Recent years have witnessed significant advances in the development of novel techniques and methodologies for identifying active ingredients in traditional Chinese medicine(TCM),substantially advancing research and de...Recent years have witnessed significant advances in the development of novel techniques and methodologies for identifying active ingredients in traditional Chinese medicine(TCM),substantially advancing research and development efforts.Spectrum-effect correlation analysis,affinity ultrafiltration,high-content screening(HCS)imaging,and cell membrane chromatography(CMC)have emerged as essential tools,effectively linking TCM chemical constituents to their biological effects,thereby enabling efficient active ingredient screening.Additionally,molecular interaction analysis provides deeper insights into TCM-biomolecule interaction mechanisms,enhancing understanding of its therapeutic potential.Computer-aided techniques facilitate TCM active ingredient identification,optimizing the screening process for efficiency and cost-effectiveness.Molecular probe technology,as an emerging methodology,enables precise and rapid screening for novel therapeutic drug discovery.Ongoing technological advancement in this field indicates promising future developments,potentially leading to more effective and targeted TCM-based therapies.展开更多
The situation of electricity in Pakistan has been alarming from the last ten years. The deficiency in electricity has not only obstructed the business activities but also affected the domestic consumers, educational i...The situation of electricity in Pakistan has been alarming from the last ten years. The deficiency in electricity has not only obstructed the business activities but also affected the domestic consumers, educational institutes and hospitals. Usually electrical power companies are liable for electricity shortfall and power interruption. However, electricity end consumers are also equally responsible behind strange shortfall and unusual power interruption. Frequently, the consumers use the heavy electrical equipment in their homes including heaters, geysers, irons and water motors which causes the more electricity consumption, load shedding and huge amount of bills. For escaping the huge amount of electricity bill, the consumers commit the illegal and unethical connections. The illegal usage of electrical power failed the power companies to plan schedule load shedding accordingly and the other side the damaged electricity wires or Pole Mount Transformer increased faults due to overburdening, which directly affected on extend power interruption. In addition that, responsible teams of electrical power companies cannot reach instantly to repair faults and prevent the theft. Electricity thieving is social crime committed by the consumers or meter readers which causes the electricity strange shortfall within country. This paper presents the practical demonstration about the common energy theft methods and techniques done by electricity consumers within their home and residential building. In Pakistan EPC (electrical power companies) deploy the traditional electromechanical meters for electricity consumption measurements, however, these meters do not have any real time communication. Therefore there are many easy ways to manipulate the meter reading as well as internal structural of metering system.展开更多
Based on years of input from the four geodetic techniques (SLR, GPS, VLBI and DORIS), the strategies of the combination were studied in SHAO to generate a new global terrestrial reference frame as the material reali...Based on years of input from the four geodetic techniques (SLR, GPS, VLBI and DORIS), the strategies of the combination were studied in SHAO to generate a new global terrestrial reference frame as the material realization of the ITRS defined in IERS Conventions. The main input includes the time series of weekly solutions (or fortnightly for SLR 1983-1993) of observational data for satellite techniques and session-wise normal equations for VLBI. The set of estimated unknowns includes 3- dimensional Cartesian coordinates at the reference epoch 2005.0 of the stations distributed globally and their rates as well as the time series of consistent Earth Orientation Parameters (EOPs) at the same epochs as the input. Besides the final solution, namely SOL-2, generated by using all the inputs before 2015.0 obtained from short-term observation processing, another reference solution, namely SOL- 1, was also computed by using the input before 2009.0 based on the same combination of procedures for the purpose of comparison with ITRF2008 and DTRF2008 and for evaluating the effect of the latest six more years of data on the combined results. The estimated accuracy of the x-component and y-component of the SOL- 1 TRF-origin was better than 0.1 mm at epoch 2005.0 and better than 0.3 mm yr- 1 in time evolution, either compared with ITRF2008 or DTRF2008. However, the z-component of the translation parameters from SOL-1 to ITRF2008 and DTRF2008 were 3.4 mm and -1.0 ram, respectively. It seems that the z-component of the SOL-1 TRF-origin was much closer to the one in DTRF2008 than the one in ITRF2008. The translation parameters from SOL-2 to ITRF2014 were 2.2, -1.8 and 0.9 mm in the x-, y- and z-components respectively with rates smaller than 0.4 mmyr-1. Similarly, the scale factor transformed from SOL-1 to DTRF2008 was much smaller than that to ITRF2008. The scale parameter from SOL-2 to ITRF2014 was -0.31 ppb with a rate lower than 0.01 ppb yr-1. The external precision (WRMS) compared with IERS EOP 08 C04 of the combined EOP series was smaller than 0.06 mas for the polar motions, smaller than 0.01 ms for the UT1-UTC and smaller than 0.02 ms for the LODs. The precision of the EOPs in SOL-2 was slightly higher than that of SOL-1.展开更多
This paper proposes an inexact Newton method via the Lanczos decomposed technique for solving the box-constrained nonlinear systems. An iterative direction is obtained by solving an affine scaling quadratic model with...This paper proposes an inexact Newton method via the Lanczos decomposed technique for solving the box-constrained nonlinear systems. An iterative direction is obtained by solving an affine scaling quadratic model with the Lanczos decomposed technique. By using the interior backtracking line search technique, an acceptable trial step length is found along this direction. The global convergence and the fast local convergence rate of the proposed algorithm are established under some reasonable conditions. Furthermore, the results of the numerical experiments show the effectiveness of the pro- posed algorithm.展开更多
We investigate the effectiveness of the hopping parameter expansion(HPE) combined with the Z(2) noise method in the calculation of the trace of the inverse of Wilson's Dirac operator and some other disconnected c...We investigate the effectiveness of the hopping parameter expansion(HPE) combined with the Z(2) noise method in the calculation of the trace of the inverse of Wilson's Dirac operator and some other disconnected contributions.A numerical comparison of the standard deviation for the Z(2) noise method and HPE with the Z(2) noise method is carried out. It is found that there are noise reductions in all the quantities we calculated using the HPE with the Z(2) noise method. For the trace of the inverse of Wilson's Dirac operator, the HPE can reduce the statistical error by about 60%.展开更多
