In this paper,a synchronized control strategy of double fed induction generator that can provide reserve capability and primary frequency support for microgrid is firstly developed.The microgrid based small signal sta...In this paper,a synchronized control strategy of double fed induction generator that can provide reserve capability and primary frequency support for microgrid is firstly developed.The microgrid based small signal stability performance is investigated under multiple operating conditions.The effect of three categories of key controller parameters on dominant eigenvalues is studied by sensitivity analysis,including:1)active power drooping coefficient;2)reactive power drooping coefficient;3)parameters of outer loop excitation current control.Finally,some constructive suggestions on how to tune controller parameters to improve microgrid’s small signal stability performance are discussed.展开更多
Dear Editor,This letter proposes a deep synchronization control(DSC) method to synchronize grid-forming converters with power grids. The method involves constructing a novel controller for grid-forming converters base...Dear Editor,This letter proposes a deep synchronization control(DSC) method to synchronize grid-forming converters with power grids. The method involves constructing a novel controller for grid-forming converters based on the stable deep dynamics model. To enhance the performance of the controller, the dynamics model is optimized within the deep reinforcement learning(DRL) framework. Simulation results verify that the proposed method can reduce frequency deviation and improve active power responses.展开更多
To explore the technical solution for independently-developed wireless synchronous control of locomotives based on 5G-R,this study investigates the service demands of such control and analyzes the insufficiency of the...To explore the technical solution for independently-developed wireless synchronous control of locomotives based on 5G-R,this study investigates the service demands of such control and analyzes the insufficiency of the existing communication system of China's heavy-haul railway.Giving full consideration of the high bandwidth,low delay,IP-based links,packet domain transmission,quality of service priority guarantee and other characteristics of the 5G-R network,an overall technical solution is proposed,focusing on the implementation of functions such as master-slave locomotive data transmission,controllable end-of-train data transmission,marshaling requests,and multi-driver calls.The findings contribute to enhancing the advancement of the independently-developed wireless synchronous control system of locomotives,ensuring its reliable operation in complex environments,providing valuable guidance for improving the safety and efficiency of heavy-haul railway transportation,and offering robust technical support for the modernization and intelligence development of heavy-haul railway.展开更多
This paper explores the issue of secure synchronization control in piecewise-homogeneous Markovian jump delay neural networks affected by denial-of-service(DoS)attacks.Initially,a novel memory-based adaptive event-tri...This paper explores the issue of secure synchronization control in piecewise-homogeneous Markovian jump delay neural networks affected by denial-of-service(DoS)attacks.Initially,a novel memory-based adaptive event-triggered mechanism(MBAETM)is designed based on sequential growth rates,focusing on event-triggered conditions and thresholds.Subsequently,from the perspective of defenders,non-periodic DoS attacks are re-characterized,and a model of irregular DoS attacks with cyclic fluctuations within time series is further introduced to enhance the system's defense capabilities more effectively.Additionally,considering the unified demands of network security and communication efficiency,a resilient memory-based adaptive event-triggered mechanism(RMBAETM)is proposed.A unified Lyapunov-Krasovskii functional is then constructed,incorporating a loop functional to thoroughly consider information at trigger moments.The master-slave system achieves synchronization through the application of linear matrix inequality techniques.Finally,the proposed methods'effectiveness and superiority are confirmed through four numerical simulation examples.展开更多
The rapid development of new energy power generation technology and the transformation of power electronics in the core equipment of source-grid-load drives the power system towards the“double-high”development patte...The rapid development of new energy power generation technology and the transformation of power electronics in the core equipment of source-grid-load drives the power system towards the“double-high”development pattern of“high proportion of renewable energy”and“high proportion of power electronic equipment”.To enhance the transient performance of AC/DC hybrid microgrid(HMG)in the context of“double-high,”aπtype virtual synchronous generator(π-VSG)control strategy is applied to bidirectional interface converter(BIC)to address the issues of lacking inertia and poor disturbance immunity caused by the high penetration rate of power electronic equipment and new energy.Firstly,the virtual synchronous generator mechanical motion equations and virtual capacitance equations are used to introduce the virtual inertia control equations that consider the transient performance of HMG;based on the equations,theπ-type equivalent control model of the BIC is established.Next,the inertia power is actively transferred through the BIC according to the load fluctuation to compensate for the system’s inertia deficit.Secondly,theπ-VSG control utilizes small-signal analysis to investigate howthe fundamental parameters affect the overall stability of the HMG and incorporates power step response curves to reveal the relationship between the control’s virtual parameters and transient performance.Finally,the PSCAD/EMTDC simulation results show that theπ-VSG control effectively improves the immunity of AC frequency and DC voltage in the HMG system under the load fluctuation condition,increases the stability of the HMG system and satisfies the power-sharing control objective between the AC and DC subgrids.展开更多
