文摘随着移动边缘计算(mobile edge computing,MEC)技术的不断演进发展,大量的用户设备分散在边缘服务器密集部署的各个区域内。然而,在任务时延与资源受限的前提下,如何选择合适的服务器进行任务卸载,仍然是一个具有挑战性的难题。研究用户-服务器关联、卸载比例以及资源分配的联合优化问题,在考虑需求和服务异构性下最小化系统能耗。该问题被建模为混合整数非线性规划问题,并分解为用户-服务器关联子问题、卸载率和资源分配子问题进行求解。对于第一个子问题,在同时考虑通信质量与服务类型条件下,利用改良的带权匈牙利算法(Kuhn-Munkres matching algorithm,K-M)实现用户-服务器关联。为了处理第二个高度非凸问题,提出一种有效的双层算法,内层采用拉格朗日对偶法得到计算与通信资源分配;外层采用一维搜索方法得到卸载比例。最后,利用块坐标下降技术交替求解两个子问题,直到收敛。仿真结果表明,与随机算法、贪婪算法和带权匈牙利匹配-本地计算(Kuhn-Munkres matching and local computing,KM-LC)算法相比,文中所提出的算法能有效降低系统能耗。