Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,...Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,given the challenges faced by health specialists to carry out continuous monitoring,the development of an intelligent anomaly detection system is proposed.Unlike other authors,where they use supervised techniques,this work proposes using unsupervised techniques due to the advantages they offer.These advantages include the lack of prior labeling of data,and the detection of anomalies previously not contemplated,among others.In the present work,an individualized methodology consisting of two phases is developed:characterizing the normal sitting pattern and determining abnormal samples.An analysis has been carried out between different unsupervised techniques to study which ones are more suitable for postural diagnosis.It can be concluded,among other aspects,that the utilization of dimensionality reduction techniques leads to improved results.Moreover,the normality characterization phase is deemed necessary for enhancing the system’s learning capabilities.Additionally,employing an individualized approach to the model aids in capturing the particularities of the various pathologies present among subjects.展开更多
Rectal cancer ranks as the third most prevalent malignancy globally,with an estimated 1.9 million incident cases reported in 2020.The management of low rectal cancer presents significant therapeutic challenges due to ...Rectal cancer ranks as the third most prevalent malignancy globally,with an estimated 1.9 million incident cases reported in 2020.The management of low rectal cancer presents significant therapeutic challenges due to its anatomical complexity,and substantially impacts patients'quality of life.While abdominoperineal resection(Miles procedure)ensures oncological radicality,the morbidity associated with permanent colostomy has driven innovations in sphincter-preserving surgical techniques.This review synthesizes current evidence on sphincter-preserving surgical approaches for low rectal cancer.The implementation of total mesorectal excision(TME)principles and enhanced understanding of circumferential resection margin have facilitated the evolution of diverse sphincter-preserving surgical modalities.These include local excision,low anterior resection(Dixon procedure),intersphincteric resection,pull-through procedures,transanal TME,and conventional sphincter-preserving operation.Minimally invasive approaches,particularly laparoscopic and robotic platforms,alongside natural orifice transluminal endoscopic surgery,have demonstrated improved surgical precision and enhanced postoperative recovery outcomes.Novel functional perineal reconstruction techniques offer promising alternatives for patients requiring posterior pelvic exenteration.Nevertheless,the high incidence of low anterior resection syndrome(LARS)and its chronic sequelae remain clinically notable.Evidence indicates that long-course neoadjuvant radiotherapy and TME constitute significant risk factors for LARS development.Contemporary sphincter-preserving surgery for low rectal cancer is advancing toward minimally invasive,personalized,and precision-based approaches.The increasing incidence of early-onset rectal cancer necessitates individualized treatment strategies that balance oncological efficacy with functional preservation.Future directions should focus on standardizing surgical indications,optimizing postoperative rehabilitation protocols,and enhancing treatment outcomes through multidisciplinary integration and technological innovation.展开更多
The potentiostatic intermittent titration technique(PITT)is widely used to determine the diffusion coefficient of ions in electrode materials for rechargeable batteries such as lithium-ion or sodium-ion batteries,pred...The potentiostatic intermittent titration technique(PITT)is widely used to determine the diffusion coefficient of ions in electrode materials for rechargeable batteries such as lithium-ion or sodium-ion batteries,predicated on the assumption that the insertion/extraction of ions in the host materials is governed by diffusion.However,in practical scenarios,the electrochemical process might be dominated by interfacial reaction kinetics rather than diffusion.The present work derives analytical equations for electric current by considering the finite interfacial reaction kinetics and small overpotentials during PITT measurements and further studies the chemical stress field induced by the interfacial reaction-controlled ion insertion.The exchange current density(j_(0))can be ascertained using the analytical equation,which dictates the magnitude and decay rate of the electric current during a PITT process.The electric current decays more rapidly,and consequently,the lithium concentration reaches equilibrium faster for larger values of j_(0).The magnitude of the chemical stress is independent of j_(0) but depends on the overpotential.展开更多
Significant investment in nanocarrier drug delivery systems(Nano-DDSs)has yielded only a limited number of successfully marketed nanomedicines,highlighting a low rate of clinical translation.A primary contributing fac...Significant investment in nanocarrier drug delivery systems(Nano-DDSs)has yielded only a limited number of successfully marketed nanomedicines,highlighting a low rate of clinical translation.A primary contributing factor is the lack of foundational understanding of in vivo processes.Comprehensive knowledge of the pharmacokinetics of Nano-DDSs is essential for developing more efficacious nanomedicines and accurately evaluating their safety and associated risks.However,the complexity of Nano-DDSs has impeded thorough and systematic pharmacokinetic studies.Key components of pharmacokinetic investigations on Nano-DDSs include the analysis of the released drug,the encapsulated drug,and the nanomaterial,which present a higher level of complexity compared to traditional small-molecule drugs.Establishing an appropriate approach for monitoring the pharmacokinetics of Nano-DDSs is crucial for facilitating the clinical translation of nanomedicines.This review provides an overview of advanced bioanalytical methodologies employed in studying the pharmacokinetics of anticancer organic Nano-DDSs over the past five years.We hope that this review will enhance the understanding of the pharmacokinetics of Nano-DDSs and support the advancement of nanomedicines.展开更多
Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience...Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience-dependent mechanisms.The pruning process involves multiple molecular signals and a series of regulatory activities governing the“eat me”and“don't eat me”states.Under physiological conditions,the interaction between glial cells and neurons results in the clearance of unnecessary synapses,maintaining normal neural circuit functionality via synaptic pruning.Alterations in genetic and environmental factors can lead to imbalanced synaptic pruning,thus promoting the occurrence and development of autism spectrum disorder,schizophrenia,Alzheimer's disease,and other neurological disorders.In this review,we investigated the molecular mechanisms responsible for synaptic pruning during neural development.We focus on how synaptic pruning can regulate neural circuits and its association with neurological disorders.Furthermore,we discuss the application of emerging optical and imaging technologies to observe synaptic structure and function,as well as their potential for clinical translation.Our aim was to enhance our understanding of synaptic pruning during neural development,including the molecular basis underlying the regulation of synaptic function and the dynamic changes in synaptic density,and to investigate the potential role of these mechanisms in the pathophysiology of neurological diseases,thus providing a theoretical foundation for the treatment of neurological disorders.展开更多
