Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics...Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics,metallic nanoparticles and antimicrobial peptides,have been extensively used to deal with Ti implant infections.However,these chemical approaches suffer from potential toxicity,antibiotic resistance and poor long-term antibacterial performance.Hence,physical antibacterial surfaces on Ti-based implants have attracted increasing attention.The antibacterial behavior of different surfaces on Ti-based biomaterials against various bacteria only by physical properties of the implants themselves(e.g.,nanotopography)or exogenous physical stimulus(e.g.,photocatalysis)was reviewed,as well as parameters influencing the physical antibacterial processes,such as size,shape and density of the surface nanotextures,and bacterial growth phases.Besides,mechanisms of different fabrication techniques for the physical antibacterial surfaces on Ti-based biomaterials were also summarized.展开更多
The feature of the surface coating can affect important properties of iron oxide nanoparticles(IONPs), it is therefore critical for further understanding how these materials react to physiological conditions, which is...The feature of the surface coating can affect important properties of iron oxide nanoparticles(IONPs), it is therefore critical for further understanding how these materials react to physiological conditions, which is still needed to fully exploit the potential of IONPs for their theranostic applications. In this work, we prepared IONPs which surface were modified with citric acid(CA), chitosan(CS) and folic acid conjugated chitosan(FA-g-CS). respectively. Their physicochemical properties were investigated using FT-IR, TEM,powder XRD, VSM, TGA, DLS and zeta potential. We found that CA-IONP dispersion was composed of monocrystalline particles while CS-IONP and FA-g-CS-IONP were composed of polycrystalline aggregates. All IONPs retained the crystalline structure of magnetite and exhibited the superparamagnetic behavior. Their saturation magnetization decreased with the increase in the amount of their organic coatings. Their drug loading capacities, drug release patterns and in vitro anticancer efficiencies were studied by using doxorubicin(DOX) as a model drug. DOX@CS-IONP and DOX@FA-g-CSIONP exhibited lower drug loading while showing higher water dispersity when compared with DOX@CA-IONP. All IONPs were surface charged and they tended to agglomerate in medium with high pH value and ionic strength. In the presence of chitosan or FA-g-CS coatings, their DOX release rate was slowed down compared with that of DOX@CA-IONP. Unloaded IONPs exhibited nearly no cytotoxicity on both cancer cells and normal cells in the presence of chitosan and FA-g-CS when compared with CA-IONP which presented high cytotoxicity. However, DOX@FA-g-CS-IONP showed significantly cytotoxicity on folate receptors(FRs) positive breast cancer cells while exhibiting nearly no cytotoxicity on FRs negative normal cells. Results presented in this study were valuable to the design and fabrication of IONPs-based system for better theranostic applications.展开更多
The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under diffe...The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values.During the interaction of laser irradiation with the investigated materials,a part of the energy was absorbed on the target surface,influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations,resulting in crater formation and the presence of microcracks and hydrodynamic structures.Moreover,different chemical changes were induced on the target materials’surfaces,resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption.Given the high energy absorption at the site of interaction,the dimensions of the surface damaged area increased.Consequently,surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area.Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.展开更多
As the number of patients suffering from cardiovascular diseases and peripheral vascular diseases rises,the constraints of autologous transplantation remain unavoidable.As a result,artificial vascular grafts must be d...As the number of patients suffering from cardiovascular diseases and peripheral vascular diseases rises,the constraints of autologous transplantation remain unavoidable.As a result,artificial vascular grafts must be developed.Adhesion of proteins,platelets and bacteria on implants can result in stenosis,thrombus formation,and postoperative infection,which can be fatal for an implantation.Polyurethane,as a commonly used biomaterial,has been modified in various ways to deal with the adhesions of proteins,platelets,and bacteria and to stimulate endothelium adhesion.In this review,we briefly summarize the mechanisms behind adhesions,overview the current strategies of surface modifications of polyurethane biomaterials used in vascular grafts,and highlight the challenges that need to be addressed in future studies,aiming to gain a more profound understanding of how to develop artificial polyurethane vascular grafts with an enhanced implantation success rate and reduced side effect.展开更多
The TiO2 nanoporous film photoelectrode, as a crucial component of dye-sensitized solar cells, has been investigated. The photovoltaic properties and the dark current were studied by two surface modification methods. ...The TiO2 nanoporous film photoelectrode, as a crucial component of dye-sensitized solar cells, has been investigated. The photovoltaic properties and the dark current were studied by two surface modification methods. One was to apply a compact layer between the conductive glass substrate and nanoporous TiO2 film. Another was to produce TiO2 nanoparticles among the microstructure by TICl4 treatment. A suitable concentration and number of times for TICl4 treatment were found in our experiment. The dark current is suppressed by surface modifications, leading to a significant improvement in the solar cells performance. An excessive concentration of TICl4 will produce more surface states and introduce a larger dark current reversely. The dye is also regarded as a source of charge recombination in dark to some extent, due to an amount of surface protonations introduced by the interracial link in the conductive glass substrate/dye interface and dye/TiO2 interface.展开更多
