Methods based on numerical optimization are useful and effective in the design of control systems. This paper describes the design of retarded fractional delay differential systems (RFDDSs) by the method of inequali...Methods based on numerical optimization are useful and effective in the design of control systems. This paper describes the design of retarded fractional delay differential systems (RFDDSs) by the method of inequalities, in which the design problem is formulated so that it is suitable for solution by numerical methods. Zakian's original formulation, which was first proposed in connection with rational systems, is extended to the case of RFDDSs. In making the use of this formulation possible for RFDDSs, the associated stability problems are resolved by using the stability test and the numerical algorithm for computing the abscissa of stability recently developed by the authors. During the design process, the time responses are obtained by a known method for the numerical inversion of Laplace transforms. Two numerical examples are given, where fractional controllers are designed for a time-delay and a heat-conduction plants.展开更多
In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the model...In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.展开更多
The choice of methods or design languages is a crucial phase in the development of systems and software, also for real time and embedded systems. An open question that remains in the design of these types of systems i...The choice of methods or design languages is a crucial phase in the development of systems and software, also for real time and embedded systems. An open question that remains in the design of these types of systems is to build a method, or to choose one among those existing, capable to cover the life cycle of a project, and particularly the development phases. This article contributes to answer the question, by proposing an approach based on a multi-criteria comparative study, of few languages and methods dedicated to the design of real time and embedded systems. The underlying objective of this work is to present to designers a wide range of approaches, and elements that can guide their choices. In order to reach this goal, we propose different comparison criteria. Each criterion is divided into sub-criteria, so that the designers can refine their choices according to the qualities they prefer and wish to have in the method or language. We also define a rating scale which is used to assess the retained languages and methods. The scores obtained from this assessment are presented in tables, one table per criterion, followed by a summary table giving the overall scores. Graphics built from these tables are provided and intend to facilitate the judgement and thus the choice of the designers.展开更多
The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been bu...The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been built in China since the 1970s, there is still a lack of experience for large-volume underground storage in complicated geological conditions. The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns, as well as the long-term stability. Although several large-scale underground oil storage projects are under construction at present in China, the design concepts and construction methods, especially for the water curtain system, are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas. The storage projects currently constructed in China have the specific features such as huge scale, large depth, multiple-level arrangement, high seepage pressure, complicated geological conditions, and high in situ stresses, which are the challenging issues for the stability of the storage caverns. Based on years’ experiences obtained from the first large-scale (millions of cubic meters) underground water-sealed oil storage project in China, some design and operation problems related to water curtain system during project construction are discussed. The drawbacks and merits of the water curtain system are also presented. As an example, the conventional concept of “filling joints with water” is widely used in many cases, as a basic concept for the design of the water curtain system, but it is immature. In this paper, the advantages and disadvantages of the conventional concept are pointed out, with respect to the long-term stability as well as the safety of construction of storage caverns. Finally, new concepts and principles for design and construction of the underground water-sealed oil storage caverns are proposed.展开更多
The research of reliability design for impact vibration of hydraulic pressure pipeline systems is still in the primary stage,and the research of quantitative reliability of hydraulic components and system is still inc...The research of reliability design for impact vibration of hydraulic pressure pipeline systems is still in the primary stage,and the research of quantitative reliability of hydraulic components and system is still incomplete.On the condition of having obtained the numerical characteristics of basic random parameters,several techniques and methods including the probability statistical theory,hydraulic technique and stochastic perturbation method are employed to carry out the reliability design for impact vibration of the hydraulic pressure system.Considering the instantaneous pressure pulse of hydraulic impact in pipeline,the reliability analysis model of hydraulic pipeline system is established,and the reliability-based optimization design method is presented.The proposed method can reflect the inherent reliability of hydraulic pipe system exactly,and the desired result is obtained.The reliability design of hydraulic pipeline system is achieved by computer programs and the reliability design information of hydraulic pipeline system is obtained.This research proposes a reliability design method,which can solve the problem of the reliability-based optimization design for the hydraulic pressure system with impact vibration practically and effectively,and enhance the quantitative research on the reliability design of hydraulic pipeline system.The proposed method has generality for the reliability optimization design of hydraulic pipeline system.展开更多
