the emerging technologies and outperforms conventional disinfection in terms of efficacy indicators(overall inactivation rate,ARGs removal rate,and growth inhibition),but fall behind overall mainly due to more energy input.Bacteriophage-based treatment has the potential to synergistically inactive the persistent pathogens in combination with con-ventional disinfection,serving as a cost-effective and environmental-friendly supplement.For drinking water treatment,the integrated photocatalytic nanocomposite receives the highest application potential among the emerging technologies and appears to be supplementary or even alternative next-generation disinfectants.This review shares valuable insights to propel the proof-of-concept antimicrobial trials towards industrial procedures.展开更多
Chinese diesel trucks are the main contributors to NOx and particulate matter(PM)vehicle emissions.An increase in diesel trucks could aggravate air pollution and damage human health.The Chinese government has recently...Chinese diesel trucks are the main contributors to NOx and particulate matter(PM)vehicle emissions.An increase in diesel trucks could aggravate air pollution and damage human health.The Chinese government has recently implemented a series of emission control technologies andmeasures for air quality improvement.This paper summarizes recent control technologies and measures for diesel truck emissions in China and introduces the comprehensive application of control technologies and measures in Beijing-Tianjin-Hebei and surrounding regions.Remote onlinemonitoring technology has been adopted according to the China VI standard for heavy-duty diesel trucks,and control measures such as transportation structure adjustment and heavy pollution enterprise classification control continue to support the battle action plan for pollution control.Perspectives and suggestions are provided for promoting pollution control and supervision of diesel truck emissions:adhere to the concept of overall management and control,vigorously promote the application of systematic and technological means in emission monitoring,continuously facilitate cargo transportation structure adjustment and promote new energy freight vehicles.This paper aims to accelerate the implementation of control technologies and measures throughout China.China is endeavouring to control diesel truck exhaust pollution.China is willing to cooperate with the world to protect the global ecological environment.展开更多
Plant diseases affect the cultivation of Chinese herbal medicines,while traditional chemical pesticides have many drawbacks such as environmental pollution,health risks and disruption of ecological balance.Microbiocon...Plant diseases affect the cultivation of Chinese herbal medicines,while traditional chemical pesticides have many drawbacks such as environmental pollution,health risks and disruption of ecological balance.Microbiocontrol has gradually appeared in public view,and its application has become increasingly extensive.This paper reviews the disease-causing species of medicinal plants,including fungal,bacterial,nematode,viral and parasitic pests,and reviews the diseases caused by microorganisms in traditional Chinese medicine planting and their biological control by consulting Sciencedirect databases and Web of Science databases.4667 related articles were found,of which 552 were related to microbiocontrol technology and cultivation of traditional Chinese medicines.This review provides a reference for the green planting technology of traditional Chinese medicine.展开更多
In the current social environment,the importance of energy conservation and emission reduction is increasing day by day for both the country and its people.Electronic and electrical products,as important items for peo...In the current social environment,the importance of energy conservation and emission reduction is increasing day by day for both the country and its people.Electronic and electrical products,as important items for people’s production and life,require high attention from industry insiders in terms of their energy efficiency testing.Relying on energy efficiency testing can achieve the goal of energy conservation and emission reduction,and related quality control technologies will also inject new momentum into the green development of the industry.This article will discuss the practical strategies of quality control technology for energy efficiency testing of electronic and electrical products based on the significance of such testing,hoping to provide some help.展开更多
Thermal-force driving of roll profile electromagnetic control technology(RPECT),which can be used to adjust the roll profile,can be affected by the sequential temperature rise between the electromagnetic stick(ES)and ...Thermal-force driving of roll profile electromagnetic control technology(RPECT),which can be used to adjust the roll profile,can be affected by the sequential temperature rise between the electromagnetic stick(ES)and electromagnetic control roll.Due to the limited space of ES and induction coil,the cross-sectional area of induction coil can be inevitably affected by changing the size of the ES induction zone,which can further change the energy input under the same electromagnetic parameters,the temperature rising effect and the bulging ability.To investigate this phenomenon,the effects of the radius of the induction zone on the thermal-force contribution ratio,the heating ability of ES and the temperature distribution were analyzed through an electromagnetic-thermal-structural finite element model.To ensure that the results are applicable to RPECT,the thermal energy conversion ability and thermal-force roll crown control ability under different lengths of the induction zone were analyzed.It was found that whether the current density regulation mode or the current frequency regulation mode is adopted,the cases with 20 or 25 mm radius of the induction zone have the great thermal energy conversion ability and the good thermal-force roll crown control ability.The reasonable adjustment of the length of the induction zone can reduce the radius required for the maximum energy efficiency regulation.Combined with the results of the simulation analysis,the optimization of ES based on the control ability maximization requirement is achieved,which provides the base for the design and configuration of ES in RPECT.展开更多