A lunar occultation (LO) technique in the near-infrared (NIR) provides angular resolution down to milliarcseconds for an occulted source, even with ground- based 1 m class telescopes. LO observations are limited t...A lunar occultation (LO) technique in the near-infrared (NIR) provides angular resolution down to milliarcseconds for an occulted source, even with ground- based 1 m class telescopes. LO observations are limited to brighter objects because they require a high signal-to-noise ratio (S/N ~40) for proper extraction of angular diameter values. Hence, methods to improve the S/N ratio by reducing noise using Fourier and wavelet transforms have been explored in this study. A sample of 54 NIR LO light curves observed with the IR camera at Mt Abu Observatory has been used. It is seen that both Fourier and wavelet methods have shown an improvement in S/N compared to the original data. However, the application of wavelet transforms causes a slight smoothing of the fringes and results in a higher value for angular diameter. Fourier transforms which reduce discrete noise frequencies do not distort the fringe. The Fourier transform method seems to be effective in improving the S/N, as well as improving the model fit, particularly in the fainter regime of our sample. These methods also provide a better model fit for brighter sources in some cases, though there may not be a significant imorovement in S/N.展开更多
Stokes inversion calculation is a key process in resolving polarization information on radiation from the Sun and obtaining the associated vector magnetic fields. Even in the cases of simple local thermo- dynamic equi...Stokes inversion calculation is a key process in resolving polarization information on radiation from the Sun and obtaining the associated vector magnetic fields. Even in the cases of simple local thermo- dynamic equilibrium (LTE) and where the Milne-Eddington approximation is valid, the inversion problem may not be easy to solve. The initial values for the iterations are important in handling the case with mul- tiple minima. In this paper, we develop a fast inversion technique without iterations. The time taken for computation is only 1/100 the time that the iterative algorithm takes. In addition, it can provide available initial values even in cases with lower spectral resolutions. This strategy is useful for a filter-type Stokes spectrograph, such as SDO/HMI and the developed two-dimensional real-time spectrograph (2DS).展开更多
The proposed design of a microwave superconducting kinetic inductance detector(MKID)array readout system characterizes the performance of MKIDs through a digital homodyne frequency mixing architecture.Meanwhile,the re...The proposed design of a microwave superconducting kinetic inductance detector(MKID)array readout system characterizes the performance of MKIDs through a digital homodyne frequency mixing architecture.Meanwhile,the readout system is implemented using a frequency division multiplexing circuit system,coupled with an FFT design to enable the readout of MKID arrays.The system is characterized by its compact size,low cost,portability,and ease of further development.Together,these features have significant implications for the design and readout of terahertz MKID arrays,while simultaneously advancing both the theoretical and practical aspects of MKID technology.展开更多
Astronomical site selection work is very hard.Unmanned technologies are important trends and solutions.We present a relatively easy method to plan a high reliability site selection which can extend the time from site ...Astronomical site selection work is very hard.Unmanned technologies are important trends and solutions.We present a relatively easy method to plan a high reliability site selection which can extend the time from site deployment to returning for maintaining by unmanned confirming the site.First,we redefine the reliability of a site selection deployment with the parameter of the trusty time,which means when we must return,and which can be relatively easy for estimating.The redefinition makes the reliability parameter as a Bayesian probability,and can be obtained by estimating besides testing,which makes the evaluation of each device's reliability much easier.Then we use block diagram tools in the Matlab Simulink software to construct structure diagram,and to link each component with relations of parallel,serial,protection,and so on.This makes the whole reliability value can be calculated at the time when we design or plan a site selection.We applied this concept and method in an actual site selection in Lenghu,Qinghai Province,China.The survey practice reveals its effectiveness and simpleness.展开更多
We perform a time-resolved statistical study of GRB 221009A’s X-ray emission using Swift XRT Photon Counting and Windowed Timing data.After standard reduction(barycentric correction,pile-up,background subtraction via...We perform a time-resolved statistical study of GRB 221009A’s X-ray emission using Swift XRT Photon Counting and Windowed Timing data.After standard reduction(barycentric correction,pile-up,background subtraction via HEASOFT),we extracted light curves for each observational ID and for their aggregation.Countrate histograms were fitted using various statistical distributions;fit quality was assessed by chi-squared and the Bayesian Information Criterion.The first observational segment is best described by a Gaussian distribution(χ^(2)=68.4;BIC=7651.2),and the second by a Poisson distribution(χ^(2)=33.5;BIC=4413.3).When all segments are combined,the lognormal model provides the superior fit(χ^(2)=541.9;BIC=34365.5),indicating that the full data set’s count rates exhibit the skewness expected from a multiplicative process.These findings demonstrate that while individual time intervals conform to discrete or symmetric statistics,the collective emission profile across multiple observations is better captured by a lognormal distribution,consistent with complex,compounded variability in GRB afterglows.展开更多
The SiTian Project represents a groundbreaking initiative in astronomy,aiming to deploy a global network of telescopes,each with a 1 m aperture,for comprehensive time-domain sky surveys.The network's innovative ar...The SiTian Project represents a groundbreaking initiative in astronomy,aiming to deploy a global network of telescopes,each with a 1 m aperture,for comprehensive time-domain sky surveys.The network's innovative architecture features multiple observational nodes,each comprising three strategically aligned telescopes equipped with filters.This design enables three-color(g,r,i)channel imaging within each node,facilitating precise and coordinated observations.As a pathfinder to the full-scale project,the Mini-SiTian Project serves as the scientific and technological validation platform,utilizing three 30 cm aperture telescopes to validate the methodologies and technologies planned for the broader SiTian network.This paper focuses on the development and implementation of the Master Control System(MCS),and the central command hub for the Mini-SiTian Array.The MCS is designed to facilitate seamless communication with the SiTian Brain,the project's central processing and decisionmaking unit,while ensuring accurate task allocation,real-time status monitoring,and optimized observational workflows.The system adopts a robust architecture that separates front-end and back-end functionalities.A key innovation of the MCS is its ability to dynamically adjust observation plans in response to transient source alerts,enabling rapid and coordinated scans of target sky regions.The paper provides an in-depth analysis of the system's internal components,including the communication system,which is critical for seamless network operation.Extensive testing has validated the functionality,reliability,and compatibility of these components within the overall system architecture.The successful deployment of the MCS in managing the Mini-SiTian Array has demonstrated its practicality and efficacy in collaborative observation and distributed control.By simplifying cluster management and ensuring data integrity,the MCS represents a significant advancement in astronomical observation control systems.Its scalable and adaptable design not only supports the future expansion of the SiTian network but also provides a blueprint for other large-scale telescope arrays,marking a transformative step forward in time-domain astronomy.展开更多