Currently,the number of patients with myopia is increasing rapidly across the globe.Traditional Chinese medicine(TCM),with its long history and rich experience,has shown promise in effectively managing and treating th...Currently,the number of patients with myopia is increasing rapidly across the globe.Traditional Chinese medicine(TCM),with its long history and rich experience,has shown promise in effectively managing and treating this condition.Nevertheless,considering the vast amount of research that is currently being conducted,focusing on the utilization of TCM in the management of myopia,there is an urgent requirement for a thorough and comprehensive review.The review would serve to clarify the practical applications of TCM within this specific field,and it would also aim to elucidate the underlying mechanisms that are at play,providing a deeper understanding of how TCM principles can be effectively integrated into modern medical practices.Here,some modern medical pathogenesis of myopia and appropriate TCM techniques studies are summarized in the prevention and treatment of myopia.Further,we discussed the potential mechanisms and the future research directions of TCM against myopia.Identifying these mechanisms is crucial for understanding how TCM can be effectively utilized in this context.The combination of various TCM methods or the combination of traditional Chinese and Western medicine is of great significance for the prevention and control of myopia in the future.展开更多
With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comp...With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy.展开更多
A field-based Intercomparison study of a commercial Differential Optical Absorption Spectroscopy (DOAS) instrument (OPSIS AB, Sweden) and different point-sample monitoring techniques (PM, based on an air monitoring st...A field-based Intercomparison study of a commercial Differential Optical Absorption Spectroscopy (DOAS) instrument (OPSIS AB, Sweden) and different point-sample monitoring techniques (PM, based on an air monitoring station, an air monitoring vehicle, and various chemical methods) was conducted in Beijing from October 1999 to January 2000. The mixing ratios of six trace gases including NO, NO2, SO2, O3, benzene, and toluene were monitored continuously during the four months. A good agreement between the DOAS and PM data was found for NO2 and SO2. However, the concentrations of benzene, toluene, and NO obtained by DOAS were significantly lower than those measured by the point monitors. The ozone levels monitored by the DOAS were generally higher than those measured by point monitors. These results may be attributed to a strong vertical gradient of the NO-O3-NO2 system and of the aromatics at the measurement site. Since the exact data evaluation algorithm is not revealed by the manufacturer of the DOAS system, the error in the DOAS analysis can also not be excluded.展开更多
AIM To perform a systematic review and meta-analysis on minimally vs conventional invasive techniques for harvesting grafts for living donor liver transplantation. METHODS PubMed, Web of Science, EMBASE, and the Cochr...AIM To perform a systematic review and meta-analysis on minimally vs conventional invasive techniques for harvesting grafts for living donor liver transplantation. METHODS PubMed, Web of Science, EMBASE, and the Cochrane Library were searched comprehensively for studies comparing MILDH with conventional living donor hepatectomy (CLDH). Intraoperative and postoperative outcomes (operative time, estimated blood loss, postoperative liver function, length of hospital stay, analgesia use, complications, and survival rate) were analyzed in donors and recipients. Articles were included if they: (1) compared the outcomes of MILDH and CLDH; and (2) reported at least some of the above outcomes. RESULTS Of 937 articles identified, 13, containing 1592 patients, met our inclusion criteria and were included in the meta-analysis. For donors, operative time [weighted mean difference (WMD) = 20.68, 95% CI: -6.25-47.60, p = 0.13] and blood loss (WMD = -32.61, 95% CI: -80.44-5.21, p = 0.18) were comparable in the two groups. In contrast, analgesia use (WMD = -7.79, 95% CI: -14.06-1.87, p = 0.01), postoperative complications [odds ratio (OR) = 0.62, 95% CI: 0.44-0.89, p = 0.009], and length of hospital stay (WMD): -1.25, 95% CI: -2.35-0.14, p = 0.03) significantly favored MILDH. No differences were observed in recipient outcomes, including postoperative complications (OR = 0.93, 95% CI: 0.66-1.31, p = 0.68) and survival rate (hr = 0.96, 95% CI: 0.27-3.47, p = 0.95). Funnel plot and statistical methods showed a low probability of publication bias. CONCLUSION MILDH is safe, effective, and feasible for living donor liver resection with fewer donor postoperative complications, reduced length of hospital stay and analgesia requirement than CLDH.展开更多
The microbial molecular ecology techniques, which were developed on the basis of molecular, were applied in studying the bacteria in Constructed Rapid Infiltration (CRI) system. These techniques are very efficient i...The microbial molecular ecology techniques, which were developed on the basis of molecular, were applied in studying the bacteria in Constructed Rapid Infiltration (CRI) system. These techniques are very efficient in better describing the bacterial diversity, microbial community distribution, and relations between microbial group structure and nitrogen contamination through the analysis of microbial nucleic acid sequence fragment in CRI. The results further revealed the removal mechanism of contamination, which is essential for the improvement of wastewater treatment in CRI.展开更多
BACKGROUND Total laparoscopic distal gastrectomy(TLDG)is increasing due to some advantages over open surgery,which has generated interest in gastrointestinal surgeons.However,TLDG is technically demanding especially f...BACKGROUND Total laparoscopic distal gastrectomy(TLDG)is increasing due to some advantages over open surgery,which has generated interest in gastrointestinal surgeons.However,TLDG is technically demanding especially for lymphadenectomy and gastrointestinal reconstruction.During the course of training,trainee surgeons have less chances to perform open gastrectomy compared with that of senior surgeons.AIM To evaluate an appropriate,efficient and safe laparoscopic training procedures suitable for trainee surgeons.METHODS Ninety-two consecutive patients with gastric cancer who underwent TLDG plus Billroth I reconstruction using an augmented rectangle technique and involving trainees were reviewed.The trainees were taught a laparoscopic view of surgical anatomy,standard operative procedures and practiced essential laparoscopic skills.The TLDG procedure was divided into regional lymph node dissections and gastrointestinal reconstruction for analyzing trainee skills.Early surgical outcomes were compared between trainees and trainers to clarify the feasibility and safety of TLDG performed by trainees.Learning curves were used to assess the utility of our training system.RESULTS Five trainees performed a total of 52 TLDGs(56.5%),while 40 TLDGs were conducted by two trainers(43.5%).Except for depth of invasion and pathologic stage,there were no differences in clinicopathological characteristics.Trainers performed more D2 gastrectomies than trainees.The total operation time was significantly longer in the trainee group.The time spent during the lesser curvature lymph node dissection and the Billroth I reconstruction were similar between the two groups.No difference was found in postoperative complications between the two groups.The learning curve of the trainees plateaued after five TLDG cases.CONCLUSION Preparing trainees with a laparoscopic view of surgical anatomy,standard operative procedures and practice in essential laparoscopic skills enabled trainees to perform TLDG safely and feasibly.展开更多