To achieve stable rolling,the influence of a tension mechanism of a large diameter ratio roll system on the rolling process of a strip flatness electromagnetic control rolling mill is studied.Through the analysis of t...To achieve stable rolling,the influence of a tension mechanism of a large diameter ratio roll system on the rolling process of a strip flatness electromagnetic control rolling mill is studied.Through the analysis of the rolling deformation zone,the deformation zone composition form of a large diameter ratio roll system and a calculation formula of neutral angle under tension are proposed.To analyze the effect of front and post tensions on the rolling characteristic and the strip flatness control characteristic,a three-dimensional rolling finite element(FE)model of a large diameter ratio roll system with the function of roll profile electromagnetic control is established by FE software and verified by a strip flatness electromagnetic control rolling mill.Based on the model,the strip thickness characteristic,metal transverse flow,strip flatness state,and adjustment range of the loaded roll gap are analyzed for different front and post tensions setting values.The results show that changing the front or post tension setting values can improve the single-pass reduction rate of a large diameter ratio roll system and have little effect on the flatness control ability of the strip flatness electromagnetic control rolling mill.展开更多
Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real...Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real-world monitoring,the process will use RTK-GNSS positional perception technology,by projecting the left side of the earth from Gauss-Krueger projection method,and then carry out the Cartesian conversion based on the characteristics of drawing;steering control system is the core of the electric drive unmanned module,on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles,the steering system key components such as direction,torque sensor,drive motor and other models are established,the joint simulation model of unmanned engineering vehicles is established,the steering controller is designed using the PID method,the simulation results show that the control method can meet the construction path demand for automatic steering.The path planning will first formulate the construction area with preset values and realize the steering angle correction during driving by PID algorithm,and never realize the construction-based path planning,and the results show that the method can control the straight path within the error of 10 cm and the curve error within 20 cm.With the collaboration of various modules,the automatic construction simulation results of this robot show that the design path and control method is effective.展开更多
In order to enhance the yield and quality of cashew,it is essential to implement high-yield cultivation techniques effectively throughout the production process.Additionally,pest control measures should be employed to...In order to enhance the yield and quality of cashew,it is essential to implement high-yield cultivation techniques effectively throughout the production process.Additionally,pest control measures should be employed to provide technical support for the industrialized development of cashew.展开更多
The article mainly studies the application strategy of automatic addressable single-lamp control technology in tunnel lighting.It encompasses an introduction to this technology,an analysis of the tunnel lighting syste...The article mainly studies the application strategy of automatic addressable single-lamp control technology in tunnel lighting.It encompasses an introduction to this technology,an analysis of the tunnel lighting system using automatic addressable single-lamp control technology,and outlines the main development direction for this technology in modern tunnel lighting.The aim is to offer insights that can inform the rational deployment of this technology,thereby enhancing the lighting control effectiveness in modern tunnels and meeting their specific lighting requirements more effectively.展开更多
Heavy metal pol ution, especial y cadmium pol ution, has threatened the safety production of rice. The research advance on law of absorption, distribution and accumulation of cadmium in rice and on recent safety contr...Heavy metal pol ution, especial y cadmium pol ution, has threatened the safety production of rice. The research advance on law of absorption, distribution and accumulation of cadmium in rice and on recent safety control technology of cadmium in rice grain was summarized in this paper. We hoped to lay a foundation for the safety production of rice.展开更多
[ Objective ] The study aimed to effectively and timely control the occurrence and damage of Rhyrthophorus femuneus Fabricius in Nanning City, Guangxi Province. [Method]The investigation on the distribution and damage...[ Objective ] The study aimed to effectively and timely control the occurrence and damage of Rhyrthophorus femuneus Fabricius in Nanning City, Guangxi Province. [Method]The investigation on the distribution and damage of R. ferrugineus was conducted in Nanning City, Guangxi Province. Its transmit ways were chocked, light trapping experiment, combination of artificial and chemical control, and chemical control were conducted. [ Result] The investigation indicated that there had distribution of R. ferrugineus in 70% plant nurseries and the scenic areas in Nanning City. Among the planted Hemp palm plants, the damaged vari- eties were up to 80%. The output of palm seedlings which had carried with pests was the main approach for spread and damage of R. ferrugineus. It was effective and feasible to use frequently vibration trapping light to trap adults. Pesticides were sprayed on the bellmouth of host ( central leaf), then aging leaf sheaths or agri- cultural film was used to strap tender leaf sheath in stalks, which could achieve the purpose of controlling R. femugineus. [ Conclusion ] The control strategies of R. femugineus should be focused on controlling seedlings and the plants with tree age less than ten year; the plants with long tree age and the tall plants should adopt selection control if it was necessary, and the integrated control should be implemented on the prevention measure.展开更多
