Target is one of the essential parts in inertial confinement fusion(ICF)experiments.To ensure the symmetry and hydrodynamic stability in the implosion,there are stringent specifications for the target.Driven by the ne...Target is one of the essential parts in inertial confinement fusion(ICF)experiments.To ensure the symmetry and hydrodynamic stability in the implosion,there are stringent specifications for the target.Driven by the need to fabricate the target required by ICF experiments,a series of target fabrication techniques,including capsule fabrication techniques and the techniques of target characterization and assembly,are developed by the Research Center of Laser Fusion(RCLF),China Academy of Engineering Physics(CAEP).The capsule fabrication techniques for preparing polymer shells,glow discharge polymer(GDP)shells and hollow glass micro-sphere(HGM)are studied,and the techniques of target characterization and assembly are also investigated in this paper.Fundamental research about the target fabrication is also done to improve the quality of the target.Based on the development of target fabrication techniques,some kinds of target have been prepared and applied in the ICF experiments.展开更多
A multi-shot target assembly and automatic alignment procedure for laser–plasma proton acceleration at high repetition rate are introduced.The assembly is based on a multi-target rotating wheel capable of hosting mor...A multi-shot target assembly and automatic alignment procedure for laser–plasma proton acceleration at high repetition rate are introduced.The assembly is based on a multi-target rotating wheel capable of hosting more than 5000 targets,mounted on a 3D motorized stage to allow rapid replenishment and alignment of the target material between laser irradiations.The automatic alignment procedure consists of a detailed mapping of the impact positions at the target surface prior to the irradiation that ensures stable operation of the target,which alongside the purpose-built design of the target wheel,enables operation at rates up to 10 Hz.Stable and continuous laser-driven proton acceleration at 10 Hz is demonstrated,with observed cut-off energy stability about 15%.展开更多
The designs of inertial confinement fusion(ICF) targets, which field on Shen Guang III, are becoming more complex and more stringent in terms of assembly precision. A key specification of these targets is the spatial ...The designs of inertial confinement fusion(ICF) targets, which field on Shen Guang III, are becoming more complex and more stringent in terms of assembly precision. A key specification of these targets is the spatial angle alignment accuracy. To meet these needs, we present a new spatial angle assembly method, using target part's 3D model-based dual orthogonal camera vision, which is better suited for the flexible automation of target assembly processes. The two-hands structure micromanipulate system and dual orthogonal structure visual feedback system were investigated by considering the kinematics, spatial angle measuring, and motion control in an integrated way. In this paper, we discuss the measurement accuracy of spatial angle assembly method, which compared the real-time image acquisition with the redrawing 2D projection. The result shows that the assembly method proposed is very effective and meets the requirements of angle assembly accuracy, which is less than 1°. Also, this work is expected to contribute greatly to the advancement of other target microassembly equipments.展开更多
文摘Target is one of the essential parts in inertial confinement fusion(ICF)experiments.To ensure the symmetry and hydrodynamic stability in the implosion,there are stringent specifications for the target.Driven by the need to fabricate the target required by ICF experiments,a series of target fabrication techniques,including capsule fabrication techniques and the techniques of target characterization and assembly,are developed by the Research Center of Laser Fusion(RCLF),China Academy of Engineering Physics(CAEP).The capsule fabrication techniques for preparing polymer shells,glow discharge polymer(GDP)shells and hollow glass micro-sphere(HGM)are studied,and the techniques of target characterization and assembly are also investigated in this paper.Fundamental research about the target fabrication is also done to improve the quality of the target.Based on the development of target fabrication techniques,some kinds of target have been prepared and applied in the ICF experiments.
基金This work was supportedby the Spanish Ministerio de Ciencia,Innovacion y Universidades under grants RTI2018-101578-B-C21,RTI2018-101578-B-C22,FPI predoctorals BES-2017-08917 and PRE2019-090730Unidad de Excelencia Maria de Maetzu under project MdM-2016-0692-17-2+2 种基金the Xuntade Galicia grants GRC ED431C 2017/54 and ED431F2023/21 and a grant of the program Grupos de investigacion consolidados(CIAICO/2022/008)financed by Generalitat Valenciana.Action co-financed by the European Union through the Programa Operativo del Fondo Europeo de Desarrollo Regional(FEDER)of the Comunitat Valenciana 2014-2020(IDIFEDER/2021/002)This work was supported by‘la Caixa'Foundation(ID 100010434)(fellowship code LCF/BQ/PI20/11760027)grant RYC2021-032654-I funded by MICIU/AEI/10.13039/501100011033 and by‘European Union Next Generation EU'.
文摘A multi-shot target assembly and automatic alignment procedure for laser–plasma proton acceleration at high repetition rate are introduced.The assembly is based on a multi-target rotating wheel capable of hosting more than 5000 targets,mounted on a 3D motorized stage to allow rapid replenishment and alignment of the target material between laser irradiations.The automatic alignment procedure consists of a detailed mapping of the impact positions at the target surface prior to the irradiation that ensures stable operation of the target,which alongside the purpose-built design of the target wheel,enables operation at rates up to 10 Hz.Stable and continuous laser-driven proton acceleration at 10 Hz is demonstrated,with observed cut-off energy stability about 15%.
基金partially supported by Foundation of Laboratory of Precision Manufacturing Technology CAEP under Grant ZZ14003Development Fund of CAEP (2014B0403066)
文摘The designs of inertial confinement fusion(ICF) targets, which field on Shen Guang III, are becoming more complex and more stringent in terms of assembly precision. A key specification of these targets is the spatial angle alignment accuracy. To meet these needs, we present a new spatial angle assembly method, using target part's 3D model-based dual orthogonal camera vision, which is better suited for the flexible automation of target assembly processes. The two-hands structure micromanipulate system and dual orthogonal structure visual feedback system were investigated by considering the kinematics, spatial angle measuring, and motion control in an integrated way. In this paper, we discuss the measurement accuracy of spatial angle assembly method, which compared the real-time image acquisition with the redrawing 2D projection. The result shows that the assembly method proposed is very effective and meets the requirements of angle assembly accuracy, which is less than 1°. Also, this work is expected to contribute greatly to the advancement of other target microassembly equipments.