In this paper, a time-varying rain characterization and diurnal variation in the Ku-band satellite systems simulated with synthetic storm techniques (SST) over a tropical location in Nigeria have been presented. Three...In this paper, a time-varying rain characterization and diurnal variation in the Ku-band satellite systems simulated with synthetic storm techniques (SST) over a tropical location in Nigeria have been presented. Three years’ rain rate time-series data measured by a raingauge located inside the Federal University of Technology Akure, Nigeria were utilized for the purpose of this work. The analysis is based on the CDF of one-minute rain rate;time-series simulated annual/seasonal and diurnal rain rate, rain attenuation statistics and fade margins observed over four time intervals: 00:00-06:00, 06:00-12:00, 12:00-18:00 and 18:00-24:00. In addition, comparison was also made between the synthesized values and rain attenuation statistics, at 12.245 GHz for a hypothetical downlink from EUTELSAT W4/W7 satellite in the area. It could be observed that at 99.99% link availability, the fade margin as high as ~20 dB may be required at Ku band uplink frequency bands in this area. We also observed that the communication downlinks working in the early morning and early to late in the evening hours must be compensated with an appropriate Down-Link Power Control (DLPC) for optimum performances during severe atmospheric influences in the region.展开更多
The global outbreak of the coronavirus disease 2019(COVID-19) led to the suspension of most treatments with assisted reproductive technique(ART). However, with the recent successful control of the pandemic in China, t...The global outbreak of the coronavirus disease 2019(COVID-19) led to the suspension of most treatments with assisted reproductive technique(ART). However, with the recent successful control of the pandemic in China, there is an urgent public need to resume full reproductive care. To determine whether the COVID-19 pandemic had any adverse effects on female fertility and the pregnancy outcomes of women undergoing ART, a systematic review and meta-analysis was conducted using the electronic Chinese and English databases. Dichotomous outcomes were summarized as prevalence, and odds ratios(ORs)and continuous outcomes as standardized mean difference(SMD) with 95% confidence interval(CI). The risk of bias and subgroup analyses were assessed using Stata/SE 15.1 and R 4.1.2. The results showed that compared with women treated by ART in the pre-COVID-19 time frame, women undergoing ART after the COVID-19 pandemic exhibited no significant difference in the clinical pregnancy rate(OR 1.07, 95% CI 0.97 to 1.19;I^(2)=0.0%), miscarriage rate(OR 0.95, 95% CI 0.79 to1.14;I^(2)=38.4%), embryo cryopreservation rate(OR 2.90, 95% CI 0.17 to 48.13;I^(2)=85.4%), and oocyte cryopreservation rate(OR 0.30, 95% CI 0.03 to 3.65;I^(2)=81.6%). This review provided additional evidence for gynecologists to guide the management of women undergoing ART treatment during the COVID-19 pandemic timeframe.展开更多
There are complex river-lake systems in the Taihu Lake catchment with total water surface area of 6174.7 km2, and population density of 1079/km2, including Taihu Lake water surface area of 2338 km2. The water systems ...There are complex river-lake systems in the Taihu Lake catchment with total water surface area of 6174.7 km2, and population density of 1079/km2, including Taihu Lake water surface area of 2338 km2. The water systems in this catchment have healthy aquaecosystems during long history. However, in some riverlets in this catchment the water quality was estimated as “acute toxicity for higher organisms” and over standards for many heavy metal elements content;there were no any living plants and macro organisms in the water body, because there were developed a series of industry with abundant release of heavy metals and difficult decomposition organic chemical components along the riverlets during last decades. The even more serious situation was observed in sediments of the riverlets. How to restore such riverlet into a healthy aquaeosystem with abound plants and higher organisms? The main strategy and techniques are described in this paper as summarizing a report of engineering in a riverlet in Wuxi New District during last years, which leads to restore the aquaecosystem into a healthy one with abundant surface plant cultured on floating islands and observed living fish, lobster, frog, toad, mollusk and others in the riverlet. The main techniques are: 1) softwall buffer technic;2) floating eco-island technic by using which can culture any plant which can be cultured in solution;3) immobilized nitrogen cycle bacteria (INCB) technic;4) tattering esters and other big-molecule organic chemicals by using electronic pulse technic and photosensitization technic;5) mist spray facility technic for improving dissolved oxygen in deep water layers;6) technic for buffering and suppressing H2S release from water;7) the appropriate portion of surface with cultured plant to the total water surface area is about 1/3;8) Cress [Oenanthe Ljavanica (Bl.) DC.] and Myriophyllum verticilatum L. may be cultured in Taihu Lake catchment during the whole year as main plants with mosaic combination of other supplement plants in different seasons.展开更多
Requirements elicitation is a fundamental phase of software development in which an analyst discovers the needs of different stakeholders and transforms them into requirements.This phase is cost-and time-intensive,and...Requirements elicitation is a fundamental phase of software development in which an analyst discovers the needs of different stakeholders and transforms them into requirements.This phase is cost-and time-intensive,and a project may fail if there are excessive costs and schedule overruns.COVID-19 has affected the software industry by reducing interactions between developers and customers.Such a lack of interaction is a key reason for the failure of software projects.Projects can also fail when customers do not know precisely what they want.Furthermore,selecting the unsuitable elicitation technique can also cause project failure.The present study,therefore,aimed to identify which requirements elicitation technique is the most cost-effective for large-scale projects when time to market is a critical issue or when the customer is not available.To that end,we conducted a systematic literature review on requirements elicitation techniques.Most primary studies identified introspection as the best technique,followed by survey and brainstorming.This finding suggests that introspection should be the first choice of elicitation technique,especially when the customer is not available or the project has strict time and cost constraints.Moreover,introspection should also be used as the starting point in the elicitation process of a large-scale project,and all known requirements should be elicited using this technique.展开更多