Thymus quinquecostatus Celak.,a traditional aromatic edible plant from Lamiaceae,is widely used as food additive,food condiment,spice,and herbal teas.Polyphenol-rich fraction of T.quinquecostatus(PRF)has been proven t...Thymus quinquecostatus Celak.,a traditional aromatic edible plant from Lamiaceae,is widely used as food additive,food condiment,spice,and herbal teas.Polyphenol-rich fraction of T.quinquecostatus(PRF)has been proven to be effective protective effect for cerebral ischemia reperfusion injury(CIRI)in our previous study.In this study,we developed a novel“Gut flora-Compound-Target-Pathway”(GCTP)network based on network pharmacology coupled with gastrointestinal metabolism for screening bio-active components,key targets and gut floras through the classical technique for order preference by similarity to ideal solution(TOPSIS).This compensates for the lack of gut floras and gastrointestinal metabolism in network pharmacology.Firstly,four incubation models covering simulated gastric juice,simulated intestinal juice,gut floras of normal and transient middle cerebral artery occlusion(tMCAO)rat in vitro were applied to PRF.The 109 proto-components and 64 metabolites were elucidated by ultra-high performance liquid chromatography Q exactive orbitrap-mass spectrometry(UPLC-QE-Orbitrap-MS).Then,the key targets of matrix metalloproteinase 9(MMP9),prostaglandin-endoperoxide synthase 2(PTGS2),tyrosine-protein kinase fyn(FYN),estrogen receptor 1(ESR1),amyloid precursor protein(APP),and epidermal growth factor receptor(EGFR),and gut floras of Enterococcus avium LY1 were selected.Moreover,the selected key proto components were rosmarinic acid,daidzein,quercetin,luteolin,apigenin,methyl rosmarinate,kaempferol,luteoloside,and caffeic acid,and the key metabolites were isokaempferide,isorhamnetin,isoquercetin,and mangiferin.Binding of compounds to the key proteins was analyzed by molecular docking,and also verified though an 2,2'-azobis(2-amidinopropane)dihydrochloride(AAPH)induced oxidative stress zebrafish model and real-time quantitative polymerase chain reaction(RT-qPCR)assays.This study provides a new idea and a better understanding of PRF for its protective effects on CIRI and its underlying mechanisms.展开更多
The Five-hundred-meter Aperture Spherical radio Telescope(FAST)will be fully commissioned later in 2019.Once commissioned,operation and maintenance of FAST will be the most prominent task.The unique working mode of ac...The Five-hundred-meter Aperture Spherical radio Telescope(FAST)will be fully commissioned later in 2019.Once commissioned,operation and maintenance of FAST will be the most prominent task.The unique working mode of active shape-changing of FAST cable-net structure makes the traditional maintenance way,which combines routine inspection with preventive maintenances not only expensive,but also unable to effectively avoid potential risks in operations.Therefore,it is necessary to develop an economical and reliable operation/maintenance technology for FAST cable-net structure.In this paper,a Prognostics and Health Management(PHM)system is proposed based on the advanced Digital Twin(DT)technology.Through the finite element analysis of DT model,the current safety status of FAST cablenet is evaluated,and the fatigue life of components in the cable-net is predicted.Hence Condition-Based Maintenance(CBM)of FAST cable-net structure can be realized.The PHM system described in this paper can effectively guarantee the healthy and safe operation of the FAST cable-net structure,greatly improve the maintenance efficiency and reduce the cost for maintenance works.展开更多
The reflector system of the Five-hundred-meter Aperture Spherical radio Telescope (FAST) is designed to incorporate 4450 rigid panels supported by a flexible cable-net structure. The shapechanging operation that occ...The reflector system of the Five-hundred-meter Aperture Spherical radio Telescope (FAST) is designed to incorporate 4450 rigid panels supported by a flexible cable-net structure. The shapechanging operation that occurs in the process of observation will lead to a relative displacement between adjacent nodes in the cable-net. In addition, three nodes on a rigid panel are fixed with respect to each other. Thus, adaptive connecting mechanisms between panels and the cable-net are certainly needed. The present work focuses on the following aspects. Firstly, the degrees of freedom of adaptive connecting mechanisms were designed so that we can not only adapt the panel to the deformation of the cable- net, but also restrict the panel to its right place. Secondly, finite element and theoretical analyses were applied to calculate the scope of motion in adaptive connecting mechanisms during the cable-net's shape-changing operation, thus providing input parameters for the design size of the adaptive connecting mechanisms. In addition, the gap size between the panels is also investigated to solve the trade-off between avoiding panel collisions and increasing the observation efficiency of FAST.展开更多
On the arrival of the 20 th anniversary of the journal,Research in Astronomy and Astrophysics(RAA),we see rapid progress in the frontiers of astronomy and astrophysics.To celebrate the birth and growth of RAA,a specia...On the arrival of the 20 th anniversary of the journal,Research in Astronomy and Astrophysics(RAA),we see rapid progress in the frontiers of astronomy and astrophysics.To celebrate the birth and growth of RAA,a special issue consisting of 11 invited reviews from more than 30 authors,mainly from China,has been organized.This is the second volume of the special issues entitled Frontiers in Astrophysics published in RAA.The publication aims at evaluating the current status and key progress in some frontier areas of astronomy and astrophysics with a spirit of guiding future studies.展开更多
