期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Formation mechanism of surface oxide layer of grain-oriented silicon steel 被引量:7
1
作者 Jia-long Qiao Fei-hu Guo +2 位作者 Sheng-tao Qiu Xing-zhong Zhang Hai-jun Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2021年第3期327-334,共8页
The surface oxide layer of grain-oriented electrical steels was investigated by scanning electron microscopy.The formation mechanism and the influence on the glass film of the surface oxide layer were analyzed by the ... The surface oxide layer of grain-oriented electrical steels was investigated by scanning electron microscopy.The formation mechanism and the influence on the glass film of the surface oxide layer were analyzed by the calculation of thermodynamics and kinetics.The surface oxide layer with 2.3μm in thickness is mainly composed of SiO_(2),a small amount of FeO and Fe_(2)SiO_(4).During the formation of surface oxide layer,the restriction factor was the diffusion of O in the oxide layer.At the initial stage of the decarburization annealing,FeO would be formed on the surface layer.SiO_(2) and silicate particles rapidly nucleated,grew and formed a granular oxide layer in the subsurface.As the oxidation layer thickens,the nucleation of new particles decreases,and the growth of oxide particles would be dominant.A lamellar oxide layer was formed between the surface oxide layer and the steel matrix,and eventually formed a typical three-layer structure.During the high temperature annealing,MgO mainly reacted with SiO_(2) and Fe_(2)SiO_(4) in the surface oxide layer to form Mg2SiO_(4) and Fe_(2)SiO_(4) would respond first,thus forming the glass film with average thickness of 4.87μm. 展开更多
关键词 Grain-oriented silicon steel Decarburizing annealing surface oxide layer Formation mechanism Glass film
原文传递
Effect of Surface Mechanical Attrition Treatment on Tribological Behavior of the AZ31 Alloy 被引量:11
2
作者 Shuangwu Xia Yong Liu +2 位作者 Dongming Fu Bin Jin Jian Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第12期1245-1252,共8页
By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically i... By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically investigated by using dry sliding tests,a 3D surface profile-meter and a scanning electron microscope equipped with an energy-dispersive spectrometer.The experimental results indicate that the Mg alloy with GNS exhibits better wear resistance comparing to the as-received sample,which is associated to the alteration of wear mechanism at different sliding speeds.The Mg alloy with GNS presents the wear mechanism of the abrasive wear at 0.05 m/s and the oxidative wear at 0.5 m/s,respectively.Moreover,the GNS can effectively promote the reaction between the oxygen and worn surface,which leads to a compact oxidation layer at 0.5 m/s.The effect of oxidation layer on the wear resistance of the Mg alloy was also discussed. 展开更多
关键词 Magnesium alloy surface mechanical attrition treatment Wear mechanism Oxidation layer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部