Forecasting travel demand requires a grasp of individual decision-making behavior.However,transport mode choice(TMC)is determined by personal and contextual factors that vary from person to person.Numerous characteris...Forecasting travel demand requires a grasp of individual decision-making behavior.However,transport mode choice(TMC)is determined by personal and contextual factors that vary from person to person.Numerous characteristics have a substantial impact on travel behavior(TB),which makes it important to take into account while studying transport options.Traditional statistical techniques frequently presume linear correlations,but real-world data rarely follows these presumptions,which may make it harder to grasp the complex interactions.Thorough systematic review was conducted to examine how machine learning(ML)approaches might successfully capture nonlinear correlations that conventional methods may ignore to overcome such challenges.An in-depth analysis of discrete choice models(DCM)and several ML algorithms,datasets,model validation strategies,and tuning techniques employed in previous research is carried out in the present study.Besides,the current review also summarizes DCM and ML models to predict TMC and recognize the determinants of TB in an urban area for different transport modes.The two primary goals of our study are to establish the present conceptual frameworks for the factors influencing the TMC for daily activities and to pinpoint methodological issues and limitations in previous research.With a total of 39 studies,our findings shed important light on the significance of considering factors that influence the TMC.The adjusted kernel algorithms and hyperparameter-optimized ML algorithms outperform the typical ML algorithms.RF(random forest),SVM(support vector machine),ANN(artificial neural network),and interpretable ML algorithms are the most widely used ML algorithms for the prediction of TMC where RF achieved an R2 of 0.95 and SVM achieved an accuracy of 93.18%;however,the adjusted kernel enhanced the accuracy of SVM 99.81%which shows that the interpretable algorithms outperformed the typical algorithms.The sensitivity analysis indicates that the most significant parameters influencing TMC are the age,total trip time,and the number of drivers.展开更多
The rapid developing of the fourth generation(4G)wireless communications has aroused tremendous demands for high speed data transmission due to the dissemination of various types of the intelligent user terminals as w...The rapid developing of the fourth generation(4G)wireless communications has aroused tremendous demands for high speed data transmission due to the dissemination of various types of the intelligent user terminals as well as the wireless multi-media services.It is predicted that the network throughput will increase展开更多
In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe mult...In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe multiplication of viruses from human to human and spread worldwide.Most healthcare systems shifted to isolation during the pandemic and a very restricted work environment.Investigations were done to overcome the remedy,and the researcher developed different techniques and recommended solutions.Telepresence robot was the solution achieved by all industries to continue their operations but with almost zero physical interaction with other humans.It played a vital role in this perspective to help humans to perform daily routine tasks.Healthcare workers can use telepresence robots to interact with patients who visit the healthcare center for initial diagnosis for better healthcare system performance without direct interaction.The presented paper aims to compare different telepresence robots and their different controlling techniques to perform the needful in the respective scenario of healthcare environments.This paper comprehensively analyzes and reviews the applications of presented techniques to control different telepresence robots.However,our feature-wise analysis also points to specific technical,appropriate,and ethical challenges that remain to be solved.The proposed investigation summarizes the need for further multifaceted research on the design and impact of a telepresence robot for healthcare centers,building on new perceptions during the COVID-19 pandemic.展开更多
The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear...The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.展开更多
Introducing IoT devices to healthcare fields has made it possible to remotely monitor patients’information and provide a proper diagnosis as needed,resulting in the Internet of Medical Things(IoMT).However,obtaining ...Introducing IoT devices to healthcare fields has made it possible to remotely monitor patients’information and provide a proper diagnosis as needed,resulting in the Internet of Medical Things(IoMT).However,obtaining good security features that ensure the integrity and confidentiality of patient’s information is a significant challenge.However,due to the computational resources being limited,an edge device may struggle to handle heavy detection tasks such as complex machine learning algorithms.Therefore,designing and developing a lightweight detection mechanism is crucial.To address the aforementioned challenges,a new lightweight IDS approach is developed to effectively combat a diverse range of cyberattacks in IoMT networks.The proposed anomaly-based IDS is divided into three steps:pre-processing,feature selection,and decision.In the pre-processing phase,data cleaning and normalization are performed.In the feature selection step,the proposed approach uses two data-driven kernel techniques:kernel principal component analysis and kernel partial least square techniques to reduce the dimension of extracted features and to ameliorate the detection results.Therefore,in decision step,in order to classify whether the traffic flow is normal or malicious the kernel extreme learning machine is used.To check the efficiency of the developed detection scheme,a modern IoMT dataset named WUSTL-EHMS-2020 is considered to evaluate and discuss the achieved results.The proposed method achieved 99.9%accuracy,99.8%specificity,100%Sensitivity,99.9 F-score.展开更多
基金FEDER/Ministry of Science and Innovation-State Research Agency/Project PID2020-112667RB-I00 funded by MCIN/AEI/10.13039/501100011033the Basque Government,IT1726-22+2 种基金by the predoctoral contracts PRE_2022_2_0022 and EP_2023_1_0015 of the Basque Governmentpartially supported by the Italian MIUR,PRIN 2020 Project“COMMON-WEARS”,N.2020HCWWLP,CUP:H23C22000230005co-funding from Next Generation EU,in the context of the National Recovery and Resilience Plan,through the Italian MUR,PRIN 2022 Project”COCOWEARS”(A framework for COntinuum COmputing WEARable Systems),N.2022T2XNJE,CUP:H53D23003640006.