[Objective] The aim was to screen economic and environment-friendly pesticides adaptive to aphid-resistant varieties in main rape growing regions of Yunnan Province.[Method] The effects of 6 pesticides against aphids ...[Objective] The aim was to screen economic and environment-friendly pesticides adaptive to aphid-resistant varieties in main rape growing regions of Yunnan Province.[Method] The effects of 6 pesticides against aphids on 22 Brassica campestris materials of the main breeds in Yunnan Province,the new improved varieties in China and the core breeding materials were tested.[Result] Yunyoushuang 1,Huayou 4,Yunhuayou Early-maturing Variety No.1 and A35 showed better aphid-resistance.An optimum pesticide application strategy was to use Diyaling in sowing time,and interchangeably apply nitenpyram and imidacloprid during flowering and pod formation stages.[Conclusion] The present study had provided an important technical support for sustainable development of rape industry.展开更多
Reproductive organ disease of geese is an endemic and multiple infectious disease in large-scale breeding of breeding geese, especially in anti-season production, which brings a great economic loss to goose production...Reproductive organ disease of geese is an endemic and multiple infectious disease in large-scale breeding of breeding geese, especially in anti-season production, which brings a great economic loss to goose production. To make effective prevention and control of reproductive organ disease of breeding geese under the anti-season breeding mode, the characteristics of control principles of infectious diseases of the poultry and the occurrence and prevalence of reproductive organ disease must be combined, so as to carry out scientific prevention and control.At the same time, according to the climate characteristics of summer, the feeding and management of breeding geese and water quality control should also be done well, and many corresponding measures should also be taken, thus obtaining better effect.展开更多
Pressure-preserved coring technologies are critical for deep-earth resource exploration but are constrained by the inability to achieve multidirectional coring,restricting exploration range while escalating costs and ...Pressure-preserved coring technologies are critical for deep-earth resource exploration but are constrained by the inability to achieve multidirectional coring,restricting exploration range while escalating costs and environmental impacts.We developed a multidirectional pressure-preserved coring system based on magnetic control for deep-earth environments up to 5000 m.The system integrates a magnetically controlled method and key pressure-preserved components to ensure precise self-triggering and self-sealing.It is supported by geometric control equations for optimizing structural stability.Their structure was verified and optimized through theoretical and numerical calculations to meet design objectives.To clarify the self-triggering mechanism in complex environments,a dynamic interference model was established,verifying stability during multidirectional coring.The prototype was fabricated,and functional tests confirmed that it met its design objectives.In a 300-meter-deep test inclined well,10 coring operations were completed with a 100%pressure-preserved success rate,confirming the accuracy of the dynamic interference model analysis.Field trials in a 1970-meter-deep inclined petroleum well,representative of complex environments,demonstrated an in-situ pressure preservation efficiency of 92.18%at 22 MPa.This system innovatively expands the application scope of pressure-preserved coring,providing technical support for efficient and sustainable deep resources exploration and mining.展开更多
To address the current issues with the conventional slide gate system utilized in the steel teeming process,a unique electromagnetic induction controlled automated steel teeming(EICAST)technology has been developed.Co...To address the current issues with the conventional slide gate system utilized in the steel teeming process,a unique electromagnetic induction controlled automated steel teeming(EICAST)technology has been developed.Cooling means of spiral coil in this technology is directly related to its service life.Firstly,heat transfer processes of air cooling and spray cooling were compared and analyzed.Secondly,the impacts of water temperature,water flow rate and air flow rate were examined in order to maximize the spray cooling effect.To maintain coil temperature at a low value consistently throughout the entire thermal cycle process of the ladle,a combined cooling mode was finally employed.Numerical simulation was applied to examine the coil temperature variation with different cooling systems and characteristics.Before coil operation,spray cooling is said to be more effective.By controlling the water flow rate and air flow rate,the spray cooling effect is enhanced.However,water temperature has little or no impact when using spray cooling.Air cooling during the secondary refining process and spray cooling prior to coil operation are combined to further lower coil temperature.When the direction of the spray cooling is from bottom to top,the coil temperature is lowered below 165℃.A practical induction coil cooling plan was provided for the EICAST technology’s production process.展开更多
Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the com...Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the composition and microstructure of mudstone, the law of mudstone hydration and its strength weakening induced by water, the characteristics of surrounding rock deformation and failure under the action of confined water. Results showed that montmorillonite clay minerals accounted for as much as 76% of mudstone, with a large number of pores existing in the microstructure. Besides, as the molecular structure of montmorillonite changed, mudstone microstructure damage occurred with the macroscopic manifestation of its theological instability. Weakening degree of confined water on residual strength of mudstone was almost 50%. The instability mechanism of soft rock roadway caused by high confined water is that surrounding rock circulates the process of "fracture-seepage-mud ding-closed" twice, which weakens its strength and leads to roadway instability. A combined support technology, namely the, "high-toughness sealing layer + hollow grouting cables + full-length anchoring bolts with deep borehole" was proposed. Based on field observation, the soft rock roadway was controlled effectively, which also verified the effectiveness of new control technology for surrounding rock.展开更多
Rectangular section control technology (RSCT) was introduced to achieve high-precision profile control during silicon steel rolling. The RSCT principle and method were designed, and the whole RSCT control strategy w...Rectangular section control technology (RSCT) was introduced to achieve high-precision profile control during silicon steel rolling. The RSCT principle and method were designed, and the whole RSCT control strategy was developed. Specifically, RSCT included roll contour design, roiling technology optimization, and control strategy development, aiming at both hot strip mills (HSMs) and cold strip mills (CSMs). Firstly, through the high-performance variable crown (HVC) work roll optimization design in the upper-stream stands and the limited shifting technology for schedule-free rolling in the downstream stands of HSMs, a hot strip with a stable crown and limited wedge, :local spot, and single wave was obtained, which was suitable for cold rolling. Secondly, an approximately rectangular section was obtained by edge varying contact (EVC) work roll contour design, edge-drop setting control, and. closed loop control in the upper-stream, stands of CSMs. Moreover, complex-mode flatness control was realized by coordinating multiple shape-control methods in the downstream stands of CSMs. In addition, the RSCT approach was applied in several silicon-steel production plants, where an outsicanding performance and remarkable economic benefits were observed.展开更多
It is imperative to understand the spatial and temporal coordination deformation mechanism and develop targeted deformation control technologies for high sidewall—bottom transfixion(HSBT)zones to guarantee the stabil...It is imperative to understand the spatial and temporal coordination deformation mechanism and develop targeted deformation control technologies for high sidewall—bottom transfixion(HSBT)zones to guarantee the stability of rock surrounding underground hydro-powerhouses under complex geological conditions.In this study,the spatial and temporal coordinated deformation control of HSBT zones was addressed from the aspects of the deformation mechanism,failure characteristics,and control requirements,and some coordinated deformation control technologies were proposed.On this basis,a case study was conducted on the deformation control of the HSBT zone of the underground powerhouse at the Wudongde hydropower station,China.The results showed that the relationship between excavation and support,and the mismatch of deformation and support of the surrounding rock mass in the HSBT zone of underground caverns with a large span and high in-situ stress can be appropriately handled.The solution requires proper excavation and construction procedures,fine blasting control,composite and timely support,and real-time monitoring and dynamic feedback.The technologies proposed in this study will ensure the safe,high-quality,and orderly construction of the Baihetan and Wudongde underground caverns,and can be applied to other similar projects.展开更多
文摘By system analysis and imitating modeling authors show the most effective modern techniques for railway electric systems control. Modem measure technologies PMU-WAMS and smart grid allow to solve real time tasks of centralizing control of railway electric systems. Quantity characteristics of control effectiveness are determined. According to computer modeling the situation approach is available for practical tasks of railway electric system control.
文摘Arsenic(As),classified as a Group I carcinogen by the International Agency for Research on Cancer(IARC),poses severe risks to ecosystems and human health through atmospheric exposure.This review synthesizes current knowledge on the sources,health impacts,and control strategies of atmospheric arsenic,with an emphasis on its global transport and toxicity.Natural sources,such as volcanic eruptions and soil erosion,contribute approximately 2.1 Gg/year;however,anthropogenic activities,notably metal smelting and coal combustion,dominate emissions,with global anthropogenic releases reaching approximately 28.6 Gg/year.Atmospheric arsenic primarily exists in two forms:particulate matter(PM_(2.5)-bound As(Ⅴ)/As(Ⅲ)and methylated species)and gaseous forms(e.g.,AsH_(3),As_(2)O_(3)),facilitating long-range transport and cross-continental pollution,as evidenced by Asian emissions contributing 39% of Arctic deposition.Advanced techniques,such as inductively coupled plasma mass spectrometry(ICP-MS)and models like GEOS-Chem,enhance emission tracking;however,gaps persist in monitoring gaseous arsenic and refining emission inventories.Health risks include lung cancer,neurotoxicity,and cardiovascular diseases,exacerbated by inhalation and dietary exposure via contaminated crops.Control technologies,including calcium-and iron-based adsorbents and industrial scrubbers,show promise but face challenges related to efficiency and cost.Regional strategies,such as China’s tightened emission limits(0.5 mg/m^(3))and the EU’s Best Available Techniques(BAT),highlight progress,yet global cooperation remains vital for transboundary mitigation.Future research should prioritize low-cost sensors,elucidating speciation-toxicity relationships,and AI-driven emission management to address data gaps and optimize policies.Integrating multidisciplinary approaches—advanced science,stringent regulations,and international collaboration—is crucial to mitigate the environmental and public health impacts of arsenic amid growing industrialization and climate change.
