A new type of a loading and measuring system was developed for testing failure and deformation of rock core samples with an industrial CT (ICT) scanner.The loading and measuring system consisted of a loading system ...A new type of a loading and measuring system was developed for testing failure and deformation of rock core samples with an industrial CT (ICT) scanner.The loading and measuring system consisted of a loading system and a computer control system.The maximum servo-controlled force was 2 tonnes.The new system was a high-stiffness system with a small size.During ICT tests,rock core samples could be easily loaded in the axial direction.So the initiation,propagation,and coalescence of cracks in core samples were observed on ICT images.展开更多
The numerical analysis for the matching of the core driven compression system in a double bypass variable cycle engine was presented in this paper.The system consists of a one-stage-core driven fan stage(CDFS),an inne...The numerical analysis for the matching of the core driven compression system in a double bypass variable cycle engine was presented in this paper.The system consists of a one-stage-core driven fan stage(CDFS),an inner bypass duct and a five-stage high pressure compressor(HPC),providing two basic operating modes: the single bypass mode and the double bypass mode.Variable vanes are necessary to realize the mode switch of the system.The correct matching in the double bypass mode requires a proper combination of the mass flow,total pressure ratio and blade speed.The work capacity of the system decreases in the double bypass mode and the pressure ratio tends to decrease more for the CDFS and the front stages of the HPC.The overall system efficiency is higher in the double bypass mode.The radial distributions of aerodynamic parameters are similar in different modes.The notable redistribution of mass flow downstream the CDFS in the single bypass mode leads to strong radial flows and additional mixing losses.The absolute flow angles into the inner bypass increase for the inner span and decrease for the outer span when the system is switched from the single bypass mode to the double bypass mode.展开更多
In this paper, the design and verification process of an automobile-engine-fan control system on chip (SoC) are introduced. The SoC system, SHU-MV08, reuses four new intellectual property (IP) cores and the design...In this paper, the design and verification process of an automobile-engine-fan control system on chip (SoC) are introduced. The SoC system, SHU-MV08, reuses four new intellectual property (IP) cores and the design flow is accomplished with 0.35 btm chartered CMOS technology. Some special functions of IP cores, the detailed integration scheme of four IP cores, and the verification method of the entire SoC are presented. To settle the verification problems brought by analog IP cores, NanoSim based chip-level mixed-signal verification method is introduced. The verification time is greatly reduced and the first tape-out achieves success which proves the validity of our design.展开更多
目前,多核实时系统中同步任务的节能调度研究主要针对的是同构多核处理器平台,而异构多核处理器架构能够更有效地发挥系统性能。将现有的研究直接应用于异构多核系统,在保证可调度性的情况下会导致能耗变高。对此,通过使用动态电压与频...目前,多核实时系统中同步任务的节能调度研究主要针对的是同构多核处理器平台,而异构多核处理器架构能够更有效地发挥系统性能。将现有的研究直接应用于异构多核系统,在保证可调度性的情况下会导致能耗变高。对此,通过使用动态电压与频率调节(Dynamic Voltage Frequency Scaling,DVFS)技术,研究异构多核实时系统中基于任务同步的节能调度问题,提出同步感知的最大能耗节省优先算法(Synchronization Aware-Largest Energy Saved First,SA-LESF)。该算法针对所有任务的速度配置进行迭代优化,直至所有任务均达到其最大限度节能的速度配置。此外,进一步提出基于动态松弛时间回收的同步感知最大能耗节省优先算法(Synchronization Aware-Largest Energy Saved First with Dynamic Reclamation,SA-LESF-DR)。该算法在保证实时任务可调度的同时,实施相应的回收策略,进一步降低系统能耗。实验结果表明,SA-LESF与SA-LESF-DR算法在能耗表现上具有优势,在相同任务集下,相比其他算法可节省高达30%的能耗。展开更多
Nowadays,tremendous researches have been focused on the core-shell lipid-polymer nanoparticles(LPNs) due to the advantages of both liposomes and polymer nanoparticles.In this work,LPNs were applied to encapsulate brin...Nowadays,tremendous researches have been focused on the core-shell lipid-polymer nanoparticles(LPNs) due to the advantages of both liposomes and polymer nanoparticles.In this work,LPNs were applied to encapsulate brinzolamide(Brz-LPNs) for achieving sustained drug release,improving drug corneal permeation and enhancing drug topical therapeutic effect.The structure of Brz-LPNs was composed of poly(lactic-co-glycolic) acid(PLGA) nanocore which encapsulated Brz(Brz-NPs) and lipid shell around the core.Brz-LPNs were prepared by a modified thin-film dispersion method.With the parameters optimization of Brz-LPNs,optimal Brz-LPNs showed an average particle size of151.23±1.64 nm with a high encapsulation efficiency(EE) of 86.7%±2.28%.The core-shell structure of Brz-LPNs were confirmed by transmission electronic microscopy(TEM).Fourier transformed infrared spectra(FTIR) analysis proved that Brz was successfully entrapped into Brz-LPNs.Brz-LPNs exhibited obvious sustained release of Brz,compared with AZOPT^■ and Brz-LPs.Furthermore,the corneal accumulative permeability of Brz-LPNs significantly increased compared to the commercial available formulation(AZOPT^■) in vitro.Moreover,Brz-LPNs(1 mg/mL Brz) showed a more sustained and effective intraocular pressure(IOP) reduction than Brz-LPs(1 mg/mL) and AZOPT^■(10 mg/mL Brz) in vivo.In conclusion,Brz-LPNs,as promising ocular drug delivery systems,are well worth developing in the future for glaucoma treatment.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No. 50905186,No. 51174213)the Major State Basic Research Development Program Fund (Grant No. 2010CB226804)the Project-sponsored by SRF for ROCS,the Ministry of Education and Fundamental Research Funds for the Central Universities and Research Program in State Key Laboratory of Coal Resources and Safe Mining of China University of Mining and Technology
文摘A new type of a loading and measuring system was developed for testing failure and deformation of rock core samples with an industrial CT (ICT) scanner.The loading and measuring system consisted of a loading system and a computer control system.The maximum servo-controlled force was 2 tonnes.The new system was a high-stiffness system with a small size.During ICT tests,rock core samples could be easily loaded in the axial direction.So the initiation,propagation,and coalescence of cracks in core samples were observed on ICT images.