文摘Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,given the challenges faced by health specialists to carry out continuous monitoring,the development of an intelligent anomaly detection system is proposed.Unlike other authors,where they use supervised techniques,this work proposes using unsupervised techniques due to the advantages they offer.These advantages include the lack of prior labeling of data,and the detection of anomalies previously not contemplated,among others.In the present work,an individualized methodology consisting of two phases is developed:characterizing the normal sitting pattern and determining abnormal samples.An analysis has been carried out between different unsupervised techniques to study which ones are more suitable for postural diagnosis.It can be concluded,among other aspects,that the utilization of dimensionality reduction techniques leads to improved results.Moreover,the normality characterization phase is deemed necessary for enhancing the system’s learning capabilities.Additionally,employing an individualized approach to the model aids in capturing the particularities of the various pathologies present among subjects.
文摘Rectal cancer ranks as the third most prevalent malignancy globally,with an estimated 1.9 million incident cases reported in 2020.The management of low rectal cancer presents significant therapeutic challenges due to its anatomical complexity,and substantially impacts patients'quality of life.While abdominoperineal resection(Miles procedure)ensures oncological radicality,the morbidity associated with permanent colostomy has driven innovations in sphincter-preserving surgical techniques.This review synthesizes current evidence on sphincter-preserving surgical approaches for low rectal cancer.The implementation of total mesorectal excision(TME)principles and enhanced understanding of circumferential resection margin have facilitated the evolution of diverse sphincter-preserving surgical modalities.These include local excision,low anterior resection(Dixon procedure),intersphincteric resection,pull-through procedures,transanal TME,and conventional sphincter-preserving operation.Minimally invasive approaches,particularly laparoscopic and robotic platforms,alongside natural orifice transluminal endoscopic surgery,have demonstrated improved surgical precision and enhanced postoperative recovery outcomes.Novel functional perineal reconstruction techniques offer promising alternatives for patients requiring posterior pelvic exenteration.Nevertheless,the high incidence of low anterior resection syndrome(LARS)and its chronic sequelae remain clinically notable.Evidence indicates that long-course neoadjuvant radiotherapy and TME constitute significant risk factors for LARS development.Contemporary sphincter-preserving surgery for low rectal cancer is advancing toward minimally invasive,personalized,and precision-based approaches.The increasing incidence of early-onset rectal cancer necessitates individualized treatment strategies that balance oncological efficacy with functional preservation.Future directions should focus on standardizing surgical indications,optimizing postoperative rehabilitation protocols,and enhancing treatment outcomes through multidisciplinary integration and technological innovation.
基金supported by the National Natural Science Foundation of China(No.12374003)the Guangdong Basic and Applied Basic Research Foundation(No.2024A1515030256)the Shenzhen Science and Technology Program(Grant Nos.JCYJ20220531095208019 and GXWD20231129103124001).
文摘The potentiostatic intermittent titration technique(PITT)is widely used to determine the diffusion coefficient of ions in electrode materials for rechargeable batteries such as lithium-ion or sodium-ion batteries,predicated on the assumption that the insertion/extraction of ions in the host materials is governed by diffusion.However,in practical scenarios,the electrochemical process might be dominated by interfacial reaction kinetics rather than diffusion.The present work derives analytical equations for electric current by considering the finite interfacial reaction kinetics and small overpotentials during PITT measurements and further studies the chemical stress field induced by the interfacial reaction-controlled ion insertion.The exchange current density(j_(0))can be ascertained using the analytical equation,which dictates the magnitude and decay rate of the electric current during a PITT process.The electric current decays more rapidly,and consequently,the lithium concentration reaches equilibrium faster for larger values of j_(0).The magnitude of the chemical stress is independent of j_(0) but depends on the overpotential.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82304443,82030107,and 82373944).
文摘Significant investment in nanocarrier drug delivery systems(Nano-DDSs)has yielded only a limited number of successfully marketed nanomedicines,highlighting a low rate of clinical translation.A primary contributing factor is the lack of foundational understanding of in vivo processes.Comprehensive knowledge of the pharmacokinetics of Nano-DDSs is essential for developing more efficacious nanomedicines and accurately evaluating their safety and associated risks.However,the complexity of Nano-DDSs has impeded thorough and systematic pharmacokinetic studies.Key components of pharmacokinetic investigations on Nano-DDSs include the analysis of the released drug,the encapsulated drug,and the nanomaterial,which present a higher level of complexity compared to traditional small-molecule drugs.Establishing an appropriate approach for monitoring the pharmacokinetics of Nano-DDSs is crucial for facilitating the clinical translation of nanomedicines.This review provides an overview of advanced bioanalytical methodologies employed in studying the pharmacokinetics of anticancer organic Nano-DDSs over the past five years.We hope that this review will enhance the understanding of the pharmacokinetics of Nano-DDSs and support the advancement of nanomedicines.