Shield machine is the major technical equipment badly in need in national infrastructure construction. The service conditions of shield machine are extremely complex. The driving interface load fluctuation caused by g...Shield machine is the major technical equipment badly in need in national infrastructure construction. The service conditions of shield machine are extremely complex. The driving interface load fluctuation caused by geological environment changes and multi field coupling of stress field may lead into imbalance of redundant drive motors output torque in main driving system. Therefore, the shield machine driving synchronous control is one of the key technologies of shield machine. This paper is in view of the shield machine main driving synchronous control, achieving the system's adaptive load sharing. From the point of view of cutterhead load changes, nonlinear factors of mechanical transmission mechanism and the control system synchronization performance, the authors analyze the load sharing performance of shield machine main drive system in the event of load mutation. The paper proposes a data-driven synchronized control method applicable to the main drive system. The effectiveness of the method is verified through simulation and experimental methods. The new method can make the system synchronization error greatly reduced, thus it can effectively adapt to load mutation, and reduce shaft broken accident.展开更多
This paper proposes a scanner–stage synchronized approach emphasizing a novel control structure for the laser polishing of Inconel 718 components manufactured by selective laser melting in order to address increasing...This paper proposes a scanner–stage synchronized approach emphasizing a novel control structure for the laser polishing of Inconel 718 components manufactured by selective laser melting in order to address increasing demands for high surface quality in metal additive manufacturing.The proposed synchronized control system is composed of a motion decomposition module and an error synthesis module.The experimental results show that stitching errors can be avoided thanks to continuous motion during laser processing.Moreover,in comparison with the existing step-scan method,the processing efficiency of the proposed method is improved by 38.22%and the surface quality of the laser-polished area is significantly enhanced due to a more homogeneous distribution of the laser energy during the material phase change.The proposed synchronized system paves the way for high-speed,high-precision,and large-area laser material processing without stitching errors.展开更多
This paper builds up an accurate nonlinear mathematical model of anelectro-hydraulic force/ torque servo control system, and provides a thorough theoretical analysison the feedforward compensation for extraneous force...This paper builds up an accurate nonlinear mathematical model of anelectro-hydraulic force/ torque servo control system, and provides a thorough theoretical analysison the feedforward compensation for extraneous force/torque, whose limitation is analyzed andrevealed. The nonlinear factors and the servo valve dynamics have much influence on the systemcharacteristics. Subsequently a velocity syn-chronizing-compensation method by using the controlsignal of the control actuator is proposed, which can reduce the lagging effects for the betterperformance. For the reason of similarity between the model of control actuator and that of the loadsimulator, the proposed method performs well against the influence of nonlinear factors. Thesimulations and the experiments confirm that this control scheme results in a quick response,robustness, and excellent ability against disturbance.展开更多
Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefor...Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefore,in future“double high”power systems,research on the control technology of GFM converters will become an urgent demand.In this paper,we first introduce the basic principle of GFM control and then present five currently used control strategies for GFM converters:droop control,power synchronization control(PSC),virtual synchronous machine control(VSM),direct power control(DPC),and virtual oscillator control(VOC).These five strategies can independently establish voltage phasors to provide inertia to the system.Among these,droop control is the most widely used strategy.PSC and VSM are strategies that simulate the mechanical characteristics of synchronous generators;thus,they are more accurate than droop control.DPC regulates the active power and reactive power directly,with no inner current controller,and VOC is a novel method under study using an oscillator circuit to realize synchronization.Finally,we highlight key technologies and research directions to be addressed in the future.展开更多