Sky subtraction is a key technique in data reduction of multi-fiber spectra. Knowledge of characteristics related to the instrument is necessary to determine the method adopted in sky subtraction. In this study, we de...Sky subtraction is a key technique in data reduction of multi-fiber spectra. Knowledge of characteristics related to the instrument is necessary to determine the method adopted in sky subtraction. In this study, we describe the sky subtraction method designed for the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) survey. The method has been integrated into the LAMOST 2D Pipeline v2.6 and applied to data from LAMOST DR3 and later. For LAMOST, calibration using sky emission lines is used to alleviate the position-dependent (and thus time-dependent) ,-~ 4% fiber throughput uncertainty and small wavelength instability (0.1/~) during observation. Sky subtraction using principal component analysis (PCA) further reduces 25% of the sky line residual from OH fines in the red part of LAMOST spectra after the master sky spectrum, which is derived from a B-spline fit of 20 sky fibers in each spectrograph. Using this approach, values are adjusted by a sky emission line and subtracted from each fiber. Further analysis shows that our wavelength calibration accuracy is about 4.5 km s-1, and the averages of residuals after sky subtraction are about 3% for sky emission lines and 3% for the continuum region. The relative sky subtraction residuals vary with moonlight background brightness, and can reach as low as 1.5% for regions that have sky emission lines during a dark night. Tests on F stars with both similar sky emission line strength and similar object continuum intensity show that the sky emission line residual of LAMOST is smaller than that of the SDSS survey.展开更多
The National Solar Observatory is currently developing the Accurate Infrared Magnetic Field Measurements of the Sun(AIMS). The primary mirror of the AIMS solar telescope is an off-axis parabolic with a diameter of 1 m...The National Solar Observatory is currently developing the Accurate Infrared Magnetic Field Measurements of the Sun(AIMS). The primary mirror of the AIMS solar telescope is an off-axis parabolic with a diameter of 1 m and with a large off-axis amount of 1 m. Due to the surface figure of the primary mirror under the used state is directly related to image quality of the whole system, a computer-generated hologram(CGH) is carried out to test the primary mirror, and the test results are used to polish the mirror to a higher surface accuracy. However, the fact that the distortion exists in the testing results leads to the failure of a further guide to deterministic optical processing. In this paper, a distortion correction method is proposed, which uses an orthogonal set of vector polynomials to mapping the coordinates of the mirror and the pixels of fringes, and then an interpolation method is adopted to obtain the corrected results. The testing accuracy by using CGH is also verified by an auto-collimate test experiment. According to the distorted corrected results, the root-mean-square of the surface figure is about 1/50λ(λ=632.8 nm) after polishing.展开更多
A high-contrast coronagraph for direct imaging of an Earth-like exoplanet at the visible band needs a contrast of 10^-10 at a small angular separation of 4λ/D or less. Here we report our recent laboratory experiment ...A high-contrast coronagraph for direct imaging of an Earth-like exoplanet at the visible band needs a contrast of 10^-10 at a small angular separation of 4λ/D or less. Here we report our recent laboratory experiment that approaches these lim- its. Our test of a high-contrast imaging coronagraph is based on our step-transmission apodized filter. To achieve this goal, we use a liquid crystal array as a phase correc- tor to create a dark hole based on our dedicated algorithm. We have suppressed the diffraction and speckle noise near the point image of a star to a level of 1.68 × 10^-9 at 4λ/D, which can be used for direct imaging of Jupiter-like exoplanets. This demon- strates that a telescope incorporating a high-contrast coronagraph in space has the potential to detect and characterize Earth-like planets.展开更多
The new Wuqing 70 m radio telescope is first used for the downlink data reception in the first Mars exploration mission of China,and will be used for the other deep space communications and radio astronomical observat...The new Wuqing 70 m radio telescope is first used for the downlink data reception in the first Mars exploration mission of China,and will be used for the other deep space communications and radio astronomical observations in the future.The main specifications and measurement results of some properties in the X-band are introduced in this paper,such as pointing calibration,gain and efficiency,system noise temperature,system equivalent flux density,and variations with elevation.The 23 parameters pointing calibration model considering the atmospheric refraction correction in real time is presented in the telescope,and the pointing accuracy reaches 570 in azimuth direction and 607 in elevation direction for different weather conditions.More than 62%efficiencies are achieved at full elevation range,and more than 70%in the mid-elevation.The system equivalent flux density of the X-band in the mid-elevation reaches 26 Jy.展开更多
Wavefront sensing from multiple focal plane images is a promising technique for high-contrast imaging systems.However,the wavefront error of an optics system can be properly reconstructed only when it is very small.Th...Wavefront sensing from multiple focal plane images is a promising technique for high-contrast imaging systems.However,the wavefront error of an optics system can be properly reconstructed only when it is very small.This paper presents an iterative optimization algorithm for the direct measurement of large static wavefront errors from only one focal plane image.We first measure the intensity of the pupil image to get the pupil function of the system and acquire the aberrated image on the focal plane with a phase error that will be measured.Then we induce a dynamic phase on the tested pupil function and calculate the associated intensity of the reconstructed image on the focal plane.The algorithm will then try to minimize the intensity difference between the reconstructed image and the aberrated test image in the focal plane,where the induced phase is a variable of the optimization algorithm.The simulation shows that the wavefront of an optical system can theoretically be reconstructed with high precision,which indicates that such an iterative algorithm may be an effective way to perform wavefront sensing for high-contrast imaging systems.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 22175078, 52373287, 82404846, and 22467002)the Natural Science Foundation of Jiangsu Province of China (No. BK20241597)the Fundamental Research Funds for the Central Universities (No. 2632024TD05)
文摘Recent years have witnessed significant advances in the development of novel techniques and methodologies for identifying active ingredients in traditional Chinese medicine(TCM),substantially advancing research and development efforts.Spectrum-effect correlation analysis,affinity ultrafiltration,high-content screening(HCS)imaging,and cell membrane chromatography(CMC)have emerged as essential tools,effectively linking TCM chemical constituents to their biological effects,thereby enabling efficient active ingredient screening.Additionally,molecular interaction analysis provides deeper insights into TCM-biomolecule interaction mechanisms,enhancing understanding of its therapeutic potential.Computer-aided techniques facilitate TCM active ingredient identification,optimizing the screening process for efficiency and cost-effectiveness.Molecular probe technology,as an emerging methodology,enables precise and rapid screening for novel therapeutic drug discovery.Ongoing technological advancement in this field indicates promising future developments,potentially leading to more effective and targeted TCM-based therapies.