基金supported by the National Natural Science Foundation of China,No.31760290,82160688the Key Development Areas Project of Ganzhou Science and Technology,No.2022B-SF9554(all to XL)。
文摘Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience-dependent mechanisms.The pruning process involves multiple molecular signals and a series of regulatory activities governing the“eat me”and“don't eat me”states.Under physiological conditions,the interaction between glial cells and neurons results in the clearance of unnecessary synapses,maintaining normal neural circuit functionality via synaptic pruning.Alterations in genetic and environmental factors can lead to imbalanced synaptic pruning,thus promoting the occurrence and development of autism spectrum disorder,schizophrenia,Alzheimer's disease,and other neurological disorders.In this review,we investigated the molecular mechanisms responsible for synaptic pruning during neural development.We focus on how synaptic pruning can regulate neural circuits and its association with neurological disorders.Furthermore,we discuss the application of emerging optical and imaging technologies to observe synaptic structure and function,as well as their potential for clinical translation.Our aim was to enhance our understanding of synaptic pruning during neural development,including the molecular basis underlying the regulation of synaptic function and the dynamic changes in synaptic density,and to investigate the potential role of these mechanisms in the pathophysiology of neurological diseases,thus providing a theoretical foundation for the treatment of neurological disorders.
基金supported by Healthy China initiative of Traditional Chinese Medicine(No.889042).
文摘Currently,the number of patients with myopia is increasing rapidly across the globe.Traditional Chinese medicine(TCM),with its long history and rich experience,has shown promise in effectively managing and treating this condition.Nevertheless,considering the vast amount of research that is currently being conducted,focusing on the utilization of TCM in the management of myopia,there is an urgent requirement for a thorough and comprehensive review.The review would serve to clarify the practical applications of TCM within this specific field,and it would also aim to elucidate the underlying mechanisms that are at play,providing a deeper understanding of how TCM principles can be effectively integrated into modern medical practices.Here,some modern medical pathogenesis of myopia and appropriate TCM techniques studies are summarized in the prevention and treatment of myopia.Further,we discussed the potential mechanisms and the future research directions of TCM against myopia.Identifying these mechanisms is crucial for understanding how TCM can be effectively utilized in this context.The combination of various TCM methods or the combination of traditional Chinese and Western medicine is of great significance for the prevention and control of myopia in the future.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2023-00235509Development of security monitoring technology based network behavior against encrypted cyber threats in ICT convergence environment).
文摘With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy.
文摘A field-based Intercomparison study of a commercial Differential Optical Absorption Spectroscopy (DOAS) instrument (OPSIS AB, Sweden) and different point-sample monitoring techniques (PM, based on an air monitoring station, an air monitoring vehicle, and various chemical methods) was conducted in Beijing from October 1999 to January 2000. The mixing ratios of six trace gases including NO, NO2, SO2, O3, benzene, and toluene were monitored continuously during the four months. A good agreement between the DOAS and PM data was found for NO2 and SO2. However, the concentrations of benzene, toluene, and NO obtained by DOAS were significantly lower than those measured by the point monitors. The ozone levels monitored by the DOAS were generally higher than those measured by point monitors. These results may be attributed to a strong vertical gradient of the NO-O3-NO2 system and of the aromatics at the measurement site. Since the exact data evaluation algorithm is not revealed by the manufacturer of the DOAS system, the error in the DOAS analysis can also not be excluded.
基金Science and Technology Planning Project of Guangzhou,No.201604020001
文摘AIM To perform a systematic review and meta-analysis on minimally vs conventional invasive techniques for harvesting grafts for living donor liver transplantation. METHODS PubMed, Web of Science, EMBASE, and the Cochrane Library were searched comprehensively for studies comparing MILDH with conventional living donor hepatectomy (CLDH). Intraoperative and postoperative outcomes (operative time, estimated blood loss, postoperative liver function, length of hospital stay, analgesia use, complications, and survival rate) were analyzed in donors and recipients. Articles were included if they: (1) compared the outcomes of MILDH and CLDH; and (2) reported at least some of the above outcomes. RESULTS Of 937 articles identified, 13, containing 1592 patients, met our inclusion criteria and were included in the meta-analysis. For donors, operative time [weighted mean difference (WMD) = 20.68, 95% CI: -6.25-47.60, p = 0.13] and blood loss (WMD = -32.61, 95% CI: -80.44-5.21, p = 0.18) were comparable in the two groups. In contrast, analgesia use (WMD = -7.79, 95% CI: -14.06-1.87, p = 0.01), postoperative complications [odds ratio (OR) = 0.62, 95% CI: 0.44-0.89, p = 0.009], and length of hospital stay (WMD): -1.25, 95% CI: -2.35-0.14, p = 0.03) significantly favored MILDH. No differences were observed in recipient outcomes, including postoperative complications (OR = 0.93, 95% CI: 0.66-1.31, p = 0.68) and survival rate (hr = 0.96, 95% CI: 0.27-3.47, p = 0.95). Funnel plot and statistical methods showed a low probability of publication bias. CONCLUSION MILDH is safe, effective, and feasible for living donor liver resection with fewer donor postoperative complications, reduced length of hospital stay and analgesia requirement than CLDH.
基金supported by the National Key Project for Basic Research (No. 2007CB815600)the Project of the Ministry of Science and Technology of China (No. 2006BAD25B04)
文摘The microbial molecular ecology techniques, which were developed on the basis of molecular, were applied in studying the bacteria in Constructed Rapid Infiltration (CRI) system. These techniques are very efficient in better describing the bacterial diversity, microbial community distribution, and relations between microbial group structure and nitrogen contamination through the analysis of microbial nucleic acid sequence fragment in CRI. The results further revealed the removal mechanism of contamination, which is essential for the improvement of wastewater treatment in CRI.