Black phosphorus(BP),a novel two dimensional material,exhibits remarkable photoelectric characteristics,ultrahigh photothermal conversion efficiency,substantial specific surface area,high carrier mobility,and tunable ...Black phosphorus(BP),a novel two dimensional material,exhibits remarkable photoelectric characteristics,ultrahigh photothermal conversion efficiency,substantial specific surface area,high carrier mobility,and tunable band gap properties.These attributes have positioned it as a promising candidate in domains such as energy,medicine,and the environment.Nonetheless,its vulnerability to light,oxygen,and water can lead to rapid degradation and loss of crystallinity,thereby limiting its synthesis,preservation,and application.Moreover,BP has demonstrated cytotoxic tendencies,substantially constraining its viability in the realm of biomedicine.Consequently,the imperative for surface modification arises to bolster its stability and biocompatibility,while concurrently expanding its utility spectrum.Biological macromolecules,integral components of living organisms,proffer innate advantages over chemical agents and polymers for the purpose of the BP modifications.This review comprehensively surveys the advancements in utilizing biological macromolecules for the modifications of BP.In doing so,it aims to pave the way for enhanced stability,biocompatibility,and diversified applications of this material.展开更多
Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditi...Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term com-plications.However,challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption.This review highlights the latest breakthroughs in surface modification,alloying,and coating strategies to enhance the mechanical integrity,corrosion resistance,and biocompatibility of Mg-based stents.Key surface engineering techniques,including polymer and bioactive coatings,are ex-amined for their role in promoting endothelial healing and minimising inflammatory responses.Future directions are proposed,focusing on personalised stent designs to optimize efficacy and long-term outcomes,positioning Mg-based stents as a transformative solution in interventional cardiology.展开更多
Additive manufacturing(AM)has revolutionized the production of metal bone implants,enabling unprecedented levels of customization and functionality.Recent advancements in surface-modification technologies have been cr...Additive manufacturing(AM)has revolutionized the production of metal bone implants,enabling unprecedented levels of customization and functionality.Recent advancements in surface-modification technologies have been crucial in enhancing the performance and biocompatibility of implants.Through leveraging the versatility of AM techniques,particularly powder bed fusion,a range of metallic biomaterials,including stainless steel,titanium,and biodegradable alloys,can be utilized to fabricate implants tailored for craniofacial,trunk,and limb bone reconstructions.However,the potential of AM is contingent on addressing intrinsic defects that may hinder implant performance.Techniques such as sandblasting,chemical treatment,electropolishing,heat treatment,and laser technology effectively remove residual powder and improve the surface roughness of these implants.The development of functional coatings,applied via both dry and wet methods,represents a significant advancement in surface modification research.These coatings not only improve mechanical and biological interactions at the implant-bone interface but also facilitate controlled drug release and enhance antimicrobial properties.Addition-ally,micro-and nanoscale surface modifications using chemical and laser techniques can precisely sculpt implant surfaces to promote the desired cellular responses.This detailed exploration of surface engineering offers a wealth of opportunities for creating next-generation implants that are not only biocompatible but also bioactive,laying the foundation for more effective solutions in bone reconstruction.展开更多
Biodegradable metals have garnered considerable interest owing to their capacity for self-degradation following the repair of damaged tissues.This review commences with their historical development and clarifies the e...Biodegradable metals have garnered considerable interest owing to their capacity for self-degradation following the repair of damaged tissues.This review commences with their historical development and clarifies the essential prerequisites for their successful clinical translation.Subsequently,a detailed review of magnesium-based materials is presented from five critical areas of alloying,fabrication techniques,purification,surface modification,and structural design,systematically addressing their progress in biodegradation rate retardation,mechanical reinforcement,and biocompatibility enhancement.Furthermore,recent breakthroughs in vivo animal experiments and clinical translation of magnesium alloys are summarized.Finally,this review concludes with a critical assessment of the achievements and challenges encountered in the clinical application of these materials,and proposes practical strategies to address current limitations and guide future research perspectives.展开更多
Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(...Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(in order of increasing Ag content:A10,A20,A30,and A40)were surface-modified with stearic acid,to suppress the Ag shell dewetting and improve sinterability.The surface-modified particles were mixed with a polyol-based solvent to fabricate a resin-free paste.Subsequently,the pastes were screen-printed onto a slide glass and sintered at 250°C in a nitrogen atmosphere for 1-10 min to form an electrode.The electrical resistivity of the sintered film as a function of sintering time was measured using a four-point probe.All the four surface-modified Cu@Ag particles with different Ag contents exhibited decreased electrical resistivity.Particularly,the largest difference in values after and before the surface modification was observed for A40 with the highest Ag content;the electrical resistivities of the initial and surface-modified particles were 1.51×10^(-4) and 6.67×10^(-5)Ω·cm,respectively,after sintering for 10 min.The findings of this study confirmed that the surface modification using stearic acid effectively suppressed the dewetting of the Ag shell and improved the sinterability of the submicron Cu@Ag particles.展开更多