文摘The situation of electricity in Pakistan has been alarming from the last ten years. The deficiency in electricity has not only obstructed the business activities but also affected the domestic consumers, educational institutes and hospitals. Usually electrical power companies are liable for electricity shortfall and power interruption. However, electricity end consumers are also equally responsible behind strange shortfall and unusual power interruption. Frequently, the consumers use the heavy electrical equipment in their homes including heaters, geysers, irons and water motors which causes the more electricity consumption, load shedding and huge amount of bills. For escaping the huge amount of electricity bill, the consumers commit the illegal and unethical connections. The illegal usage of electrical power failed the power companies to plan schedule load shedding accordingly and the other side the damaged electricity wires or Pole Mount Transformer increased faults due to overburdening, which directly affected on extend power interruption. In addition that, responsible teams of electrical power companies cannot reach instantly to repair faults and prevent the theft. Electricity thieving is social crime committed by the consumers or meter readers which causes the electricity strange shortfall within country. This paper presents the practical demonstration about the common energy theft methods and techniques done by electricity consumers within their home and residential building. In Pakistan EPC (electrical power companies) deploy the traditional electromechanical meters for electricity consumption measurements, however, these meters do not have any real time communication. Therefore there are many easy ways to manipulate the meter reading as well as internal structural of metering system.
基金supported by the Ministry of Science and Technology of China(2015FY310200)the National Key Research and Development Program of China(2016YFB0501405)+1 种基金the National Natural Science Foundation of China(11173048 and 11403076)the State Key Laboratory of Aerospace Dynamics and the Crustal Movement Observation Network of China(CMONOC)
文摘Based on years of input from the four geodetic techniques (SLR, GPS, VLBI and DORIS), the strategies of the combination were studied in SHAO to generate a new global terrestrial reference frame as the material realization of the ITRS defined in IERS Conventions. The main input includes the time series of weekly solutions (or fortnightly for SLR 1983-1993) of observational data for satellite techniques and session-wise normal equations for VLBI. The set of estimated unknowns includes 3- dimensional Cartesian coordinates at the reference epoch 2005.0 of the stations distributed globally and their rates as well as the time series of consistent Earth Orientation Parameters (EOPs) at the same epochs as the input. Besides the final solution, namely SOL-2, generated by using all the inputs before 2015.0 obtained from short-term observation processing, another reference solution, namely SOL- 1, was also computed by using the input before 2009.0 based on the same combination of procedures for the purpose of comparison with ITRF2008 and DTRF2008 and for evaluating the effect of the latest six more years of data on the combined results. The estimated accuracy of the x-component and y-component of the SOL- 1 TRF-origin was better than 0.1 mm at epoch 2005.0 and better than 0.3 mm yr- 1 in time evolution, either compared with ITRF2008 or DTRF2008. However, the z-component of the translation parameters from SOL-1 to ITRF2008 and DTRF2008 were 3.4 mm and -1.0 ram, respectively. It seems that the z-component of the SOL-1 TRF-origin was much closer to the one in DTRF2008 than the one in ITRF2008. The translation parameters from SOL-2 to ITRF2014 were 2.2, -1.8 and 0.9 mm in the x-, y- and z-components respectively with rates smaller than 0.4 mmyr-1. Similarly, the scale factor transformed from SOL-1 to DTRF2008 was much smaller than that to ITRF2008. The scale parameter from SOL-2 to ITRF2014 was -0.31 ppb with a rate lower than 0.01 ppb yr-1. The external precision (WRMS) compared with IERS EOP 08 C04 of the combined EOP series was smaller than 0.06 mas for the polar motions, smaller than 0.01 ms for the UT1-UTC and smaller than 0.02 ms for the LODs. The precision of the EOPs in SOL-2 was slightly higher than that of SOL-1.
基金Project supported by the National Natural Science Foundation of China (No. 10871130)the Ph. D.Programs Foundation of Ministry of Education of China (No. 20093127110005)the Shanghai Leading Academic Discipline Project (No. T0401)
文摘This paper proposes an inexact Newton method via the Lanczos decomposed technique for solving the box-constrained nonlinear systems. An iterative direction is obtained by solving an affine scaling quadratic model with the Lanczos decomposed technique. By using the interior backtracking line search technique, an acceptable trial step length is found along this direction. The global convergence and the fast local convergence rate of the proposed algorithm are established under some reasonable conditions. Furthermore, the results of the numerical experiments show the effectiveness of the pro- posed algorithm.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11335001 and 11275169
文摘We investigate the effectiveness of the hopping parameter expansion(HPE) combined with the Z(2) noise method in the calculation of the trace of the inverse of Wilson's Dirac operator and some other disconnected contributions.A numerical comparison of the standard deviation for the Z(2) noise method and HPE with the Z(2) noise method is carried out. It is found that there are noise reductions in all the quantities we calculated using the HPE with the Z(2) noise method. For the trace of the inverse of Wilson's Dirac operator, the HPE can reduce the statistical error by about 60%.