Prolog is one of the most important candidates to build expert systems and AI-related programs and has potential applications in embedded systems. However, Prolog is not suitable to develop many kinds of components, s...Prolog is one of the most important candidates to build expert systems and AI-related programs and has potential applications in embedded systems. However, Prolog is not suitable to develop many kinds of components, such as data acquisition and task scheduling, which are also crucial. To make the best use of the advantages and bypass the disadvantages, it is attractive to integrate Prolog with programs developed by other languages. In this paper, an IPC-based method is used to integrate backward chaining inference implemented by Prolog into applications or embedded systems. A Prolog design pattern is derived from the method for reuse, whose principle and definition are provided in detail. Additionally, the design pattern is applied to a target system, which is free software, to verify its feasibility. The detailed implementation of the application is given to clarify the design pattern. The design pattern can be further applied to wide range applications and embedded systems and the method described in this paper can also be adopted for other logic programming languages.展开更多
The medium -large caliber naval gun is still playing an important role in modern war. The development of highly automatic Shell Raising and Feeding System (SRFS) in the world has been briefly outlined. Several typical...The medium -large caliber naval gun is still playing an important role in modern war. The development of highly automatic Shell Raising and Feeding System (SRFS) in the world has been briefly outlined. Several typical SRFS of medium-large caliber naval guns have been analyzed. A re-design of the system is introduced, in which systematic design method has been used to demonstrate its feasibility. The design goal of the system is to realize rapid shell feeding, with application to many types of shells, quick change of shell types , accurate and reliable feeding operation, simple mechanical structure and easy realization of shell withdrawing.展开更多
The optimum design method based on the reliability is presented to the stochastic structure systems (i. e., the sectional area, length, elastic module and strength of the structural member are random variables ) und...The optimum design method based on the reliability is presented to the stochastic structure systems (i. e., the sectional area, length, elastic module and strength of the structural member are random variables ) under the random loads. The sensitivity expression of system reliability index and the safety margins were presented in the stochastic structure systems. The optimum vector method was given. First, the expressions of the reliability index of the safety margins with the improved first-order second-moment and the stochastic finite element method were deduced, and then the expressions of the systemic failure probability by probabilistic network evaluation technique(PNET) method were obtained. After derivation calculus ,the expressions of the sensitivity analysis for the system reliability were obtained. Moreover, the optimum design with the optimum vector algorithm was undertaken. In the optimum iterative procedure, the gradient step and the optimum vector step were adopted to calculate. At the last, a numerical example was provided to illustrate that the method is efficient in the calculation, stably converges and fits the application in engineering.展开更多
The design mechanisms and methods of the invention are intended to minimize problems related to the safety of structures in the event of natural phenomena such as earthquakes, tornadoes, and strong winds. It is achiev...The design mechanisms and methods of the invention are intended to minimize problems related to the safety of structures in the event of natural phenomena such as earthquakes, tornadoes, and strong winds. It is achieved by controlling the deformations of the structure. Damage and deformation are closely related concepts since the control of deformations also controls the damage. The design method of applying artificial compression to the ends of all longitudinal reinforced concrete walls and, at the same time, connecting the ends of the walls to the ground using ground anchors placed at the depths of the boreholes, transfers the inertial stresses of the structure in the ground, which reacts as an external force in the structure’s response to seismic displacements. The wall with the artificial compression acquires dynamic, larger active cross-section and high axial and torsional stiffness, preventing all failures caused by inelastic deformation. By connecting the ends of all walls to the ground, we control the eigenfrequency of the structure and the ground during each seismic loading cycle, preventing inelastic displacements. At the same time, we ensure the strong bearing capacity of the foundation soil and the structure. By designing the walls correctly and placing them in proper locations, we prevent the torsional flexural buckling that occurs in asymmetrical floor plans, and metal and tall structures. Compression of the wall sections at the ends and their anchoring to the ground mitigates the transfer of deformations to the connection nodes, strengthens the wall section in terms of base shear force and shear stress of the sections, and increases the strength of the cross-sections to the tensile at the ends of the walls by introducing counteractive forces. The use of tendons within the ducts prevents longitudinal shear in the overlay concrete, while anchoring the walls to the foundation not only dissipates inertial forces to the ground but also prevents rotation of the walls, thus maintaining the structural integrity of the beams. The prestressing at the bilateral ends of the walls restores the structure to its original position even inelastic displacements by closing the opening of the developing cracks.展开更多