The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructe...The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructed with the SW topology, the global linear coupling and special linear feedback can realize the synchronization control of beam halo-chaos as well as periodic state in the BTN with the SW topology, respectively. This important result can provide an effective way for the experimental study and the engineering design of the BTN in the high-current accelerator driven radioactive clean nuclear power systems, and may have potential use in prospective applications for halo-chaos secure communication.展开更多
In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally c...In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.展开更多
A synchronous control of relative attitude and position is required in separated ultraquiet spacecraft, such as drag-free, disturbance-free, and distributed spacecraft. Thus, a twistorbased synchronous sliding mode co...A synchronous control of relative attitude and position is required in separated ultraquiet spacecraft, such as drag-free, disturbance-free, and distributed spacecraft. Thus, a twistorbased synchronous sliding mode control is investigated in this paper to solve the control problem of relative attitude and position among separated spacecraft modules. The twistor-based control design and the stability proof are implemented using the Modified Rodrigues Parameter(MRP).To evaluate the effectiveness of the proposed control method, this paper presents a case study of separated spacecraft flying control considering the mass uncertainty and external disturbances. In addition, a simulation study of the Proportional-Derivative(PD) control is also presented for comparison. The results indicate that the twistor-based sliding mode controller can ensure global asymptotic stability. The states converge fast with ultra-precision and ultra-stability in both the attitude and position. Moreover, the proposed twistor-based sliding mode control system is robust to the mass uncertainty and external disturbances.展开更多
For the outputs of two nth-order linear control systems to work insynchronization and meanwhile to track their commands, a H_(infinity) synchronization control schemeis presented. In terms of two uncoupled single vari...For the outputs of two nth-order linear control systems to work insynchronization and meanwhile to track their commands, a H_(infinity) synchronization control schemeis presented. In terms of two uncoupled single variable linear systems, a multivariable coupledsystem is established by choosing one output and the difference of the two outputs as a new outputvector, so that both command tracking and synchronization properties can be demonstrated by aH_(infinity) performance index. To improve the synchronization and trailing performance and toguarantee the system robust stability, the mixed sensitivity H_(infinity), design methodology isadopted. The presented synchronization scheme is then extended to the case where one of the twosystems include two input variables, and then applied to the position synchronization control of awafer-retical stage. The wafer-reticle stage consists of a wafer stage, a reticle coarse stage, anda reticle fine stage. The reticle coarse stage picks up the reticle fine stage. The three stagesought to tack their commands, but synchronization between the wafer stage and the reticle fine stagemust be stressed in the tracking process. In the application, by appropriately determining theweighting matrices for the sensitivity function and the complementary sensitivity function, asatisfactory KL synchronization controller is obtained to realize highly accurate positionsynchronization, and to guarantee tracking performance. The above results are verified by simulationexperiments.展开更多
In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on...In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on adjacent coupling error analysis is presented. The mathematical models of the robot, including kinematic model, dynamic model and spline trajectory planing, are established and verified. Since it is difficult to describe the real-time contour error of the robot for complex trajectory, the adjacent coupling error is analyzed to solve the problem. Combined with nonlinear control and coupling performance of the robot, N-PD cross-coupling synchronization controller is designed and validated by simulation analysis. A servo control experimental system which mainly consists of laser tracking system, the robot mechanical system and EtherCAT based servo control system is constructed. The synchronization error is significantly decreased and the maximum trajectory error is reduced from 0.33 mm to 0.1 mm. The effectiveness of the control algorithm is validated by the experimental results, thus the control strategy can improve the robot's trajectory tracking precision significantly.展开更多
A novel nonlinear control algorithm based on hybrid neural networks ispresented to cope with the high-accuracy synchronization control problem for a dual-actuatorelectrohydraulic drive system which plays an important ...A novel nonlinear control algorithm based on hybrid neural networks ispresented to cope with the high-accuracy synchronization control problem for a dual-actuatorelectrohydraulic drive system which plays an important role for the development of elastomericlaunchers. A new objective function for better synchronization performance is introduced and alearning algorithm to adjust the weights of the neural network, based on the gradient descentalgorithm, is also derived. The hybrid neural network control algorithm guarantees high-accuracysynchronization performance of two motion cylinders and fast dynamic response as well as goodstability of the control system. Prototype test results on the dual-actuator electrohydraulic drivesystem verifys the effectiveness of the proposed approach.展开更多
Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperc...Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperchaotic Liu system. Through adjusting the frequency of the control signal, the chaotic property of the system can be controlled to show some different dynamic behaviors such as periodic, quasi-periodic, chaotic and hyperchaotic dynamic behaviours. By numerical simulations, the Lyapunov exponent spectrums, bifurcation diagrams and phase diagrams of the two new systems are studied, respectively. Furthermore, the synchronizing circuits of the nonautonomous hyperchaotic Liu system are designed via the synchronization control method of single variable coupling feedback. Finally, the hardware circuits are implemented, and the corresponding waves of chaos are observed by an oscillograph.展开更多
Two-lap sequential control converters are usually adopted to supply and improve the power factor of input side. The line harmonic damage generated by a sequential control thyristor converter can be serious. To solve t...Two-lap sequential control converters are usually adopted to supply and improve the power factor of input side. The line harmonic damage generated by a sequential control thyristor converter can be serious. To solve this prob-lem and seek an optimum control strategy,we derived the changeable regular of the line-input-current,the fundamen-tal-frequency-current,the harmonic-current-content and the harmonic total distortion ratio of the converter at different firing angles. We obtained relevant data from experiments with a sequential control system of a DC 2.2kW/220V motor. With the example of the operating condition of a DC mine elevator,the harmonic current is two times approximately in sequential control compared to synchronous control when the firing angle of the two converters differs in 30°. At dif-ferent operating states of a two-lap connection converter,the ideal strategy is an exchange between sequential control and synchronous control,by which we can achieve the complementary goal of improving the power factor and har-monic effect. All analytical conclusions are supported by simulation and experimental results.展开更多
Beam transport network(BTN)with small world(SW)(so-called BTN-SW)and Lorenz chaotic connectednetwork with scale-free(SF)are taken as two typical examples,we proposed a global linear coupling and combined withlocal err...Beam transport network(BTN)with small world(SW)(so-called BTN-SW)and Lorenz chaotic connectednetwork with scale-free(SF)are taken as two typical examples,we proposed a global linear coupling and combined withlocal error feedback methods in sub-networks to realize multi-goal control method of halo and chaos in two networksabove.The simulation results show that the methods above is effective for any chaotic connected networks and has apotential of applications in based-halo-chaos secure communication.展开更多
A novel adaptive robust control (ARC) is presented for the four-motor driving servo systems with the uncertain nonlinearities and actuation failures, such that the load tracking control is achieved with the proximat...A novel adaptive robust control (ARC) is presented for the four-motor driving servo systems with the uncertain nonlinearities and actuation failures, such that the load tracking control is achieved with the proximate optimal-time. By applying the proposed scheme, several control objectives are achieved. First, the nonlinear synchronization algorithm is presented to maintain the velocity synchronization of each motor, which provides fast convergence without chatting. Moreover, the time-varying bias torque is applied to eliminate the effect of backlash and reduce the waste of energy. Then, the ARC is designed to achieve the proximate optimal-time output tracking with the transient performance in L2 norm, where the friction and actuation failures are addressed by the adaptive scheme based on the norm estimation of unknown parameter vector. Finally, the extensive simulated and experimental results validate the effectiveness of the proposed method.展开更多
The vertical position of plasma in the HT-7U Tokamak is inherently unstable. In order to realize active stabilization, the response rate of the high-power high-frequency amplifier feeding the active control coils must...The vertical position of plasma in the HT-7U Tokamak is inherently unstable. In order to realize active stabilization, the response rate of the high-power high-frequency amplifier feeding the active control coils must be fast enough. This paper analyzes the paralleling scheme of the power amplifier through two kinds of control mode. One is the synchronous control; the other is the asynchronous control. Via the comparison of the two kinds of control mode, both of their characteristics are given in the text. At last, the analyzed result is verified by a small power experiment.展开更多
基金This work is jointly supported by National High Technology R&D Program of China(No.2011AA050204)the 2014 Endeavour Research Fellowship and 2014 Research Collaborative Award of University of Western Australia,the project of the State Grid(Off-shore wind farm plan in Zhejiang province).