文摘A lunar occultation (LO) technique in the near-infrared (NIR) provides angular resolution down to milliarcseconds for an occulted source, even with ground- based 1 m class telescopes. LO observations are limited to brighter objects because they require a high signal-to-noise ratio (S/N ~40) for proper extraction of angular diameter values. Hence, methods to improve the S/N ratio by reducing noise using Fourier and wavelet transforms have been explored in this study. A sample of 54 NIR LO light curves observed with the IR camera at Mt Abu Observatory has been used. It is seen that both Fourier and wavelet methods have shown an improvement in S/N compared to the original data. However, the application of wavelet transforms causes a slight smoothing of the fringes and results in a higher value for angular diameter. Fourier transforms which reduce discrete noise frequencies do not distort the fringe. The Fourier transform method seems to be effective in improving the S/N, as well as improving the model fit, particularly in the fainter regime of our sample. These methods also provide a better model fit for brighter sources in some cases, though there may not be a significant imorovement in S/N.
基金funded by the Key Laboratory of Solar Activity of Chinese Academy of Sciences and the National Science Foundationsupported by the National Natural Science Foundation of China (Grant Nos. 11178005 and 11427901)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB09040200)
文摘Stokes inversion calculation is a key process in resolving polarization information on radiation from the Sun and obtaining the associated vector magnetic fields. Even in the cases of simple local thermo- dynamic equilibrium (LTE) and where the Milne-Eddington approximation is valid, the inversion problem may not be easy to solve. The initial values for the iterations are important in handling the case with mul- tiple minima. In this paper, we develop a fast inversion technique without iterations. The time taken for computation is only 1/100 the time that the iterative algorithm takes. In addition, it can provide available initial values even in cases with lower spectral resolutions. This strategy is useful for a filter-type Stokes spectrograph, such as SDO/HMI and the developed two-dimensional real-time spectrograph (2DS).
基金funded by the National Key Research and Development Program of China under Nos.2023YFA1608200&2020YFC2201703the National Natural Science Foundation of China(NSFC,Grant No.12020101002)the Natural Science Foundation of China for the youth under No.12103093。
文摘The proposed design of a microwave superconducting kinetic inductance detector(MKID)array readout system characterizes the performance of MKIDs through a digital homodyne frequency mixing architecture.Meanwhile,the readout system is implemented using a frequency division multiplexing circuit system,coupled with an FFT design to enable the readout of MKID arrays.The system is characterized by its compact size,low cost,portability,and ease of further development.Together,these features have significant implications for the design and readout of terahertz MKID arrays,while simultaneously advancing both the theoretical and practical aspects of MKID technology.
基金supported by the Investigation of Technological Infrastructure Resources(No.2023FY101101)the National Natural Science Foundation of China(NSFC)(No.11073027 and No.12373104)。
文摘Astronomical site selection work is very hard.Unmanned technologies are important trends and solutions.We present a relatively easy method to plan a high reliability site selection which can extend the time from site deployment to returning for maintaining by unmanned confirming the site.First,we redefine the reliability of a site selection deployment with the parameter of the trusty time,which means when we must return,and which can be relatively easy for estimating.The redefinition makes the reliability parameter as a Bayesian probability,and can be obtained by estimating besides testing,which makes the evaluation of each device's reliability much easier.Then we use block diagram tools in the Matlab Simulink software to construct structure diagram,and to link each component with relations of parallel,serial,protection,and so on.This makes the whole reliability value can be calculated at the time when we design or plan a site selection.We applied this concept and method in an actual site selection in Lenghu,Qinghai Province,China.The survey practice reveals its effectiveness and simpleness.
文摘We perform a time-resolved statistical study of GRB 221009A’s X-ray emission using Swift XRT Photon Counting and Windowed Timing data.After standard reduction(barycentric correction,pile-up,background subtraction via HEASOFT),we extracted light curves for each observational ID and for their aggregation.Countrate histograms were fitted using various statistical distributions;fit quality was assessed by chi-squared and the Bayesian Information Criterion.The first observational segment is best described by a Gaussian distribution(χ^(2)=68.4;BIC=7651.2),and the second by a Poisson distribution(χ^(2)=33.5;BIC=4413.3).When all segments are combined,the lognormal model provides the superior fit(χ^(2)=541.9;BIC=34365.5),indicating that the full data set’s count rates exhibit the skewness expected from a multiplicative process.These findings demonstrate that while individual time intervals conform to discrete or symmetric statistics,the collective emission profile across multiple observations is better captured by a lognormal distribution,consistent with complex,compounded variability in GRB afterglows.
基金Supported by National Key R&D Program of China(grant No.2023YFA1608304)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)National Natural Science Foundation of China(NSFC,grant No.11903054)。
文摘The SiTian Project represents a groundbreaking initiative in astronomy,aiming to deploy a global network of telescopes,each with a 1 m aperture,for comprehensive time-domain sky surveys.The network's innovative architecture features multiple observational nodes,each comprising three strategically aligned telescopes equipped with filters.This design enables three-color(g,r,i)channel imaging within each node,facilitating precise and coordinated observations.As a pathfinder to the full-scale project,the Mini-SiTian Project serves as the scientific and technological validation platform,utilizing three 30 cm aperture telescopes to validate the methodologies and technologies planned for the broader SiTian network.This paper focuses on the development and implementation of the Master Control System(MCS),and the central command hub for the Mini-SiTian Array.The MCS is designed to facilitate seamless communication with the SiTian Brain,the project's central processing and decisionmaking unit,while ensuring accurate task allocation,real-time status monitoring,and optimized observational workflows.The system adopts a robust architecture that separates front-end and back-end functionalities.A key innovation of the MCS is its ability to dynamically adjust observation plans in response to transient source alerts,enabling rapid and coordinated scans of target sky regions.The paper provides an in-depth analysis of the system's internal components,including the communication system,which is critical for seamless network operation.Extensive testing has validated the functionality,reliability,and compatibility of these components within the overall system architecture.The successful deployment of the MCS in managing the Mini-SiTian Array has demonstrated its practicality and efficacy in collaborative observation and distributed control.By simplifying cluster management and ensuring data integrity,the MCS represents a significant advancement in astronomical observation control systems.Its scalable and adaptable design not only supports the future expansion of the SiTian network but also provides a blueprint for other large-scale telescope arrays,marking a transformative step forward in time-domain astronomy.