Polyetheretherketone(PEEK)is a desirable candidate to replace conventional metal implants owing to its excellent mechanical properties.However,the intrinsic bioinertness of PEEK results in inferior or delayed osseoint...Polyetheretherketone(PEEK)is a desirable candidate to replace conventional metal implants owing to its excellent mechanical properties.However,the intrinsic bioinertness of PEEK results in inferior or delayed osseointegration,which limits its further clinical application.To address these challenges,one leading strategy is to construct a biofunctionalized surface on PEEK that provides a coordinated osteoblastosteoclast interactions microenvironment.Herein,alendronate(ALN),a common bone absorption inhibitor,was loaded in biomedical inorganic/organic microspheres,consisting of bioactive inorganic nanohydroxyapatite core,and chitosan(CS)shell.Polydopamine(PDA)modification was employed to ensure the adherence of the microspheres to the PEEK surface.The delivery of ALN and Ca^(2+)from these microspheres simultaneously suppressed osteoclastogenesis and promoted osteogenesis,resulting in a coordinated cascade of osteoblast-osteoclast interactions crucial for the per-implant osseointegration.In vitro experiments demonstrated that the PEEK surface exhibited satisfactory biocompatibility and enhanced the proliferation and osteogenic differentiation of rat bone mesenchymal stem cells while inhibiting the osteoclast differentiation.Moreover,the in vivo rat femoral drilling model demonstrated superior osseointegration three months after implantation.By considering the bone remodeling processes,this study proposes a novel biofunctionalized PEEK surface that regulates the activities of both osteoblasts and osteoclasts to promote osseointegration.展开更多
Surface passivation with organic ammoniums improves perovskite solar cell performance by forming 2D/quasi-2D structures or adsorbing onto surfaces.However,complexity from mixed phases can trigger phase transitions,com...Surface passivation with organic ammoniums improves perovskite solar cell performance by forming 2D/quasi-2D structures or adsorbing onto surfaces.However,complexity from mixed phases can trigger phase transitions,compromising stability.The control of surface dimensionality after organic ammonium passivation presents significant importance to device stability.In this study,we developed a poly-fluorination strategy for surface treatment in perovskite solar cells,which enabled a high and durable interfacial phase purity after surface passivation.The locked surface dimensionality of perovskite was achieved through robust interaction between the poly-fluorinated ammoniums and the perovskite surface,along with the steric hindrance imparted by fluorine atoms,reducing its reactivity and penetration capabilities.The high hydrophobicity of the poly-fluorinated surface also aids in moisture resistance of the perovskite layer.The champion device achieved a power conversion efficiency(PCE)of 25.2% with certified 24.6%,with 90% of its initial PCE retained after approximately 1200 h under continuous 1-sun illumination,and over 14,400 h storage stability and superior stability under high-temperature operation.展开更多
Silica fibers were modified by a specific ratio of SiB6 mixed with silica sol through vacuum impregnation method.The modified fibers were then incorporated into a phenolic resin matrix to prepare fiber-reinforced resi...Silica fibers were modified by a specific ratio of SiB6 mixed with silica sol through vacuum impregnation method.The modified fibers were then incorporated into a phenolic resin matrix to prepare fiber-reinforced resin composites.The influences of the SiB_(6)/SiO_(2)mixed modification on silica fiber properties were analyzed through thermogravimetric analysis(TGA),differential scanning calorimetry(DSC),scanning electron microscopy(SEM),and X-ray diffraction(XRD),respectively.Additionally,the influence of the SiB_(6)/SiO_(2)mixed modification on the mechanical properties of phenolic resin matrix composites was evaluated through mechanical testing.The experimeatal results indicate that the SiB_(6)/SiO_(2)mixed surface modification shows significant improvement in strength at room temperature and high temperatures,and crystallization temperature of silica fiber increases.The SiB_(6)/Silica sol co-modified silica fiber shows potential for future application in thermal protection and other high-temperature conditions.展开更多
Enhancing the lubricating properties and antibacterial adhesion resistance of implantable medical materials is critical to prevent soft tissue injury during implantation and the formation of bacterial biofilms.Prior s...Enhancing the lubricating properties and antibacterial adhesion resistance of implantable medical materials is critical to prevent soft tissue injury during implantation and the formation of bacterial biofilms.Prior studies may have exhibited limitations in the preparation methodologies and long-term stability of coatings for implantable medical materials.In this study,we developed a multilayered hybrid hydrogel coating method based on the rate difference of polymerization initiation on the material surface.The acquired coating with persistent lubrication capability retained its functionality after 2×10^(4) cycles of friction and 21 days of PBS immersion.A quaternary ammonium salt coating with antibacterial properties was introduced to further functionalize the coating.Animal experiments demonstrated that this coating exhibited remarkable effects on delaying encrustation and bacterial colonization.These studies indicate that this simple method of introducing lubricating and antibacterial coatings on catheters is likely to enhance the biocompatibility of medical devices and has broad application prospects in this field of medical devices.展开更多
The poor surface antibacterial properties are one of the important factors limiting the application of Carbon Fibers Reinforced Polyetheretherketone (CFR-P) composites as artificial bone replace materials. Some of the...The poor surface antibacterial properties are one of the important factors limiting the application of Carbon Fibers Reinforced Polyetheretherketone (CFR-P) composites as artificial bone replace materials. Some of the Two-Dimensional (2D) nanomaterials with unique lamellar structures and biological properties have been demonstrated to have excellent antibacterial properties. Antibacterial properties can be improved by feasible chemical strategies for preparing 2D nanomaterials coating on the surface of CFR-P. In this work, Black Phosphorus (BP) coating was prepared on the originally chemically inert CFR-P surface based on wet chemical pretreatment. The physical and chemical properties, including surface microstructure, chemical composition and state, roughness and hydrophilicity were characterized. The antibacterial ratios against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Streptococcus mutans (S. mutans) were evaluated. The results indicated that hydrophilicity of BP coating on CFR-P was significantly higher compared to that of the pure CFR-P. Wet chemical pretreatment using mixed acid reagents (concentrated sulfuric acid and concentrated nitric acid) introduced hydroxyl, carboxyl and nitro groups on CFR-P. The BP coating exhibited the antibacterial rate of over 98% against both S. aureus and E. coli. In addition, the antibacterial rate of BP coating against the main pathogenic bacteria of dental caries, Streptococcus mutans, reached 45%.展开更多
Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure die...Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure dielectric barrier discharge(DBD)plasma method is demonstrated for the processing of silk fabrics using 1H,1H,2H,2H-perfluorodecyltriethoxysilane(PFDS)as the precursor.The results showed the successful grafting of PFDS groups onto the surface of silk fabrics without causing damage.Meanwhile,the gas temperature is rather low during the whole processing procedure,suggesting the non-equilibrium characteristics of DBD plasma.The influence on fabrics of the processing parameters(PFDS concentration,plasma treatment time and plasma discharge power)was systematically investigated.An optimum processing condition was determined to be a PFDS concentration of 8wt%,a plasma processing time of 40 s and a plasma power of 11.87 W.However,with prolonged plasma processing time or enhanced plasma power,the plasma-grafted PFDS films could be degraded.Further study revealed that plasma processing of silk fabrics with PFDS would lead to a change in their chemical composition and surface roughness.As a result,the surface energy of the fabrics was reduced,accompanied by improved water and oil repellency as well as enhanced antifouling performance.Besides,the plasma-grafted PFDS films also had good durability and stability.By extending the method to polyester and wool against different oil-/water-based stains,the DBD plasma surface modification technique demonstrated good versatility in improving the antifouling properties of fabrics.This work provides guidance for the surface modification of fabrics using DBD plasma to confer them with desirable functionalities.展开更多
Single crystalline nickel rich Li[Ni_(x)Co_(y)Mn_(1-x–y)]O_(2)(SCNCM)layered oxide cathodes show higher ionic conductivity and better structure integrity than polycrystalline NCM(PCNCM)cathodes by eliminating grain b...Single crystalline nickel rich Li[Ni_(x)Co_(y)Mn_(1-x–y)]O_(2)(SCNCM)layered oxide cathodes show higher ionic conductivity and better structure integrity than polycrystalline NCM(PCNCM)cathodes by eliminating grain boundaries.However,it remains challenges in the controlled synthesis process and restricted cycling stability of SCNCM.Herein,take single crystalline nickel rich Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)(SC811)as an example,a dual molten salts(LiOH and Li_(2)SO_(4))assisted secondary calcination method is proposed,for which LiOH salt improves primary crystal size and Li_(2)SO_(4)prevents the aggravation of NCM nanocrystals.To further reduce the interfacial side reactions,Mg-doping and B-coating surface modification was carried out,which effectively suppress anisotropic lattice changes and Li/Ni disorder.In addition,a thin and uniform H_(3)BO_(3)coating effectively prevents direct contact between the electrode and electrolyte,thus reducing harmful parasitic reactions.The single crystal structure engineering and surface modification strategy of oxide layered cathodes significantly improve the cycling stability of the modified SC811 cathode.For example,during a long-term cycling of 470 cycles,a high-capacity retention of 74.2%obtained at 1C rate.Our work provides a new strategy for engineering high energy nickel rich layered oxide NCM cathodes.展开更多
Protein coronas provide the biological identity of nanomaterials in vivo. Here we have used dynamic light scattering (DLS) and transmission electron microscopy (TEM) to investigate the adsorption of serum proteins...Protein coronas provide the biological identity of nanomaterials in vivo. Here we have used dynamic light scattering (DLS) and transmission electron microscopy (TEM) to investigate the adsorption of serum proteins, including bovine serum albumin (BSA), transferrin (TRF) and fibrinogen (FIB), on gold nanoparticles (AuNPs) with different surface modifications (citrate, thioglycolic acid, cysteine, polyethylene glycol (PEG, Mw = 2 k and 5 k)). AuNPs with PEG(5 k) surface modification showed no protein adsorption. AuNPs with non-PEG surface modifications showed aggregation with FIB. AuNPs with citrate and thioglycolic acid surface modifications showed 6-8 nm thick BSA and TRF coronas (corres- ponding to monolayer or bilayer proteins), in which the microscopic dissociation constants of BSA and TRF protein coronas are in the range of 104 to 104 M.展开更多
In this work,surface modification of a Mg-4Sm-2Al-0.5Mn alloy with high current pulse electron beam(HCPEB)under different number of pulses were investigated.The evolution in microstructure,composition and phase compon...In this work,surface modification of a Mg-4Sm-2Al-0.5Mn alloy with high current pulse electron beam(HCPEB)under different number of pulses were investigated.The evolution in microstructure,composition and phase components and properties in the surface layer before and after HCPEB treatment were characterized.It was found that the Al 11 Sm 3 and Al 2 Sm phases in the surface layer were gradually dissolved during HCPEB treatment,leading to the formation of a chemical homogeneous melted layers.Besides,deformation bands were formed in the treated layer due to the thermal stress generated during treatment.After 15 pulses treatment,the surface hardness increases to the maximum value of about 62.2 HV,about 61.2%higher than that of the untreated state.Electrochemical results show that the 15 pulses treated sample presents the best corrosion resistance in the 3.5wt%NaCl water solution by showing the highest corrosion potential(E_(corr))of-1.339V SEC and the lowest corrosion current density(I_(corr))of 1.48×10^(-6)A·cm^(-2).The results prove that the surface properties of the Mg-4Sm-2Al-0.5Mn alloy can be significantly improved by the HCPEB treatments under proper conditions.展开更多
Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing...Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field.展开更多
基金National Natural Science Foundation of China(52171114)。
文摘Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics,metallic nanoparticles and antimicrobial peptides,have been extensively used to deal with Ti implant infections.However,these chemical approaches suffer from potential toxicity,antibiotic resistance and poor long-term antibacterial performance.Hence,physical antibacterial surfaces on Ti-based implants have attracted increasing attention.The antibacterial behavior of different surfaces on Ti-based biomaterials against various bacteria only by physical properties of the implants themselves(e.g.,nanotopography)or exogenous physical stimulus(e.g.,photocatalysis)was reviewed,as well as parameters influencing the physical antibacterial processes,such as size,shape and density of the surface nanotextures,and bacterial growth phases.Besides,mechanisms of different fabrication techniques for the physical antibacterial surfaces on Ti-based biomaterials were also summarized.