文摘In this paper,a synchronized control strategy of double fed induction generator that can provide reserve capability and primary frequency support for microgrid is firstly developed.The microgrid based small signal stability performance is investigated under multiple operating conditions.The effect of three categories of key controller parameters on dominant eigenvalues is studied by sensitivity analysis,including:1)active power drooping coefficient;2)reactive power drooping coefficient;3)parameters of outer loop excitation current control.Finally,some constructive suggestions on how to tune controller parameters to improve microgrid’s small signal stability performance are discussed.
基金supported in part by the National Natural Science Foundation of China(62033005,62273270)the Natural Science Foundation of Shaanxi Province(2023JC-XJ17)
文摘Dear Editor,This letter proposes a deep synchronization control(DSC) method to synchronize grid-forming converters with power grids. The method involves constructing a novel controller for grid-forming converters based on the stable deep dynamics model. To enhance the performance of the controller, the dynamics model is optimized within the deep reinforcement learning(DRL) framework. Simulation results verify that the proposed method can reduce frequency deviation and improve active power responses.
文摘To explore the technical solution for independently-developed wireless synchronous control of locomotives based on 5G-R,this study investigates the service demands of such control and analyzes the insufficiency of the existing communication system of China's heavy-haul railway.Giving full consideration of the high bandwidth,low delay,IP-based links,packet domain transmission,quality of service priority guarantee and other characteristics of the 5G-R network,an overall technical solution is proposed,focusing on the implementation of functions such as master-slave locomotive data transmission,controllable end-of-train data transmission,marshaling requests,and multi-driver calls.The findings contribute to enhancing the advancement of the independently-developed wireless synchronous control system of locomotives,ensuring its reliable operation in complex environments,providing valuable guidance for improving the safety and efficiency of heavy-haul railway transportation,and offering robust technical support for the modernization and intelligence development of heavy-haul railway.
文摘This paper explores the issue of secure synchronization control in piecewise-homogeneous Markovian jump delay neural networks affected by denial-of-service(DoS)attacks.Initially,a novel memory-based adaptive event-triggered mechanism(MBAETM)is designed based on sequential growth rates,focusing on event-triggered conditions and thresholds.Subsequently,from the perspective of defenders,non-periodic DoS attacks are re-characterized,and a model of irregular DoS attacks with cyclic fluctuations within time series is further introduced to enhance the system's defense capabilities more effectively.Additionally,considering the unified demands of network security and communication efficiency,a resilient memory-based adaptive event-triggered mechanism(RMBAETM)is proposed.A unified Lyapunov-Krasovskii functional is then constructed,incorporating a loop functional to thoroughly consider information at trigger moments.The master-slave system achieves synchronization through the application of linear matrix inequality techniques.Finally,the proposed methods'effectiveness and superiority are confirmed through four numerical simulation examples.
基金funded by“The Fourth Phase of 2022 Advantage Discipline Engineering-Control Science and Engineering”,grant number 4013000063.
文摘The rapid development of new energy power generation technology and the transformation of power electronics in the core equipment of source-grid-load drives the power system towards the“double-high”development pattern of“high proportion of renewable energy”and“high proportion of power electronic equipment”.To enhance the transient performance of AC/DC hybrid microgrid(HMG)in the context of“double-high,”aπtype virtual synchronous generator(π-VSG)control strategy is applied to bidirectional interface converter(BIC)to address the issues of lacking inertia and poor disturbance immunity caused by the high penetration rate of power electronic equipment and new energy.Firstly,the virtual synchronous generator mechanical motion equations and virtual capacitance equations are used to introduce the virtual inertia control equations that consider the transient performance of HMG;based on the equations,theπ-type equivalent control model of the BIC is established.Next,the inertia power is actively transferred through the BIC according to the load fluctuation to compensate for the system’s inertia deficit.Secondly,theπ-VSG control utilizes small-signal analysis to investigate howthe fundamental parameters affect the overall stability of the HMG and incorporates power step response curves to reveal the relationship between the control’s virtual parameters and transient performance.Finally,the PSCAD/EMTDC simulation results show that theπ-VSG control effectively improves the immunity of AC frequency and DC voltage in the HMG system under the load fluctuation condition,increases the stability of the HMG system and satisfies the power-sharing control objective between the AC and DC subgrids.