基金Japan China Sasakawa Medical Fellowshipthe China Scholarship Council,No.201908310012。
文摘BACKGROUND Total laparoscopic distal gastrectomy(TLDG)is increasing due to some advantages over open surgery,which has generated interest in gastrointestinal surgeons.However,TLDG is technically demanding especially for lymphadenectomy and gastrointestinal reconstruction.During the course of training,trainee surgeons have less chances to perform open gastrectomy compared with that of senior surgeons.AIM To evaluate an appropriate,efficient and safe laparoscopic training procedures suitable for trainee surgeons.METHODS Ninety-two consecutive patients with gastric cancer who underwent TLDG plus Billroth I reconstruction using an augmented rectangle technique and involving trainees were reviewed.The trainees were taught a laparoscopic view of surgical anatomy,standard operative procedures and practiced essential laparoscopic skills.The TLDG procedure was divided into regional lymph node dissections and gastrointestinal reconstruction for analyzing trainee skills.Early surgical outcomes were compared between trainees and trainers to clarify the feasibility and safety of TLDG performed by trainees.Learning curves were used to assess the utility of our training system.RESULTS Five trainees performed a total of 52 TLDGs(56.5%),while 40 TLDGs were conducted by two trainers(43.5%).Except for depth of invasion and pathologic stage,there were no differences in clinicopathological characteristics.Trainers performed more D2 gastrectomies than trainees.The total operation time was significantly longer in the trainee group.The time spent during the lesser curvature lymph node dissection and the Billroth I reconstruction were similar between the two groups.No difference was found in postoperative complications between the two groups.The learning curve of the trainees plateaued after five TLDG cases.CONCLUSION Preparing trainees with a laparoscopic view of surgical anatomy,standard operative procedures and practice in essential laparoscopic skills enabled trainees to perform TLDG safely and feasibly.
文摘In this paper, a time-varying rain characterization and diurnal variation in the Ku-band satellite systems simulated with synthetic storm techniques (SST) over a tropical location in Nigeria have been presented. Three years’ rain rate time-series data measured by a raingauge located inside the Federal University of Technology Akure, Nigeria were utilized for the purpose of this work. The analysis is based on the CDF of one-minute rain rate;time-series simulated annual/seasonal and diurnal rain rate, rain attenuation statistics and fade margins observed over four time intervals: 00:00-06:00, 06:00-12:00, 12:00-18:00 and 18:00-24:00. In addition, comparison was also made between the synthesized values and rain attenuation statistics, at 12.245 GHz for a hypothetical downlink from EUTELSAT W4/W7 satellite in the area. It could be observed that at 99.99% link availability, the fade margin as high as ~20 dB may be required at Ku band uplink frequency bands in this area. We also observed that the communication downlinks working in the early morning and early to late in the evening hours must be compensated with an appropriate Down-Link Power Control (DLPC) for optimum performances during severe atmospheric influences in the region.
基金supported by the Health High-Level Talent Training Project (Innovative Talents)the Health Commission of Zhejiang Province (File [2021] 40)+1 种基金the 151 Talent Project (Second Level)Zhejiang Province Human Resources and Social Security Department (File [2018] 126), China。
文摘The global outbreak of the coronavirus disease 2019(COVID-19) led to the suspension of most treatments with assisted reproductive technique(ART). However, with the recent successful control of the pandemic in China, there is an urgent public need to resume full reproductive care. To determine whether the COVID-19 pandemic had any adverse effects on female fertility and the pregnancy outcomes of women undergoing ART, a systematic review and meta-analysis was conducted using the electronic Chinese and English databases. Dichotomous outcomes were summarized as prevalence, and odds ratios(ORs)and continuous outcomes as standardized mean difference(SMD) with 95% confidence interval(CI). The risk of bias and subgroup analyses were assessed using Stata/SE 15.1 and R 4.1.2. The results showed that compared with women treated by ART in the pre-COVID-19 time frame, women undergoing ART after the COVID-19 pandemic exhibited no significant difference in the clinical pregnancy rate(OR 1.07, 95% CI 0.97 to 1.19;I^(2)=0.0%), miscarriage rate(OR 0.95, 95% CI 0.79 to1.14;I^(2)=38.4%), embryo cryopreservation rate(OR 2.90, 95% CI 0.17 to 48.13;I^(2)=85.4%), and oocyte cryopreservation rate(OR 0.30, 95% CI 0.03 to 3.65;I^(2)=81.6%). This review provided additional evidence for gynecologists to guide the management of women undergoing ART treatment during the COVID-19 pandemic timeframe.
文摘There are complex river-lake systems in the Taihu Lake catchment with total water surface area of 6174.7 km2, and population density of 1079/km2, including Taihu Lake water surface area of 2338 km2. The water systems in this catchment have healthy aquaecosystems during long history. However, in some riverlets in this catchment the water quality was estimated as “acute toxicity for higher organisms” and over standards for many heavy metal elements content;there were no any living plants and macro organisms in the water body, because there were developed a series of industry with abundant release of heavy metals and difficult decomposition organic chemical components along the riverlets during last decades. The even more serious situation was observed in sediments of the riverlets. How to restore such riverlet into a healthy aquaeosystem with abound plants and higher organisms? The main strategy and techniques are described in this paper as summarizing a report of engineering in a riverlet in Wuxi New District during last years, which leads to restore the aquaecosystem into a healthy one with abundant surface plant cultured on floating islands and observed living fish, lobster, frog, toad, mollusk and others in the riverlet. The main techniques are: 1) softwall buffer technic;2) floating eco-island technic by using which can culture any plant which can be cultured in solution;3) immobilized nitrogen cycle bacteria (INCB) technic;4) tattering esters and other big-molecule organic chemicals by using electronic pulse technic and photosensitization technic;5) mist spray facility technic for improving dissolved oxygen in deep water layers;6) technic for buffering and suppressing H2S release from water;7) the appropriate portion of surface with cultured plant to the total water surface area is about 1/3;8) Cress [Oenanthe Ljavanica (Bl.) DC.] and Myriophyllum verticilatum L. may be cultured in Taihu Lake catchment during the whole year as main plants with mosaic combination of other supplement plants in different seasons.