基金supported by the Key Research and Development Project of Ningxia Hui Autonomous Region(2020BFG03007).
文摘Thymus quinquecostatus Celak.,a traditional aromatic edible plant from Lamiaceae,is widely used as food additive,food condiment,spice,and herbal teas.Polyphenol-rich fraction of T.quinquecostatus(PRF)has been proven to be effective protective effect for cerebral ischemia reperfusion injury(CIRI)in our previous study.In this study,we developed a novel“Gut flora-Compound-Target-Pathway”(GCTP)network based on network pharmacology coupled with gastrointestinal metabolism for screening bio-active components,key targets and gut floras through the classical technique for order preference by similarity to ideal solution(TOPSIS).This compensates for the lack of gut floras and gastrointestinal metabolism in network pharmacology.Firstly,four incubation models covering simulated gastric juice,simulated intestinal juice,gut floras of normal and transient middle cerebral artery occlusion(tMCAO)rat in vitro were applied to PRF.The 109 proto-components and 64 metabolites were elucidated by ultra-high performance liquid chromatography Q exactive orbitrap-mass spectrometry(UPLC-QE-Orbitrap-MS).Then,the key targets of matrix metalloproteinase 9(MMP9),prostaglandin-endoperoxide synthase 2(PTGS2),tyrosine-protein kinase fyn(FYN),estrogen receptor 1(ESR1),amyloid precursor protein(APP),and epidermal growth factor receptor(EGFR),and gut floras of Enterococcus avium LY1 were selected.Moreover,the selected key proto components were rosmarinic acid,daidzein,quercetin,luteolin,apigenin,methyl rosmarinate,kaempferol,luteoloside,and caffeic acid,and the key metabolites were isokaempferide,isorhamnetin,isoquercetin,and mangiferin.Binding of compounds to the key proteins was analyzed by molecular docking,and also verified though an 2,2'-azobis(2-amidinopropane)dihydrochloride(AAPH)induced oxidative stress zebrafish model and real-time quantitative polymerase chain reaction(RT-qPCR)assays.This study provides a new idea and a better understanding of PRF for its protective effects on CIRI and its underlying mechanisms.
基金supported by the National Natural Science Foundation of China(Grant No.11673039)the Open Project Program of the Key Laboratory of FAST,National Astronomical Observatories,Chinese Academy of Sciences
文摘The Five-hundred-meter Aperture Spherical radio Telescope(FAST)will be fully commissioned later in 2019.Once commissioned,operation and maintenance of FAST will be the most prominent task.The unique working mode of active shape-changing of FAST cable-net structure makes the traditional maintenance way,which combines routine inspection with preventive maintenances not only expensive,but also unable to effectively avoid potential risks in operations.Therefore,it is necessary to develop an economical and reliable operation/maintenance technology for FAST cable-net structure.In this paper,a Prognostics and Health Management(PHM)system is proposed based on the advanced Digital Twin(DT)technology.Through the finite element analysis of DT model,the current safety status of FAST cablenet is evaluated,and the fatigue life of components in the cable-net is predicted.Hence Condition-Based Maintenance(CBM)of FAST cable-net structure can be realized.The PHM system described in this paper can effectively guarantee the healthy and safe operation of the FAST cable-net structure,greatly improve the maintenance efficiency and reduce the cost for maintenance works.
基金supported by the National Natural Science Foundation of China(Grant Nos.11303059 and 11673039)the Chinese Academy of Sciences Youth Innovation Promotion Association+1 种基金CAS Key Technology Talent Programthe FAST FELLOWSHIP.The FAST FELLOWSHIP is supported by Special Funding for Advanced Users,budgeted and administrated by the Center for Astronomical MegaScience,Chinese Academy of Sciences(CAMS)
文摘The reflector system of the Five-hundred-meter Aperture Spherical radio Telescope (FAST) is designed to incorporate 4450 rigid panels supported by a flexible cable-net structure. The shapechanging operation that occurs in the process of observation will lead to a relative displacement between adjacent nodes in the cable-net. In addition, three nodes on a rigid panel are fixed with respect to each other. Thus, adaptive connecting mechanisms between panels and the cable-net are certainly needed. The present work focuses on the following aspects. Firstly, the degrees of freedom of adaptive connecting mechanisms were designed so that we can not only adapt the panel to the deformation of the cable- net, but also restrict the panel to its right place. Secondly, finite element and theoretical analyses were applied to calculate the scope of motion in adaptive connecting mechanisms during the cable-net's shape-changing operation, thus providing input parameters for the design size of the adaptive connecting mechanisms. In addition, the gap size between the panels is also investigated to solve the trade-off between avoiding panel collisions and increasing the observation efficiency of FAST.