文摘Shield machine is the major technical equipment badly in need in national infrastructure construction. The service conditions of shield machine are extremely complex. The driving interface load fluctuation caused by geological environment changes and multi field coupling of stress field may lead into imbalance of redundant drive motors output torque in main driving system. Therefore, the shield machine driving synchronous control is one of the key technologies of shield machine. This paper is in view of the shield machine main driving synchronous control, achieving the system's adaptive load sharing. From the point of view of cutterhead load changes, nonlinear factors of mechanical transmission mechanism and the control system synchronization performance, the authors analyze the load sharing performance of shield machine main drive system in the event of load mutation. The paper proposes a data-driven synchronized control method applicable to the main drive system. The effectiveness of the method is verified through simulation and experimental methods. The new method can make the system synchronization error greatly reduced, thus it can effectively adapt to load mutation, and reduce shaft broken accident.
基金The authors would like to acknowledge support from the National Natural Science Foundation of China(51875313 and 51705013)the Open Foundation of the State Key Laboratory of Tribology&Institute of Manufacturing Engineering(SKLT2019C09).
文摘This paper proposes a scanner–stage synchronized approach emphasizing a novel control structure for the laser polishing of Inconel 718 components manufactured by selective laser melting in order to address increasing demands for high surface quality in metal additive manufacturing.The proposed synchronized control system is composed of a motion decomposition module and an error synthesis module.The experimental results show that stitching errors can be avoided thanks to continuous motion during laser processing.Moreover,in comparison with the existing step-scan method,the processing efficiency of the proposed method is improved by 38.22%and the surface quality of the laser-polished area is significantly enhanced due to a more homogeneous distribution of the laser energy during the material phase change.The proposed synchronized system paves the way for high-speed,high-precision,and large-area laser material processing without stitching errors.
文摘This paper builds up an accurate nonlinear mathematical model of anelectro-hydraulic force/ torque servo control system, and provides a thorough theoretical analysison the feedforward compensation for extraneous force/torque, whose limitation is analyzed andrevealed. The nonlinear factors and the servo valve dynamics have much influence on the systemcharacteristics. Subsequently a velocity syn-chronizing-compensation method by using the controlsignal of the control actuator is proposed, which can reduce the lagging effects for the betterperformance. For the reason of similarity between the model of control actuator and that of the loadsimulator, the proposed method performs well against the influence of nonlinear factors. Thesimulations and the experiments confirm that this control scheme results in a quick response,robustness, and excellent ability against disturbance.
基金supported by the National Natural Science Foundation of China(No.52177122)the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA 21050100)the Youth Innovation Promotion Association CAS(No.2018170)。
文摘Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefore,in future“double high”power systems,research on the control technology of GFM converters will become an urgent demand.In this paper,we first introduce the basic principle of GFM control and then present five currently used control strategies for GFM converters:droop control,power synchronization control(PSC),virtual synchronous machine control(VSM),direct power control(DPC),and virtual oscillator control(VOC).These five strategies can independently establish voltage phasors to provide inertia to the system.Among these,droop control is the most widely used strategy.PSC and VSM are strategies that simulate the mechanical characteristics of synchronous generators;thus,they are more accurate than droop control.DPC regulates the active power and reactive power directly,with no inner current controller,and VOC is a novel method under study using an oscillator circuit to realize synchronization.Finally,we highlight key technologies and research directions to be addressed in the future.