基金supported by the State Key Basic Research Program of the PRC(No.2014CB744501)the National Key Research and Development Program of China(No.2017YFA0205301)+1 种基金the National Natural Science Foundation of China(Nos.61527806,61471168 and 61871180)Open Funding of State Key Laboratory of Oral Diseases(No.SKLOD2018OF02)
文摘The feature of the surface coating can affect important properties of iron oxide nanoparticles(IONPs), it is therefore critical for further understanding how these materials react to physiological conditions, which is still needed to fully exploit the potential of IONPs for their theranostic applications. In this work, we prepared IONPs which surface were modified with citric acid(CA), chitosan(CS) and folic acid conjugated chitosan(FA-g-CS). respectively. Their physicochemical properties were investigated using FT-IR, TEM,powder XRD, VSM, TGA, DLS and zeta potential. We found that CA-IONP dispersion was composed of monocrystalline particles while CS-IONP and FA-g-CS-IONP were composed of polycrystalline aggregates. All IONPs retained the crystalline structure of magnetite and exhibited the superparamagnetic behavior. Their saturation magnetization decreased with the increase in the amount of their organic coatings. Their drug loading capacities, drug release patterns and in vitro anticancer efficiencies were studied by using doxorubicin(DOX) as a model drug. DOX@CS-IONP and DOX@FA-g-CSIONP exhibited lower drug loading while showing higher water dispersity when compared with DOX@CA-IONP. All IONPs were surface charged and they tended to agglomerate in medium with high pH value and ionic strength. In the presence of chitosan or FA-g-CS coatings, their DOX release rate was slowed down compared with that of DOX@CA-IONP. Unloaded IONPs exhibited nearly no cytotoxicity on both cancer cells and normal cells in the presence of chitosan and FA-g-CS when compared with CA-IONP which presented high cytotoxicity. However, DOX@FA-g-CS-IONP showed significantly cytotoxicity on folate receptors(FRs) positive breast cancer cells while exhibiting nearly no cytotoxicity on FRs negative normal cells. Results presented in this study were valuable to the design and fabrication of IONPs-based system for better theranostic applications.
基金This work was financially supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia through Project Nos.ON174004 and ON172019the PhD fellowship of Slađana Laketić.
文摘The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values.During the interaction of laser irradiation with the investigated materials,a part of the energy was absorbed on the target surface,influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations,resulting in crater formation and the presence of microcracks and hydrodynamic structures.Moreover,different chemical changes were induced on the target materials’surfaces,resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption.Given the high energy absorption at the site of interaction,the dimensions of the surface damaged area increased.Consequently,surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area.Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.
基金supported by the National High Level Hospital Clinical Research Funding:2022-PUMCH-A-191.
文摘As the number of patients suffering from cardiovascular diseases and peripheral vascular diseases rises,the constraints of autologous transplantation remain unavoidable.As a result,artificial vascular grafts must be developed.Adhesion of proteins,platelets and bacteria on implants can result in stenosis,thrombus formation,and postoperative infection,which can be fatal for an implantation.Polyurethane,as a commonly used biomaterial,has been modified in various ways to deal with the adhesions of proteins,platelets,and bacteria and to stimulate endothelium adhesion.In this review,we briefly summarize the mechanisms behind adhesions,overview the current strategies of surface modifications of polyurethane biomaterials used in vascular grafts,and highlight the challenges that need to be addressed in future studies,aiming to gain a more profound understanding of how to develop artificial polyurethane vascular grafts with an enhanced implantation success rate and reduced side effect.
基金supported by National Basic Research Program of China (No. 2006CB202600) the Natural Science Foundation of Nantong University (No. 06Z120)+1 种基金 the Fund for High Technology Research of Jiangsu Province (No. BG2005022) "The Six Top Talents Project" of Jiangsu
文摘The TiO2 nanoporous film photoelectrode, as a crucial component of dye-sensitized solar cells, has been investigated. The photovoltaic properties and the dark current were studied by two surface modification methods. One was to apply a compact layer between the conductive glass substrate and nanoporous TiO2 film. Another was to produce TiO2 nanoparticles among the microstructure by TICl4 treatment. A suitable concentration and number of times for TICl4 treatment were found in our experiment. The dark current is suppressed by surface modifications, leading to a significant improvement in the solar cells performance. An excessive concentration of TICl4 will produce more surface states and introduce a larger dark current reversely. The dye is also regarded as a source of charge recombination in dark to some extent, due to an amount of surface protonations introduced by the interracial link in the conductive glass substrate/dye interface and dye/TiO2 interface.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272253,82103147,12202302,31800684,and 11802197)the Natural Science Foundation of Shanxi Province,China(Grant Nos.202203021221047,20210302124007,and 20210302124405)+2 种基金the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SX-AT008 and 2021SX-AT009)the Central Guidance on Local Science and Technology Development Fund of Shanxi Province(YDZJSX2021A021)The Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20220006)is also acknowledged with gratitude.