基金supported by the National Natural Science Foundation of China(52293443,52321005,52230004)the Natural Science Foundation of Guangdong Basic and Applied Basic Research Foundation(2024A1515010085)+1 种基金Shenzhen Science and Technology Program(GXWD20231127195344001 and JCYJ20241202123735045)Shenzhen Overseas High-level Talents Research Startup Program(20200518750C).
文摘Biological contaminants(BCs),including but not limited to various pathogens and their endogenous pol-lutants such as intracellular pathogens and antimicrobial resistance genes(ARGs),are ubiquitously detected in effluent of wastewater and drinking water treatment systems which were originally designed to remove common indicator bacteria,resulting in potential impacts on public health.Although there are many emerging technologies that showing promising antimicrobial effects,few have progressed to the actual water scenarios.It’s crucial to understand the main knowledge gaps and thereby design the future developments to better meet engineering requirements.In this review,we first summarize the perfor-mance of conventional water treatment towards BCs removal.Then we showcase the advances of proof-of-concept strategies,including nanotechnology,advanced oxidation process,biological control process and integrated techniques,for BCs control in light of antimicrobial mechanisms,characteristics,proper niches in water treatment,challenges and latest improvements.Further,we proposed a semi-quantitative framework coupling life cycle assessment(LCA)and analytic hierarchy process(AHP)to assess and compare the application potential of representative pilot technologies,in which the antimicro-bial effects,economic issues and sustainability are comprehensively considered.For wastewater treat-ment,non-thermal plasma weights highest among the emerging technologies and outperforms conventional disinfection in terms of efficacy indicators(overall inactivation rate,ARGs removal rate,and growth inhibition),but fall behind overall mainly due to more energy input.Bacteriophage-based treatment has the potential to synergistically inactive the persistent pathogens in combination with con-ventional disinfection,serving as a cost-effective and environmental-friendly supplement.For drinking water treatment,the integrated photocatalytic nanocomposite receives the highest application potential among the emerging technologies and appears to be supplementary or even alternative next-generation disinfectants.This review shares valuable insights to propel the proof-of-concept antimicrobial trials towards industrial procedures.
基金supported by the National Key Research and Development Project (No.2022YFB2602001)the National Research Program for Key Issues in Air Pollution Control (No.DQGG0207).
文摘Chinese diesel trucks are the main contributors to NOx and particulate matter(PM)vehicle emissions.An increase in diesel trucks could aggravate air pollution and damage human health.The Chinese government has recently implemented a series of emission control technologies andmeasures for air quality improvement.This paper summarizes recent control technologies and measures for diesel truck emissions in China and introduces the comprehensive application of control technologies and measures in Beijing-Tianjin-Hebei and surrounding regions.Remote onlinemonitoring technology has been adopted according to the China VI standard for heavy-duty diesel trucks,and control measures such as transportation structure adjustment and heavy pollution enterprise classification control continue to support the battle action plan for pollution control.Perspectives and suggestions are provided for promoting pollution control and supervision of diesel truck emissions:adhere to the concept of overall management and control,vigorously promote the application of systematic and technological means in emission monitoring,continuously facilitate cargo transportation structure adjustment and promote new energy freight vehicles.This paper aims to accelerate the implementation of control technologies and measures throughout China.China is endeavouring to control diesel truck exhaust pollution.China is willing to cooperate with the world to protect the global ecological environment.
基金financially supported by National Nature Science Foundation of China(81973284)Scientific Research Foundation of the Education Department of Liaoning Province(LJKZ0944).
文摘Plant diseases affect the cultivation of Chinese herbal medicines,while traditional chemical pesticides have many drawbacks such as environmental pollution,health risks and disruption of ecological balance.Microbiocontrol has gradually appeared in public view,and its application has become increasingly extensive.This paper reviews the disease-causing species of medicinal plants,including fungal,bacterial,nematode,viral and parasitic pests,and reviews the diseases caused by microorganisms in traditional Chinese medicine planting and their biological control by consulting Sciencedirect databases and Web of Science databases.4667 related articles were found,of which 552 were related to microbiocontrol technology and cultivation of traditional Chinese medicines.This review provides a reference for the green planting technology of traditional Chinese medicine.