基金The project supported by the Key Projects of National Natural Science Foundation of China under Grant No. 70431002 and National Natural Science Foundation of China under Grant Nos. 70371068 and 10247005
文摘The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructed with the SW topology, the global linear coupling and special linear feedback can realize the synchronization control of beam halo-chaos as well as periodic state in the BTN with the SW topology, respectively. This important result can provide an effective way for the experimental study and the engineering design of the BTN in the high-current accelerator driven radioactive clean nuclear power systems, and may have potential use in prospective applications for halo-chaos secure communication.
文摘In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.
基金supported by the National Natural Science Foundation of China(Nos.51675430,11402044,and U1537213)
文摘A synchronous control of relative attitude and position is required in separated ultraquiet spacecraft, such as drag-free, disturbance-free, and distributed spacecraft. Thus, a twistorbased synchronous sliding mode control is investigated in this paper to solve the control problem of relative attitude and position among separated spacecraft modules. The twistor-based control design and the stability proof are implemented using the Modified Rodrigues Parameter(MRP).To evaluate the effectiveness of the proposed control method, this paper presents a case study of separated spacecraft flying control considering the mass uncertainty and external disturbances. In addition, a simulation study of the Proportional-Derivative(PD) control is also presented for comparison. The results indicate that the twistor-based sliding mode controller can ensure global asymptotic stability. The states converge fast with ultra-precision and ultra-stability in both the attitude and position. Moreover, the proposed twistor-based sliding mode control system is robust to the mass uncertainty and external disturbances.
基金This project is supported by Japan Society for the Promotion of Sci-ence(No.P01208)National Natural Science Foundation of China (No.60104003).
文摘For the outputs of two nth-order linear control systems to work insynchronization and meanwhile to track their commands, a H_(infinity) synchronization control schemeis presented. In terms of two uncoupled single variable linear systems, a multivariable coupledsystem is established by choosing one output and the difference of the two outputs as a new outputvector, so that both command tracking and synchronization properties can be demonstrated by aH_(infinity) performance index. To improve the synchronization and trailing performance and toguarantee the system robust stability, the mixed sensitivity H_(infinity), design methodology isadopted. The presented synchronization scheme is then extended to the case where one of the twosystems include two input variables, and then applied to the position synchronization control of awafer-retical stage. The wafer-reticle stage consists of a wafer stage, a reticle coarse stage, anda reticle fine stage. The reticle coarse stage picks up the reticle fine stage. The three stagesought to tack their commands, but synchronization between the wafer stage and the reticle fine stagemust be stressed in the tracking process. In the application, by appropriately determining theweighting matrices for the sensitivity function and the complementary sensitivity function, asatisfactory KL synchronization controller is obtained to realize highly accurate positionsynchronization, and to guarantee tracking performance. The above results are verified by simulationexperiments.
基金Project(2015AA043003)supported by National High-technology Research and Development Program of ChinaProject(GY2016ZB0068)supported by Application Technology Research and Development Program of Heilongjiang Province,ChinaProject(SKLR201301A03)supported by Self-planned Task of State Key Laboratory of Robotics and System(Harbin Institute of Technology),China
文摘In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on adjacent coupling error analysis is presented. The mathematical models of the robot, including kinematic model, dynamic model and spline trajectory planing, are established and verified. Since it is difficult to describe the real-time contour error of the robot for complex trajectory, the adjacent coupling error is analyzed to solve the problem. Combined with nonlinear control and coupling performance of the robot, N-PD cross-coupling synchronization controller is designed and validated by simulation analysis. A servo control experimental system which mainly consists of laser tracking system, the robot mechanical system and EtherCAT based servo control system is constructed. The synchronization error is significantly decreased and the maximum trajectory error is reduced from 0.33 mm to 0.1 mm. The effectiveness of the control algorithm is validated by the experimental results, thus the control strategy can improve the robot's trajectory tracking precision significantly.