文摘On the arrival of the 20 th anniversary of the journal,Research in Astronomy and Astrophysics(RAA),we see rapid progress in the frontiers of astronomy and astrophysics.To celebrate the birth and growth of RAA,a special issue consisting of 11 invited reviews from more than 30 authors,mainly from China,has been organized.This is the second volume of the special issues entitled Frontiers in Astrophysics published in RAA.The publication aims at evaluating the current status and key progress in some frontier areas of astronomy and astrophysics with a spirit of guiding future studies.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.11503054)NSFC Key Program(Grant No.11333004)+6 种基金the National Key Basic Research Program of China(Program 973Grant No.2014CB845700)The Guo Shou Jing Telescope(the Large sky Area Multi-Object fiber Spectroscopic Telescope,LAMOST)is a National Major Scientific Project built by the Chinese Academy of Sciencesthe project has been provided by the National Development and Reform CommissionSDSS-Ⅲhas been provided by the Alfred P.Sloan Foundationthe Participating Institutions,the National Science Foundationthe U.S.Department of Energy Office of Science
文摘Sky subtraction is a key technique in data reduction of multi-fiber spectra. Knowledge of characteristics related to the instrument is necessary to determine the method adopted in sky subtraction. In this study, we describe the sky subtraction method designed for the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) survey. The method has been integrated into the LAMOST 2D Pipeline v2.6 and applied to data from LAMOST DR3 and later. For LAMOST, calibration using sky emission lines is used to alleviate the position-dependent (and thus time-dependent) ,-~ 4% fiber throughput uncertainty and small wavelength instability (0.1/~) during observation. Sky subtraction using principal component analysis (PCA) further reduces 25% of the sky line residual from OH fines in the red part of LAMOST spectra after the master sky spectrum, which is derived from a B-spline fit of 20 sky fibers in each spectrograph. Using this approach, values are adjusted by a sky emission line and subtracted from each fiber. Further analysis shows that our wavelength calibration accuracy is about 4.5 km s-1, and the averages of residuals after sky subtraction are about 3% for sky emission lines and 3% for the continuum region. The relative sky subtraction residuals vary with moonlight background brightness, and can reach as low as 1.5% for regions that have sky emission lines during a dark night. Tests on F stars with both similar sky emission line strength and similar object continuum intensity show that the sky emission line residual of LAMOST is smaller than that of the SDSS survey.
基金funded by the West Light Foundation of the Chinese Academy of Sciences(Grant No.XAB2017B13)the National Natural Science Foundation of China(Grant No.11703072)。
文摘The National Solar Observatory is currently developing the Accurate Infrared Magnetic Field Measurements of the Sun(AIMS). The primary mirror of the AIMS solar telescope is an off-axis parabolic with a diameter of 1 m and with a large off-axis amount of 1 m. Due to the surface figure of the primary mirror under the used state is directly related to image quality of the whole system, a computer-generated hologram(CGH) is carried out to test the primary mirror, and the test results are used to polish the mirror to a higher surface accuracy. However, the fact that the distortion exists in the testing results leads to the failure of a further guide to deterministic optical processing. In this paper, a distortion correction method is proposed, which uses an orthogonal set of vector polynomials to mapping the coordinates of the mirror and the pixels of fringes, and then an interpolation method is adopted to obtain the corrected results. The testing accuracy by using CGH is also verified by an auto-collimate test experiment. According to the distorted corrected results, the root-mean-square of the surface figure is about 1/50λ(λ=632.8 nm) after polishing.
基金Supported by the National Natural Science Foundation of China
文摘A high-contrast coronagraph for direct imaging of an Earth-like exoplanet at the visible band needs a contrast of 10^-10 at a small angular separation of 4λ/D or less. Here we report our recent laboratory experiment that approaches these lim- its. Our test of a high-contrast imaging coronagraph is based on our step-transmission apodized filter. To achieve this goal, we use a liquid crystal array as a phase correc- tor to create a dark hole based on our dedicated algorithm. We have suppressed the diffraction and speckle noise near the point image of a star to a level of 1.68 × 10^-9 at 4λ/D, which can be used for direct imaging of Jupiter-like exoplanets. This demon- strates that a telescope incorporating a high-contrast coronagraph in space has the potential to detect and characterize Earth-like planets.
基金funded by the Astronomical Joint Fund of the National Natural Science Foundation of China and Chinese Academy of Sciences(U1831114)。
文摘The new Wuqing 70 m radio telescope is first used for the downlink data reception in the first Mars exploration mission of China,and will be used for the other deep space communications and radio astronomical observations in the future.The main specifications and measurement results of some properties in the X-band are introduced in this paper,such as pointing calibration,gain and efficiency,system noise temperature,system equivalent flux density,and variations with elevation.The 23 parameters pointing calibration model considering the atmospheric refraction correction in real time is presented in the telescope,and the pointing accuracy reaches 570 in azimuth direction and 607 in elevation direction for different weather conditions.More than 62%efficiencies are achieved at full elevation range,and more than 70%in the mid-elevation.The system equivalent flux density of the X-band in the mid-elevation reaches 26 Jy.
基金funded by the National Natural Science Foundation of China (Grant Nos.11003031 and 10873024)supported by the National Astronomical Observatories’ Special Fund for AstronomyPart of the workdescribed in this paper was carried out at California State University Northridge,with support from the National Science Foundation under grant ATM-0841440
文摘Wavefront sensing from multiple focal plane images is a promising technique for high-contrast imaging systems.However,the wavefront error of an optics system can be properly reconstructed only when it is very small.This paper presents an iterative optimization algorithm for the direct measurement of large static wavefront errors from only one focal plane image.We first measure the intensity of the pupil image to get the pupil function of the system and acquire the aberrated image on the focal plane with a phase error that will be measured.Then we induce a dynamic phase on the tested pupil function and calculate the associated intensity of the reconstructed image on the focal plane.The algorithm will then try to minimize the intensity difference between the reconstructed image and the aberrated test image in the focal plane,where the induced phase is a variable of the optimization algorithm.The simulation shows that the wavefront of an optical system can theoretically be reconstructed with high precision,which indicates that such an iterative algorithm may be an effective way to perform wavefront sensing for high-contrast imaging systems.