文摘Black phosphorus(BP),a novel two dimensional material,exhibits remarkable photoelectric characteristics,ultrahigh photothermal conversion efficiency,substantial specific surface area,high carrier mobility,and tunable band gap properties.These attributes have positioned it as a promising candidate in domains such as energy,medicine,and the environment.Nonetheless,its vulnerability to light,oxygen,and water can lead to rapid degradation and loss of crystallinity,thereby limiting its synthesis,preservation,and application.Moreover,BP has demonstrated cytotoxic tendencies,substantially constraining its viability in the realm of biomedicine.Consequently,the imperative for surface modification arises to bolster its stability and biocompatibility,while concurrently expanding its utility spectrum.Biological macromolecules,integral components of living organisms,proffer innate advantages over chemical agents and polymers for the purpose of the BP modifications.This review comprehensively surveys the advancements in utilizing biological macromolecules for the modifications of BP.In doing so,it aims to pave the way for enhanced stability,biocompatibility,and diversified applications of this material.
文摘Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term com-plications.However,challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption.This review highlights the latest breakthroughs in surface modification,alloying,and coating strategies to enhance the mechanical integrity,corrosion resistance,and biocompatibility of Mg-based stents.Key surface engineering techniques,including polymer and bioactive coatings,are ex-amined for their role in promoting endothelial healing and minimising inflammatory responses.Future directions are proposed,focusing on personalised stent designs to optimize efficacy and long-term outcomes,positioning Mg-based stents as a transformative solution in interventional cardiology.
基金supported by National Natural Science Foundation of China(Grant No.52275343)Natural Science Foundation of Zhejiang Province(Grant No.LY23E050003)Ningbo Youth Science and Technology Innovation Leading Talent Project(Grant No.2023QL021).
文摘Additive manufacturing(AM)has revolutionized the production of metal bone implants,enabling unprecedented levels of customization and functionality.Recent advancements in surface-modification technologies have been crucial in enhancing the performance and biocompatibility of implants.Through leveraging the versatility of AM techniques,particularly powder bed fusion,a range of metallic biomaterials,including stainless steel,titanium,and biodegradable alloys,can be utilized to fabricate implants tailored for craniofacial,trunk,and limb bone reconstructions.However,the potential of AM is contingent on addressing intrinsic defects that may hinder implant performance.Techniques such as sandblasting,chemical treatment,electropolishing,heat treatment,and laser technology effectively remove residual powder and improve the surface roughness of these implants.The development of functional coatings,applied via both dry and wet methods,represents a significant advancement in surface modification research.These coatings not only improve mechanical and biological interactions at the implant-bone interface but also facilitate controlled drug release and enhance antimicrobial properties.Addition-ally,micro-and nanoscale surface modifications using chemical and laser techniques can precisely sculpt implant surfaces to promote the desired cellular responses.This detailed exploration of surface engineering offers a wealth of opportunities for creating next-generation implants that are not only biocompatible but also bioactive,laying the foundation for more effective solutions in bone reconstruction.
基金supported by the Science and Technology Planning Project of Guangdong Province(Nos.2024A0505040016 and 2023A0505050148)National Key Research and Development Project of China(2023YFB3809900/2023YFB3809902)Natural Science Foundation of Guangdong Province(No.2025A1515010026)。
文摘Biodegradable metals have garnered considerable interest owing to their capacity for self-degradation following the repair of damaged tissues.This review commences with their historical development and clarifies the essential prerequisites for their successful clinical translation.Subsequently,a detailed review of magnesium-based materials is presented from five critical areas of alloying,fabrication techniques,purification,surface modification,and structural design,systematically addressing their progress in biodegradation rate retardation,mechanical reinforcement,and biocompatibility enhancement.Furthermore,recent breakthroughs in vivo animal experiments and clinical translation of magnesium alloys are summarized.Finally,this review concludes with a critical assessment of the achievements and challenges encountered in the clinical application of these materials,and proposes practical strategies to address current limitations and guide future research perspectives.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A2C1007400)supported,partly,by the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(Nos.NRF-2020M3H4A3106383,NRF2020M3H4A3081764)+1 种基金supported,partly,by ETRI(No.21YB1610)supported by a Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(No.P0008458,HRD Program for Industrial Innovation)。
文摘Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(in order of increasing Ag content:A10,A20,A30,and A40)were surface-modified with stearic acid,to suppress the Ag shell dewetting and improve sinterability.The surface-modified particles were mixed with a polyol-based solvent to fabricate a resin-free paste.Subsequently,the pastes were screen-printed onto a slide glass and sintered at 250°C in a nitrogen atmosphere for 1-10 min to form an electrode.The electrical resistivity of the sintered film as a function of sintering time was measured using a four-point probe.All the four surface-modified Cu@Ag particles with different Ag contents exhibited decreased electrical resistivity.Particularly,the largest difference in values after and before the surface modification was observed for A40 with the highest Ag content;the electrical resistivities of the initial and surface-modified particles were 1.51×10^(-4) and 6.67×10^(-5)Ω·cm,respectively,after sintering for 10 min.The findings of this study confirmed that the surface modification using stearic acid effectively suppressed the dewetting of the Ag shell and improved the sinterability of the submicron Cu@Ag particles.