文摘A novel nonlinear control algorithm based on hybrid neural networks ispresented to cope with the high-accuracy synchronization control problem for a dual-actuatorelectrohydraulic drive system which plays an important role for the development of elastomericlaunchers. A new objective function for better synchronization performance is introduced and alearning algorithm to adjust the weights of the neural network, based on the gradient descentalgorithm, is also derived. The hybrid neural network control algorithm guarantees high-accuracysynchronization performance of two motion cylinders and fast dynamic response as well as goodstability of the control system. Prototype test results on the dual-actuator electrohydraulic drivesystem verifys the effectiveness of the proposed approach.
基金Project supported by the National Natural Science Foundation of China (Grant No 60572089)the Natural Science Foundation of Chongqing (Grant No CSTC,2008BB2087)
文摘Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperchaotic Liu system. Through adjusting the frequency of the control signal, the chaotic property of the system can be controlled to show some different dynamic behaviors such as periodic, quasi-periodic, chaotic and hyperchaotic dynamic behaviours. By numerical simulations, the Lyapunov exponent spectrums, bifurcation diagrams and phase diagrams of the two new systems are studied, respectively. Furthermore, the synchronizing circuits of the nonautonomous hyperchaotic Liu system are designed via the synchronization control method of single variable coupling feedback. Finally, the hardware circuits are implemented, and the corresponding waves of chaos are observed by an oscillograph.
基金Project GC06A523 supported by the Science and Technology Department of Heilongjiang Province
文摘Two-lap sequential control converters are usually adopted to supply and improve the power factor of input side. The line harmonic damage generated by a sequential control thyristor converter can be serious. To solve this prob-lem and seek an optimum control strategy,we derived the changeable regular of the line-input-current,the fundamen-tal-frequency-current,the harmonic-current-content and the harmonic total distortion ratio of the converter at different firing angles. We obtained relevant data from experiments with a sequential control system of a DC 2.2kW/220V motor. With the example of the operating condition of a DC mine elevator,the harmonic current is two times approximately in sequential control compared to synchronous control when the firing angle of the two converters differs in 30°. At dif-ferent operating states of a two-lap connection converter,the ideal strategy is an exchange between sequential control and synchronous control,by which we can achieve the complementary goal of improving the power factor and har-monic effect. All analytical conclusions are supported by simulation and experimental results.
基金the Key Projects of National Natural Science Foundation of China under Grant No.70431002National Natural Science Foundation of China under Grant No.10647001
文摘Beam transport network(BTN)with small world(SW)(so-called BTN-SW)and Lorenz chaotic connectednetwork with scale-free(SF)are taken as two typical examples,we proposed a global linear coupling and combined withlocal error feedback methods in sub-networks to realize multi-goal control method of halo and chaos in two networksabove.The simulation results show that the methods above is effective for any chaotic connected networks and has apotential of applications in based-halo-chaos secure communication.
基金This work was supported by the National Natural Science Foundation of China (Nos. 61433003, 61273150), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61321002) and the Doctoral Program of Higher Education of China (No. 20121101110029).
文摘A novel adaptive robust control (ARC) is presented for the four-motor driving servo systems with the uncertain nonlinearities and actuation failures, such that the load tracking control is achieved with the proximate optimal-time. By applying the proposed scheme, several control objectives are achieved. First, the nonlinear synchronization algorithm is presented to maintain the velocity synchronization of each motor, which provides fast convergence without chatting. Moreover, the time-varying bias torque is applied to eliminate the effect of backlash and reduce the waste of energy. Then, the ARC is designed to achieve the proximate optimal-time output tracking with the transient performance in L2 norm, where the friction and actuation failures are addressed by the adaptive scheme based on the norm estimation of unknown parameter vector. Finally, the extensive simulated and experimental results validate the effectiveness of the proposed method.
基金The project supported by the National Meg-Science Engineering Project of Chinese Goverment
文摘The vertical position of plasma in the HT-7U Tokamak is inherently unstable. In order to realize active stabilization, the response rate of the high-power high-frequency amplifier feeding the active control coils must be fast enough. This paper analyzes the paralleling scheme of the power amplifier through two kinds of control mode. One is the synchronous control; the other is the asynchronous control. Via the comparison of the two kinds of control mode, both of their characteristics are given in the text. At last, the analyzed result is verified by a small power experiment.