文摘In the current social environment,the importance of energy conservation and emission reduction is increasing day by day for both the country and its people.Electronic and electrical products,as important items for people’s production and life,require high attention from industry insiders in terms of their energy efficiency testing.Relying on energy efficiency testing can achieve the goal of energy conservation and emission reduction,and related quality control technologies will also inject new momentum into the green development of the industry.This article will discuss the practical strategies of quality control technology for energy efficiency testing of electronic and electrical products based on the significance of such testing,hoping to provide some help.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.U1560206 and 51975510)the Natural Science Foundation of China in Hebei Province(Grant No.E2021203129).
文摘Thermal-force driving of roll profile electromagnetic control technology(RPECT),which can be used to adjust the roll profile,can be affected by the sequential temperature rise between the electromagnetic stick(ES)and electromagnetic control roll.Due to the limited space of ES and induction coil,the cross-sectional area of induction coil can be inevitably affected by changing the size of the ES induction zone,which can further change the energy input under the same electromagnetic parameters,the temperature rising effect and the bulging ability.To investigate this phenomenon,the effects of the radius of the induction zone on the thermal-force contribution ratio,the heating ability of ES and the temperature distribution were analyzed through an electromagnetic-thermal-structural finite element model.To ensure that the results are applicable to RPECT,the thermal energy conversion ability and thermal-force roll crown control ability under different lengths of the induction zone were analyzed.It was found that whether the current density regulation mode or the current frequency regulation mode is adopted,the cases with 20 or 25 mm radius of the induction zone have the great thermal energy conversion ability and the good thermal-force roll crown control ability.The reasonable adjustment of the length of the induction zone can reduce the radius required for the maximum energy efficiency regulation.Combined with the results of the simulation analysis,the optimization of ES based on the control ability maximization requirement is achieved,which provides the base for the design and configuration of ES in RPECT.
基金supported by the Natural Science Foundation of Hebei Province of China(Grant No.E2021203129).
文摘To achieve stable rolling,the influence of a tension mechanism of a large diameter ratio roll system on the rolling process of a strip flatness electromagnetic control rolling mill is studied.Through the analysis of the rolling deformation zone,the deformation zone composition form of a large diameter ratio roll system and a calculation formula of neutral angle under tension are proposed.To analyze the effect of front and post tensions on the rolling characteristic and the strip flatness control characteristic,a three-dimensional rolling finite element(FE)model of a large diameter ratio roll system with the function of roll profile electromagnetic control is established by FE software and verified by a strip flatness electromagnetic control rolling mill.Based on the model,the strip thickness characteristic,metal transverse flow,strip flatness state,and adjustment range of the loaded roll gap are analyzed for different front and post tensions setting values.The results show that changing the front or post tension setting values can improve the single-pass reduction rate of a large diameter ratio roll system and have little effect on the flatness control ability of the strip flatness electromagnetic control rolling mill.
文摘Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real-world monitoring,the process will use RTK-GNSS positional perception technology,by projecting the left side of the earth from Gauss-Krueger projection method,and then carry out the Cartesian conversion based on the characteristics of drawing;steering control system is the core of the electric drive unmanned module,on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles,the steering system key components such as direction,torque sensor,drive motor and other models are established,the joint simulation model of unmanned engineering vehicles is established,the steering controller is designed using the PID method,the simulation results show that the control method can meet the construction path demand for automatic steering.The path planning will first formulate the construction area with preset values and realize the steering angle correction during driving by PID algorithm,and never realize the construction-based path planning,and the results show that the method can control the straight path within the error of 10 cm and the curve error within 20 cm.With the collaboration of various modules,the automatic construction simulation results of this robot show that the design path and control method is effective.
基金Supported by 2024 Major Facility System Operating Costs of Ministry of Agriculture and Rural Affairs"Ledong Cashew Germplasm Resource Nursery Operating Cost of Ministry of Agriculture and Rural Affairs"2023-2024 Agricultural Germplasm Resource Conservation Project"Research on Collection,Conservation and Utilization of Cashew Germplasm Resources".
文摘In order to enhance the yield and quality of cashew,it is essential to implement high-yield cultivation techniques effectively throughout the production process.Additionally,pest control measures should be employed to provide technical support for the industrialized development of cashew.
文摘The article mainly studies the application strategy of automatic addressable single-lamp control technology in tunnel lighting.It encompasses an introduction to this technology,an analysis of the tunnel lighting system using automatic addressable single-lamp control technology,and outlines the main development direction for this technology in modern tunnel lighting.The aim is to offer insights that can inform the rational deployment of this technology,thereby enhancing the lighting control effectiveness in modern tunnels and meeting their specific lighting requirements more effectively.
基金Supported by the Twelfth Five-Year National Science and Technology Support Project(2012BAK17B03)National Nature Science Foundation of China(31401356)+1 种基金College Students’ Science and Technology Innovation Activities Project Plan(New Talent Plan) in Zhejiang Province(2013R409036)National College Students’ Innovative Entrepreneurial Training Program~~
文摘Heavy metal pol ution, especial y cadmium pol ution, has threatened the safety production of rice. The research advance on law of absorption, distribution and accumulation of cadmium in rice and on recent safety control technology of cadmium in rice grain was summarized in this paper. We hoped to lay a foundation for the safety production of rice.