文摘The numerical analysis for the matching of the core driven compression system in a double bypass variable cycle engine was presented in this paper.The system consists of a one-stage-core driven fan stage(CDFS),an inner bypass duct and a five-stage high pressure compressor(HPC),providing two basic operating modes: the single bypass mode and the double bypass mode.Variable vanes are necessary to realize the mode switch of the system.The correct matching in the double bypass mode requires a proper combination of the mass flow,total pressure ratio and blade speed.The work capacity of the system decreases in the double bypass mode and the pressure ratio tends to decrease more for the CDFS and the front stages of the HPC.The overall system efficiency is higher in the double bypass mode.The radial distributions of aerodynamic parameters are similar in different modes.The notable redistribution of mass flow downstream the CDFS in the single bypass mode leads to strong radial flows and additional mixing losses.The absolute flow angles into the inner bypass increase for the inner span and decrease for the outer span when the system is switched from the single bypass mode to the double bypass mode.
基金Project supported by the IC Special Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.09706201300)the Shanghai Municipal Commission of Economic and Information (Grant No.090344)the Shanghai High-Tech Industrialization of New Energy Vehicles (Grant No.09625029),and the Graduate Innovation Foundation of Shanghai University
文摘In this paper, the design and verification process of an automobile-engine-fan control system on chip (SoC) are introduced. The SoC system, SHU-MV08, reuses four new intellectual property (IP) cores and the design flow is accomplished with 0.35 btm chartered CMOS technology. Some special functions of IP cores, the detailed integration scheme of four IP cores, and the verification method of the entire SoC are presented. To settle the verification problems brought by analog IP cores, NanoSim based chip-level mixed-signal verification method is introduced. The verification time is greatly reduced and the first tape-out achieves success which proves the validity of our design.
文摘目前,多核实时系统中同步任务的节能调度研究主要针对的是同构多核处理器平台,而异构多核处理器架构能够更有效地发挥系统性能。将现有的研究直接应用于异构多核系统,在保证可调度性的情况下会导致能耗变高。对此,通过使用动态电压与频率调节(Dynamic Voltage Frequency Scaling,DVFS)技术,研究异构多核实时系统中基于任务同步的节能调度问题,提出同步感知的最大能耗节省优先算法(Synchronization Aware-Largest Energy Saved First,SA-LESF)。该算法针对所有任务的速度配置进行迭代优化,直至所有任务均达到其最大限度节能的速度配置。此外,进一步提出基于动态松弛时间回收的同步感知最大能耗节省优先算法(Synchronization Aware-Largest Energy Saved First with Dynamic Reclamation,SA-LESF-DR)。该算法在保证实时任务可调度的同时,实施相应的回收策略,进一步降低系统能耗。实验结果表明,SA-LESF与SA-LESF-DR算法在能耗表现上具有优势,在相同任务集下,相比其他算法可节省高达30%的能耗。
基金financially supported by Sichuan Province Science and Technology Support Program(Nos.16ZC2698 and 2018JY0582)the National Natural Science Foundation of China(No.81872821)。
文摘Nowadays,tremendous researches have been focused on the core-shell lipid-polymer nanoparticles(LPNs) due to the advantages of both liposomes and polymer nanoparticles.In this work,LPNs were applied to encapsulate brinzolamide(Brz-LPNs) for achieving sustained drug release,improving drug corneal permeation and enhancing drug topical therapeutic effect.The structure of Brz-LPNs was composed of poly(lactic-co-glycolic) acid(PLGA) nanocore which encapsulated Brz(Brz-NPs) and lipid shell around the core.Brz-LPNs were prepared by a modified thin-film dispersion method.With the parameters optimization of Brz-LPNs,optimal Brz-LPNs showed an average particle size of151.23±1.64 nm with a high encapsulation efficiency(EE) of 86.7%±2.28%.The core-shell structure of Brz-LPNs were confirmed by transmission electronic microscopy(TEM).Fourier transformed infrared spectra(FTIR) analysis proved that Brz was successfully entrapped into Brz-LPNs.Brz-LPNs exhibited obvious sustained release of Brz,compared with AZOPT^■ and Brz-LPs.Furthermore,the corneal accumulative permeability of Brz-LPNs significantly increased compared to the commercial available formulation(AZOPT^■) in vitro.Moreover,Brz-LPNs(1 mg/mL Brz) showed a more sustained and effective intraocular pressure(IOP) reduction than Brz-LPs(1 mg/mL) and AZOPT^■(10 mg/mL Brz) in vivo.In conclusion,Brz-LPNs,as promising ocular drug delivery systems,are well worth developing in the future for glaucoma treatment.