基金the funding support from the Tianjin Medical University“Clinical Talent Training 123 Climbing Plan”the Youth Fund of Tianjin Medical University Second Hospital(No.2022ydey06)。
文摘Polyetheretherketone(PEEK)is a desirable candidate to replace conventional metal implants owing to its excellent mechanical properties.However,the intrinsic bioinertness of PEEK results in inferior or delayed osseointegration,which limits its further clinical application.To address these challenges,one leading strategy is to construct a biofunctionalized surface on PEEK that provides a coordinated osteoblastosteoclast interactions microenvironment.Herein,alendronate(ALN),a common bone absorption inhibitor,was loaded in biomedical inorganic/organic microspheres,consisting of bioactive inorganic nanohydroxyapatite core,and chitosan(CS)shell.Polydopamine(PDA)modification was employed to ensure the adherence of the microspheres to the PEEK surface.The delivery of ALN and Ca^(2+)from these microspheres simultaneously suppressed osteoclastogenesis and promoted osteogenesis,resulting in a coordinated cascade of osteoblast-osteoclast interactions crucial for the per-implant osseointegration.In vitro experiments demonstrated that the PEEK surface exhibited satisfactory biocompatibility and enhanced the proliferation and osteogenic differentiation of rat bone mesenchymal stem cells while inhibiting the osteoclast differentiation.Moreover,the in vivo rat femoral drilling model demonstrated superior osseointegration three months after implantation.By considering the bone remodeling processes,this study proposes a novel biofunctionalized PEEK surface that regulates the activities of both osteoblasts and osteoclasts to promote osseointegration.
基金grants(grant numbers LR24F040001,LD24E020001 and LD22E020002)from the Natural Science Foundation of Zhejiang Province of Chinathe National Natural Science Foundation of China(grant number 62274146)+1 种基金the support of Key R&D Program of Zhejiang(2024SSYS0061)supported by the Fundamental Research Funds for the Central Universities(226-2022-00200).
文摘Surface passivation with organic ammoniums improves perovskite solar cell performance by forming 2D/quasi-2D structures or adsorbing onto surfaces.However,complexity from mixed phases can trigger phase transitions,compromising stability.The control of surface dimensionality after organic ammonium passivation presents significant importance to device stability.In this study,we developed a poly-fluorination strategy for surface treatment in perovskite solar cells,which enabled a high and durable interfacial phase purity after surface passivation.The locked surface dimensionality of perovskite was achieved through robust interaction between the poly-fluorinated ammoniums and the perovskite surface,along with the steric hindrance imparted by fluorine atoms,reducing its reactivity and penetration capabilities.The high hydrophobicity of the poly-fluorinated surface also aids in moisture resistance of the perovskite layer.The champion device achieved a power conversion efficiency(PCE)of 25.2% with certified 24.6%,with 90% of its initial PCE retained after approximately 1200 h under continuous 1-sun illumination,and over 14,400 h storage stability and superior stability under high-temperature operation.
基金Funded by the Natural Science Foundation of Hubei Province(No.2024AFB833)。
文摘Silica fibers were modified by a specific ratio of SiB6 mixed with silica sol through vacuum impregnation method.The modified fibers were then incorporated into a phenolic resin matrix to prepare fiber-reinforced resin composites.The influences of the SiB_(6)/SiO_(2)mixed modification on silica fiber properties were analyzed through thermogravimetric analysis(TGA),differential scanning calorimetry(DSC),scanning electron microscopy(SEM),and X-ray diffraction(XRD),respectively.Additionally,the influence of the SiB_(6)/SiO_(2)mixed modification on the mechanical properties of phenolic resin matrix composites was evaluated through mechanical testing.The experimeatal results indicate that the SiB_(6)/SiO_(2)mixed surface modification shows significant improvement in strength at room temperature and high temperatures,and crystallization temperature of silica fiber increases.The SiB_(6)/Silica sol co-modified silica fiber shows potential for future application in thermal protection and other high-temperature conditions.
基金financially supported by the National Natural Science Foundation of China(Nos.52373296 and 52173287)。
文摘Enhancing the lubricating properties and antibacterial adhesion resistance of implantable medical materials is critical to prevent soft tissue injury during implantation and the formation of bacterial biofilms.Prior studies may have exhibited limitations in the preparation methodologies and long-term stability of coatings for implantable medical materials.In this study,we developed a multilayered hybrid hydrogel coating method based on the rate difference of polymerization initiation on the material surface.The acquired coating with persistent lubrication capability retained its functionality after 2×10^(4) cycles of friction and 21 days of PBS immersion.A quaternary ammonium salt coating with antibacterial properties was introduced to further functionalize the coating.Animal experiments demonstrated that this coating exhibited remarkable effects on delaying encrustation and bacterial colonization.These studies indicate that this simple method of introducing lubricating and antibacterial coatings on catheters is likely to enhance the biocompatibility of medical devices and has broad application prospects in this field of medical devices.
基金support of the National Natural Science Foundation of China(61971301)In part by the Central Guidance on Local Science and Technology Development Fund of Shanxi Province under Grant YDZJSX2021A018+1 种基金Shanxi Province Higher Education Science and Technology Innovation Plan Project(2022L060)the Fundamental Research Program of Shanxi Province(Nos.202203021212227,202303021212082).