Three main problems in system development and the plight of the system development are analyzed and discussed. Finally a practical and formalized method-object-oriented method is proposed to extncate the system develo...Three main problems in system development and the plight of the system development are analyzed and discussed. Finally a practical and formalized method-object-oriented method is proposed to extncate the system development from the predicament.展开更多
Presents the new concept of ″Desired to be small″ based on the basic function of vehicle flight control system for an optimal design of flying vehicle control system, and the definition of S/N ratio and calculation ...Presents the new concept of ″Desired to be small″ based on the basic function of vehicle flight control system for an optimal design of flying vehicle control system, and the definition of S/N ratio and calculation formula for ″Desired to be small″ dynamic characteristics, and the S/N ratio method established for design of velicle flight control systems, by which, an orthogrnal table is used to arrange test schemes, and error facters are used to simulate various interferences, and the use of S/N ratio as a design criterion to synthesise the design of dynamic and static characteristics for definition of an optimal scheme, the application of S/N ratio method to the design of a type of vehicle control system and the single run success abtained in design of control system, technical evaluation test and design finalization flight test.展开更多
This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First...This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient.展开更多
The purpose of this study was to build a flexible mechanical system with a hydrostatic skeleton.The main components of this system are two type flexible bags.One is a structural bag with constant inner pressure.The ot...The purpose of this study was to build a flexible mechanical system with a hydrostatic skeleton.The main components of this system are two type flexible bags.One is a structural bag with constant inner pressure.The other is an actuator bag with controlled inner pressure.To design the system,it was necessary to estimate both structural deformation and driving force.Numerical analysis of flexible bags,however,is difficult because of large nonlinear deformation.This study analyzed structural strength and driving force of flexible bags with the nonlinear finite element analysis (FEA) software ABAQUS.The stress concentration dependency on the bag shape is described and the driving force is calculated to include the large deformation.From the analytical results,this study derives an empirical equation of driving force.The validity of the equation was confirmed by condition-changed analyses and experimental results.展开更多
In order to solve the performance limitations of traditional ship-type and cylindrical FDPSO(floating drilling production, storage and offloading unit), we present a new FDPSO with a sandglass-type floating body.Based...In order to solve the performance limitations of traditional ship-type and cylindrical FDPSO(floating drilling production, storage and offloading unit), we present a new FDPSO with a sandglass-type floating body.Based on the hydrodynamic performance of the newly developed floating model, a suitable analysis method for its deepwater mooring system has been proposed. Furthermore, by studying the effects of different mooring parameters on the motion performance of FDPSO, we achieve some useful conclusions and principles to design the mooring scheme in deep sea which has been validated to satisfy the Det Norshke Veritas(DNV) requirements.The study of this paper is expected to provide a reasonable and feasible reference and design solution for the deep sea positions of the new sandglass-type FDPSO.展开更多
It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specificat...It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specifications tend to be conflicting to each other to make the control design even more challenging. This paper presents a cell mapping method for multi-objective optimal feedback control design in time domain for a nonlinear Duffing system with time delay. We first review the multi-objective optimization problem and its formulation for control design. We then introduce the cell mapping method and a hybrid algorithm for global optimal solutions. Numerical simulations of the PID control are presented to show the features of the multi-objective optimal design. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1306306]展开更多
This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compe...This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compensates a general class of actuator failures without any need for explicit fault detection. The parameters, times, and patterns of the considered failures are completely unknown. The proposed controller is constructed based on a backstepping design method. The global boundedness of all the closed-loop signals is guaranteed and the tracking error is proved to converge to a small neighborhood of the origin. The proposed approach is employed for a two-axis positioning stage system as well as an aircraft wing system. The simulation results show the correctness and effectiveness of the proposed robust adaptive actuator failure compensation approach.展开更多
The problem of global stabilization by state feedback for a class of time-delay nonlinear system is considered. By constructing the appropriate Lyapunov-Krasovskii functionals (LKF) and using the backstepping design, ...The problem of global stabilization by state feedback for a class of time-delay nonlinear system is considered. By constructing the appropriate Lyapunov-Krasovskii functionals (LKF) and using the backstepping design, a linear state feedback controller making the closed-loop system globally asymptotically stable is constructed.展开更多
基金supported by the AUN/SEED-Net collaborative research program.