基金Supported by Natural Science and Technology Fund Project in Guangxi Vocational Technical College of Agriculture(B070206)~~
文摘[ Objective ] The study aimed to effectively and timely control the occurrence and damage of Rhyrthophorus femuneus Fabricius in Nanning City, Guangxi Province. [Method]The investigation on the distribution and damage of R. ferrugineus was conducted in Nanning City, Guangxi Province. Its transmit ways were chocked, light trapping experiment, combination of artificial and chemical control, and chemical control were conducted. [ Result] The investigation indicated that there had distribution of R. ferrugineus in 70% plant nurseries and the scenic areas in Nanning City. Among the planted Hemp palm plants, the damaged vari- eties were up to 80%. The output of palm seedlings which had carried with pests was the main approach for spread and damage of R. ferrugineus. It was effective and feasible to use frequently vibration trapping light to trap adults. Pesticides were sprayed on the bellmouth of host ( central leaf), then aging leaf sheaths or agri- cultural film was used to strap tender leaf sheath in stalks, which could achieve the purpose of controlling R. femugineus. [ Conclusion ] The control strategies of R. femugineus should be focused on controlling seedlings and the plants with tree age less than ten year; the plants with long tree age and the tall plants should adopt selection control if it was necessary, and the integrated control should be implemented on the prevention measure.
基金Supported by National Science and Technology Supporting Project (2009BADA8B01,2010BAD01B04)Kunming Comprehensive Experimental Station,National Modern Agricultural Rape Industrial Technology System(NYCYTX-00564)Development of the Yunnan Modern Agricultural Rape Industrial Technology System~~
文摘[Objective] The aim was to screen economic and environment-friendly pesticides adaptive to aphid-resistant varieties in main rape growing regions of Yunnan Province.[Method] The effects of 6 pesticides against aphids on 22 Brassica campestris materials of the main breeds in Yunnan Province,the new improved varieties in China and the core breeding materials were tested.[Result] Yunyoushuang 1,Huayou 4,Yunhuayou Early-maturing Variety No.1 and A35 showed better aphid-resistance.An optimum pesticide application strategy was to use Diyaling in sowing time,and interchangeably apply nitenpyram and imidacloprid during flowering and pod formation stages.[Conclusion] The present study had provided an important technical support for sustainable development of rape industry.
基金Supported by Agricultural Science and Technology Supporting Program of Huai'an City in Jiangsu Province(No.:SN13057)~~
文摘Reproductive organ disease of geese is an endemic and multiple infectious disease in large-scale breeding of breeding geese, especially in anti-season production, which brings a great economic loss to goose production. To make effective prevention and control of reproductive organ disease of breeding geese under the anti-season breeding mode, the characteristics of control principles of infectious diseases of the poultry and the occurrence and prevalence of reproductive organ disease must be combined, so as to carry out scientific prevention and control.At the same time, according to the climate characteristics of summer, the feeding and management of breeding geese and water quality control should also be done well, and many corresponding measures should also be taken, thus obtaining better effect.
基金supported by the National Key Research and Development Program of China(No.2023YFF0615401)Joint Funds of the National Natural Science Foundation of China(No.U24A2087)+1 种基金Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME022009)the National Natural Science Foundation of China(No.42477191)。
文摘Pressure-preserved coring technologies are critical for deep-earth resource exploration but are constrained by the inability to achieve multidirectional coring,restricting exploration range while escalating costs and environmental impacts.We developed a multidirectional pressure-preserved coring system based on magnetic control for deep-earth environments up to 5000 m.The system integrates a magnetically controlled method and key pressure-preserved components to ensure precise self-triggering and self-sealing.It is supported by geometric control equations for optimizing structural stability.Their structure was verified and optimized through theoretical and numerical calculations to meet design objectives.To clarify the self-triggering mechanism in complex environments,a dynamic interference model was established,verifying stability during multidirectional coring.The prototype was fabricated,and functional tests confirmed that it met its design objectives.In a 300-meter-deep test inclined well,10 coring operations were completed with a 100%pressure-preserved success rate,confirming the accuracy of the dynamic interference model analysis.Field trials in a 1970-meter-deep inclined petroleum well,representative of complex environments,demonstrated an in-situ pressure preservation efficiency of 92.18%at 22 MPa.This system innovatively expands the application scope of pressure-preserved coring,providing technical support for efficient and sustainable deep resources exploration and mining.
基金supported by the Startup Foundation of Shenyang Agriculture University(No.X2023050)the Fundamental Research Funds for the Central Universities(No.N2209006)the National Natural Science Foundation of China(No.U22A20173).