基金funding this work through research group no.RG-1441-490.
文摘Requirements elicitation is a fundamental phase of software development in which an analyst discovers the needs of different stakeholders and transforms them into requirements.This phase is cost-and time-intensive,and a project may fail if there are excessive costs and schedule overruns.COVID-19 has affected the software industry by reducing interactions between developers and customers.Such a lack of interaction is a key reason for the failure of software projects.Projects can also fail when customers do not know precisely what they want.Furthermore,selecting the unsuitable elicitation technique can also cause project failure.The present study,therefore,aimed to identify which requirements elicitation technique is the most cost-effective for large-scale projects when time to market is a critical issue or when the customer is not available.To that end,we conducted a systematic literature review on requirements elicitation techniques.Most primary studies identified introspection as the best technique,followed by survey and brainstorming.This finding suggests that introspection should be the first choice of elicitation technique,especially when the customer is not available or the project has strict time and cost constraints.Moreover,introspection should also be used as the starting point in the elicitation process of a large-scale project,and all known requirements should be elicited using this technique.
文摘Forecasting travel demand requires a grasp of individual decision-making behavior.However,transport mode choice(TMC)is determined by personal and contextual factors that vary from person to person.Numerous characteristics have a substantial impact on travel behavior(TB),which makes it important to take into account while studying transport options.Traditional statistical techniques frequently presume linear correlations,but real-world data rarely follows these presumptions,which may make it harder to grasp the complex interactions.Thorough systematic review was conducted to examine how machine learning(ML)approaches might successfully capture nonlinear correlations that conventional methods may ignore to overcome such challenges.An in-depth analysis of discrete choice models(DCM)and several ML algorithms,datasets,model validation strategies,and tuning techniques employed in previous research is carried out in the present study.Besides,the current review also summarizes DCM and ML models to predict TMC and recognize the determinants of TB in an urban area for different transport modes.The two primary goals of our study are to establish the present conceptual frameworks for the factors influencing the TMC for daily activities and to pinpoint methodological issues and limitations in previous research.With a total of 39 studies,our findings shed important light on the significance of considering factors that influence the TMC.The adjusted kernel algorithms and hyperparameter-optimized ML algorithms outperform the typical ML algorithms.RF(random forest),SVM(support vector machine),ANN(artificial neural network),and interpretable ML algorithms are the most widely used ML algorithms for the prediction of TMC where RF achieved an R2 of 0.95 and SVM achieved an accuracy of 93.18%;however,the adjusted kernel enhanced the accuracy of SVM 99.81%which shows that the interpretable algorithms outperformed the typical algorithms.The sensitivity analysis indicates that the most significant parameters influencing TMC are the age,total trip time,and the number of drivers.
文摘The rapid developing of the fourth generation(4G)wireless communications has aroused tremendous demands for high speed data transmission due to the dissemination of various types of the intelligent user terminals as well as the wireless multi-media services.It is predicted that the network throughput will increase
文摘In this era of post-COVID-19,humans are psychologically restricted to interact less with other humans.According to the world health organization(WHO),there are many scenarios where human interactions cause severe multiplication of viruses from human to human and spread worldwide.Most healthcare systems shifted to isolation during the pandemic and a very restricted work environment.Investigations were done to overcome the remedy,and the researcher developed different techniques and recommended solutions.Telepresence robot was the solution achieved by all industries to continue their operations but with almost zero physical interaction with other humans.It played a vital role in this perspective to help humans to perform daily routine tasks.Healthcare workers can use telepresence robots to interact with patients who visit the healthcare center for initial diagnosis for better healthcare system performance without direct interaction.The presented paper aims to compare different telepresence robots and their different controlling techniques to perform the needful in the respective scenario of healthcare environments.This paper comprehensively analyzes and reviews the applications of presented techniques to control different telepresence robots.However,our feature-wise analysis also points to specific technical,appropriate,and ethical challenges that remain to be solved.The proposed investigation summarizes the need for further multifaceted research on the design and impact of a telepresence robot for healthcare centers,building on new perceptions during the COVID-19 pandemic.
文摘The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.
基金supported by the Deanship of Scientific Research at the University of Tabuk through Research No.S-1443-0111.
文摘Introducing IoT devices to healthcare fields has made it possible to remotely monitor patients’information and provide a proper diagnosis as needed,resulting in the Internet of Medical Things(IoMT).However,obtaining good security features that ensure the integrity and confidentiality of patient’s information is a significant challenge.However,due to the computational resources being limited,an edge device may struggle to handle heavy detection tasks such as complex machine learning algorithms.Therefore,designing and developing a lightweight detection mechanism is crucial.To address the aforementioned challenges,a new lightweight IDS approach is developed to effectively combat a diverse range of cyberattacks in IoMT networks.The proposed anomaly-based IDS is divided into three steps:pre-processing,feature selection,and decision.In the pre-processing phase,data cleaning and normalization are performed.In the feature selection step,the proposed approach uses two data-driven kernel techniques:kernel principal component analysis and kernel partial least square techniques to reduce the dimension of extracted features and to ameliorate the detection results.Therefore,in decision step,in order to classify whether the traffic flow is normal or malicious the kernel extreme learning machine is used.To check the efficiency of the developed detection scheme,a modern IoMT dataset named WUSTL-EHMS-2020 is considered to evaluate and discuss the achieved results.The proposed method achieved 99.9%accuracy,99.8%specificity,100%Sensitivity,99.9 F-score.