文摘Methods based on numerical optimization are useful and effective in the design of control systems. This paper describes the design of retarded fractional delay differential systems (RFDDSs) by the method of inequalities, in which the design problem is formulated so that it is suitable for solution by numerical methods. Zakian's original formulation, which was first proposed in connection with rational systems, is extended to the case of RFDDSs. In making the use of this formulation possible for RFDDSs, the associated stability problems are resolved by using the stability test and the numerical algorithm for computing the abscissa of stability recently developed by the authors. During the design process, the time responses are obtained by a known method for the numerical inversion of Laplace transforms. Two numerical examples are given, where fractional controllers are designed for a time-delay and a heat-conduction plants.
文摘In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.
文摘The choice of methods or design languages is a crucial phase in the development of systems and software, also for real time and embedded systems. An open question that remains in the design of these types of systems is to build a method, or to choose one among those existing, capable to cover the life cycle of a project, and particularly the development phases. This article contributes to answer the question, by proposing an approach based on a multi-criteria comparative study, of few languages and methods dedicated to the design of real time and embedded systems. The underlying objective of this work is to present to designers a wide range of approaches, and elements that can guide their choices. In order to reach this goal, we propose different comparison criteria. Each criterion is divided into sub-criteria, so that the designers can refine their choices according to the qualities they prefer and wish to have in the method or language. We also define a rating scale which is used to assess the retained languages and methods. The scores obtained from this assessment are presented in tables, one table per criterion, followed by a summary table giving the overall scores. Graphics built from these tables are provided and intend to facilitate the judgement and thus the choice of the designers.
文摘The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been built in China since the 1970s, there is still a lack of experience for large-volume underground storage in complicated geological conditions. The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns, as well as the long-term stability. Although several large-scale underground oil storage projects are under construction at present in China, the design concepts and construction methods, especially for the water curtain system, are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas. The storage projects currently constructed in China have the specific features such as huge scale, large depth, multiple-level arrangement, high seepage pressure, complicated geological conditions, and high in situ stresses, which are the challenging issues for the stability of the storage caverns. Based on years’ experiences obtained from the first large-scale (millions of cubic meters) underground water-sealed oil storage project in China, some design and operation problems related to water curtain system during project construction are discussed. The drawbacks and merits of the water curtain system are also presented. As an example, the conventional concept of “filling joints with water” is widely used in many cases, as a basic concept for the design of the water curtain system, but it is immature. In this paper, the advantages and disadvantages of the conventional concept are pointed out, with respect to the long-term stability as well as the safety of construction of storage caverns. Finally, new concepts and principles for design and construction of the underground water-sealed oil storage caverns are proposed.
基金supported by National Natural Science Foundation of China(Grant Nos.5113500310972088)
文摘The research of reliability design for impact vibration of hydraulic pressure pipeline systems is still in the primary stage,and the research of quantitative reliability of hydraulic components and system is still incomplete.On the condition of having obtained the numerical characteristics of basic random parameters,several techniques and methods including the probability statistical theory,hydraulic technique and stochastic perturbation method are employed to carry out the reliability design for impact vibration of the hydraulic pressure system.Considering the instantaneous pressure pulse of hydraulic impact in pipeline,the reliability analysis model of hydraulic pipeline system is established,and the reliability-based optimization design method is presented.The proposed method can reflect the inherent reliability of hydraulic pipe system exactly,and the desired result is obtained.The reliability design of hydraulic pipeline system is achieved by computer programs and the reliability design information of hydraulic pipeline system is obtained.This research proposes a reliability design method,which can solve the problem of the reliability-based optimization design for the hydraulic pressure system with impact vibration practically and effectively,and enhance the quantitative research on the reliability design of hydraulic pipeline system.The proposed method has generality for the reliability optimization design of hydraulic pipeline system.