文摘To address the current issues with the conventional slide gate system utilized in the steel teeming process,a unique electromagnetic induction controlled automated steel teeming(EICAST)technology has been developed.Cooling means of spiral coil in this technology is directly related to its service life.Firstly,heat transfer processes of air cooling and spray cooling were compared and analyzed.Secondly,the impacts of water temperature,water flow rate and air flow rate were examined in order to maximize the spray cooling effect.To maintain coil temperature at a low value consistently throughout the entire thermal cycle process of the ladle,a combined cooling mode was finally employed.Numerical simulation was applied to examine the coil temperature variation with different cooling systems and characteristics.Before coil operation,spray cooling is said to be more effective.By controlling the water flow rate and air flow rate,the spray cooling effect is enhanced.However,water temperature has little or no impact when using spray cooling.Air cooling during the secondary refining process and spray cooling prior to coil operation are combined to further lower coil temperature.When the direction of the spray cooling is from bottom to top,the coil temperature is lowered below 165℃.A practical induction coil cooling plan was provided for the EICAST technology’s production process.
基金the Natural Science Foundation of Jiangsu Province(No.BK20141130)the Fundamental Research Funds for the Central Universities(No.2014QNB27)
文摘Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the composition and microstructure of mudstone, the law of mudstone hydration and its strength weakening induced by water, the characteristics of surrounding rock deformation and failure under the action of confined water. Results showed that montmorillonite clay minerals accounted for as much as 76% of mudstone, with a large number of pores existing in the microstructure. Besides, as the molecular structure of montmorillonite changed, mudstone microstructure damage occurred with the macroscopic manifestation of its theological instability. Weakening degree of confined water on residual strength of mudstone was almost 50%. The instability mechanism of soft rock roadway caused by high confined water is that surrounding rock circulates the process of "fracture-seepage-mud ding-closed" twice, which weakens its strength and leads to roadway instability. A combined support technology, namely the, "high-toughness sealing layer + hollow grouting cables + full-length anchoring bolts with deep borehole" was proposed. Based on field observation, the soft rock roadway was controlled effectively, which also verified the effectiveness of new control technology for surrounding rock.
基金Item Sponsored by National Natural Science Foundation of China(51304017)National Key Technology Research and Development Program of the 12th Five-year Plan of China(2012BAF04B02)Fundamental Research Funds for Central Universities of China(FRF-SD-12-013B)
文摘Rectangular section control technology (RSCT) was introduced to achieve high-precision profile control during silicon steel rolling. The RSCT principle and method were designed, and the whole RSCT control strategy was developed. Specifically, RSCT included roll contour design, roiling technology optimization, and control strategy development, aiming at both hot strip mills (HSMs) and cold strip mills (CSMs). Firstly, through the high-performance variable crown (HVC) work roll optimization design in the upper-stream stands and the limited shifting technology for schedule-free rolling in the downstream stands of HSMs, a hot strip with a stable crown and limited wedge, :local spot, and single wave was obtained, which was suitable for cold rolling. Secondly, an approximately rectangular section was obtained by edge varying contact (EVC) work roll contour design, edge-drop setting control, and. closed loop control in the upper-stream, stands of CSMs. Moreover, complex-mode flatness control was realized by coordinating multiple shape-control methods in the downstream stands of CSMs. In addition, the RSCT approach was applied in several silicon-steel production plants, where an outsicanding performance and remarkable economic benefits were observed.
基金This work is supported by the National Natural Science Foundation of China(Nos.51979146 and 12102230)the China Three Gorges Corporation Research Program(Nos.WDD/0490,WDD/0578,and BHT/0774)the China Postdoctoral Science Foundation(No.2022M711862).
文摘It is imperative to understand the spatial and temporal coordination deformation mechanism and develop targeted deformation control technologies for high sidewall—bottom transfixion(HSBT)zones to guarantee the stability of rock surrounding underground hydro-powerhouses under complex geological conditions.In this study,the spatial and temporal coordinated deformation control of HSBT zones was addressed from the aspects of the deformation mechanism,failure characteristics,and control requirements,and some coordinated deformation control technologies were proposed.On this basis,a case study was conducted on the deformation control of the HSBT zone of the underground powerhouse at the Wudongde hydropower station,China.The results showed that the relationship between excavation and support,and the mismatch of deformation and support of the surrounding rock mass in the HSBT zone of underground caverns with a large span and high in-situ stress can be appropriately handled.The solution requires proper excavation and construction procedures,fine blasting control,composite and timely support,and real-time monitoring and dynamic feedback.The technologies proposed in this study will ensure the safe,high-quality,and orderly construction of the Baihetan and Wudongde underground caverns,and can be applied to other similar projects.