基金supported by the National Natural Science Foundation of China (No.61304111)National Basic Research Program of China (No. 2014CB744904)Fundamental Research Funds for the Central Universities of China (Nos. YWF-14-KKX-001 and YWF-13-JQCJ)
文摘Prolog is one of the most important candidates to build expert systems and AI-related programs and has potential applications in embedded systems. However, Prolog is not suitable to develop many kinds of components, such as data acquisition and task scheduling, which are also crucial. To make the best use of the advantages and bypass the disadvantages, it is attractive to integrate Prolog with programs developed by other languages. In this paper, an IPC-based method is used to integrate backward chaining inference implemented by Prolog into applications or embedded systems. A Prolog design pattern is derived from the method for reuse, whose principle and definition are provided in detail. Additionally, the design pattern is applied to a target system, which is free software, to verify its feasibility. The detailed implementation of the application is given to clarify the design pattern. The design pattern can be further applied to wide range applications and embedded systems and the method described in this paper can also be adopted for other logic programming languages.
文摘The medium -large caliber naval gun is still playing an important role in modern war. The development of highly automatic Shell Raising and Feeding System (SRFS) in the world has been briefly outlined. Several typical SRFS of medium-large caliber naval guns have been analyzed. A re-design of the system is introduced, in which systematic design method has been used to demonstrate its feasibility. The design goal of the system is to realize rapid shell feeding, with application to many types of shells, quick change of shell types , accurate and reliable feeding operation, simple mechanical structure and easy realization of shell withdrawing.
文摘The optimum design method based on the reliability is presented to the stochastic structure systems (i. e., the sectional area, length, elastic module and strength of the structural member are random variables ) under the random loads. The sensitivity expression of system reliability index and the safety margins were presented in the stochastic structure systems. The optimum vector method was given. First, the expressions of the reliability index of the safety margins with the improved first-order second-moment and the stochastic finite element method were deduced, and then the expressions of the systemic failure probability by probabilistic network evaluation technique(PNET) method were obtained. After derivation calculus ,the expressions of the sensitivity analysis for the system reliability were obtained. Moreover, the optimum design with the optimum vector algorithm was undertaken. In the optimum iterative procedure, the gradient step and the optimum vector step were adopted to calculate. At the last, a numerical example was provided to illustrate that the method is efficient in the calculation, stably converges and fits the application in engineering.
文摘The design mechanisms and methods of the invention are intended to minimize problems related to the safety of structures in the event of natural phenomena such as earthquakes, tornadoes, and strong winds. It is achieved by controlling the deformations of the structure. Damage and deformation are closely related concepts since the control of deformations also controls the damage. The design method of applying artificial compression to the ends of all longitudinal reinforced concrete walls and, at the same time, connecting the ends of the walls to the ground using ground anchors placed at the depths of the boreholes, transfers the inertial stresses of the structure in the ground, which reacts as an external force in the structure’s response to seismic displacements. The wall with the artificial compression acquires dynamic, larger active cross-section and high axial and torsional stiffness, preventing all failures caused by inelastic deformation. By connecting the ends of all walls to the ground, we control the eigenfrequency of the structure and the ground during each seismic loading cycle, preventing inelastic displacements. At the same time, we ensure the strong bearing capacity of the foundation soil and the structure. By designing the walls correctly and placing them in proper locations, we prevent the torsional flexural buckling that occurs in asymmetrical floor plans, and metal and tall structures. Compression of the wall sections at the ends and their anchoring to the ground mitigates the transfer of deformations to the connection nodes, strengthens the wall section in terms of base shear force and shear stress of the sections, and increases the strength of the cross-sections to the tensile at the ends of the walls by introducing counteractive forces. The use of tendons within the ducts prevents longitudinal shear in the overlay concrete, while anchoring the walls to the foundation not only dissipates inertial forces to the ground but also prevents rotation of the walls, thus maintaining the structural integrity of the beams. The prestressing at the bilateral ends of the walls restores the structure to its original position even inelastic displacements by closing the opening of the developing cracks.
文摘Three main problems in system development and the plight of the system development are analyzed and discussed. Finally a practical and formalized method-object-oriented method is proposed to extncate the system development from the predicament.
文摘Presents the new concept of ″Desired to be small″ based on the basic function of vehicle flight control system for an optimal design of flying vehicle control system, and the definition of S/N ratio and calculation formula for ″Desired to be small″ dynamic characteristics, and the S/N ratio method established for design of velicle flight control systems, by which, an orthogrnal table is used to arrange test schemes, and error facters are used to simulate various interferences, and the use of S/N ratio as a design criterion to synthesise the design of dynamic and static characteristics for definition of an optimal scheme, the application of S/N ratio method to the design of a type of vehicle control system and the single run success abtained in design of control system, technical evaluation test and design finalization flight test.
文摘This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient.
文摘The purpose of this study was to build a flexible mechanical system with a hydrostatic skeleton.The main components of this system are two type flexible bags.One is a structural bag with constant inner pressure.The other is an actuator bag with controlled inner pressure.To design the system,it was necessary to estimate both structural deformation and driving force.Numerical analysis of flexible bags,however,is difficult because of large nonlinear deformation.This study analyzed structural strength and driving force of flexible bags with the nonlinear finite element analysis (FEA) software ABAQUS.The stress concentration dependency on the bag shape is described and the driving force is calculated to include the large deformation.From the analytical results,this study derives an empirical equation of driving force.The validity of the equation was confirmed by condition-changed analyses and experimental results.
基金the National Innovation Team Foundation of China(No.50921001)the Scientific Research Foundation for Introduction of Talent of Dalian University of Technology(No.DUT13RC(3)46)
文摘In order to solve the performance limitations of traditional ship-type and cylindrical FDPSO(floating drilling production, storage and offloading unit), we present a new FDPSO with a sandglass-type floating body.Based on the hydrodynamic performance of the newly developed floating model, a suitable analysis method for its deepwater mooring system has been proposed. Furthermore, by studying the effects of different mooring parameters on the motion performance of FDPSO, we achieve some useful conclusions and principles to design the mooring scheme in deep sea which has been validated to satisfy the Det Norshke Veritas(DNV) requirements.The study of this paper is expected to provide a reasonable and feasible reference and design solution for the deep sea positions of the new sandglass-type FDPSO.
基金supported by the UC MEXUSCONACyT("Cell-to-cell Mapping for Global Multi-objective Optimization")the National Natural Science Foundation of China(11172197)+1 种基金the Natural Science Foundation of Tianjin through a key-project grantsupport from CONACyT through a scholarship to pursue graduate studies at the Computer Science Department of CINVESTAV-IPN
文摘It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specifications tend to be conflicting to each other to make the control design even more challenging. This paper presents a cell mapping method for multi-objective optimal feedback control design in time domain for a nonlinear Duffing system with time delay. We first review the multi-objective optimization problem and its formulation for control design. We then introduce the cell mapping method and a hybrid algorithm for global optimal solutions. Numerical simulations of the PID control are presented to show the features of the multi-objective optimal design. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1306306]
基金supported by Esfahan Regional Electric Company(EREC)
文摘This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compensates a general class of actuator failures without any need for explicit fault detection. The parameters, times, and patterns of the considered failures are completely unknown. The proposed controller is constructed based on a backstepping design method. The global boundedness of all the closed-loop signals is guaranteed and the tracking error is proved to converge to a small neighborhood of the origin. The proposed approach is employed for a two-axis positioning stage system as well as an aircraft wing system. The simulation results show the correctness and effectiveness of the proposed robust adaptive actuator failure compensation approach.
基金Supported by the "973" Project of P. R. China (G1998020300)
文摘The problem of global stabilization by state feedback for a class of time-delay nonlinear system is considered. By constructing the appropriate Lyapunov-Krasovskii functionals (LKF) and using the backstepping design, a linear state feedback controller making the closed-loop system globally asymptotically stable is constructed.