文摘The poor surface antibacterial properties are one of the important factors limiting the application of Carbon Fibers Reinforced Polyetheretherketone (CFR-P) composites as artificial bone replace materials. Some of the Two-Dimensional (2D) nanomaterials with unique lamellar structures and biological properties have been demonstrated to have excellent antibacterial properties. Antibacterial properties can be improved by feasible chemical strategies for preparing 2D nanomaterials coating on the surface of CFR-P. In this work, Black Phosphorus (BP) coating was prepared on the originally chemically inert CFR-P surface based on wet chemical pretreatment. The physical and chemical properties, including surface microstructure, chemical composition and state, roughness and hydrophilicity were characterized. The antibacterial ratios against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Streptococcus mutans (S. mutans) were evaluated. The results indicated that hydrophilicity of BP coating on CFR-P was significantly higher compared to that of the pure CFR-P. Wet chemical pretreatment using mixed acid reagents (concentrated sulfuric acid and concentrated nitric acid) introduced hydroxyl, carboxyl and nitro groups on CFR-P. The BP coating exhibited the antibacterial rate of over 98% against both S. aureus and E. coli. In addition, the antibacterial rate of BP coating against the main pathogenic bacteria of dental caries, Streptococcus mutans, reached 45%.
基金the financial support from National Natural Science Foundation of China(Nos.22078125 and 52004102)Postdoctoral Science Foundation of China(No.2023M741472)。
文摘Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure dielectric barrier discharge(DBD)plasma method is demonstrated for the processing of silk fabrics using 1H,1H,2H,2H-perfluorodecyltriethoxysilane(PFDS)as the precursor.The results showed the successful grafting of PFDS groups onto the surface of silk fabrics without causing damage.Meanwhile,the gas temperature is rather low during the whole processing procedure,suggesting the non-equilibrium characteristics of DBD plasma.The influence on fabrics of the processing parameters(PFDS concentration,plasma treatment time and plasma discharge power)was systematically investigated.An optimum processing condition was determined to be a PFDS concentration of 8wt%,a plasma processing time of 40 s and a plasma power of 11.87 W.However,with prolonged plasma processing time or enhanced plasma power,the plasma-grafted PFDS films could be degraded.Further study revealed that plasma processing of silk fabrics with PFDS would lead to a change in their chemical composition and surface roughness.As a result,the surface energy of the fabrics was reduced,accompanied by improved water and oil repellency as well as enhanced antifouling performance.Besides,the plasma-grafted PFDS films also had good durability and stability.By extending the method to polyester and wool against different oil-/water-based stains,the DBD plasma surface modification technique demonstrated good versatility in improving the antifouling properties of fabrics.This work provides guidance for the surface modification of fabrics using DBD plasma to confer them with desirable functionalities.
基金financially supported by the National Natural Science Foundation of China under the Grant No.22209075。
文摘Single crystalline nickel rich Li[Ni_(x)Co_(y)Mn_(1-x–y)]O_(2)(SCNCM)layered oxide cathodes show higher ionic conductivity and better structure integrity than polycrystalline NCM(PCNCM)cathodes by eliminating grain boundaries.However,it remains challenges in the controlled synthesis process and restricted cycling stability of SCNCM.Herein,take single crystalline nickel rich Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)(SC811)as an example,a dual molten salts(LiOH and Li_(2)SO_(4))assisted secondary calcination method is proposed,for which LiOH salt improves primary crystal size and Li_(2)SO_(4)prevents the aggravation of NCM nanocrystals.To further reduce the interfacial side reactions,Mg-doping and B-coating surface modification was carried out,which effectively suppress anisotropic lattice changes and Li/Ni disorder.In addition,a thin and uniform H_(3)BO_(3)coating effectively prevents direct contact between the electrode and electrolyte,thus reducing harmful parasitic reactions.The single crystal structure engineering and surface modification strategy of oxide layered cathodes significantly improve the cycling stability of the modified SC811 cathode.For example,during a long-term cycling of 470 cycles,a high-capacity retention of 74.2%obtained at 1C rate.Our work provides a new strategy for engineering high energy nickel rich layered oxide NCM cathodes.
文摘Protein coronas provide the biological identity of nanomaterials in vivo. Here we have used dynamic light scattering (DLS) and transmission electron microscopy (TEM) to investigate the adsorption of serum proteins, including bovine serum albumin (BSA), transferrin (TRF) and fibrinogen (FIB), on gold nanoparticles (AuNPs) with different surface modifications (citrate, thioglycolic acid, cysteine, polyethylene glycol (PEG, Mw = 2 k and 5 k)). AuNPs with PEG(5 k) surface modification showed no protein adsorption. AuNPs with non-PEG surface modifications showed aggregation with FIB. AuNPs with citrate and thioglycolic acid surface modifications showed 6-8 nm thick BSA and TRF coronas (corres- ponding to monolayer or bilayer proteins), in which the microscopic dissociation constants of BSA and TRF protein coronas are in the range of 104 to 104 M.
基金This work was supported by the National Natural Science Foundations of China(No.51271121,51471109).
文摘In this work,surface modification of a Mg-4Sm-2Al-0.5Mn alloy with high current pulse electron beam(HCPEB)under different number of pulses were investigated.The evolution in microstructure,composition and phase components and properties in the surface layer before and after HCPEB treatment were characterized.It was found that the Al 11 Sm 3 and Al 2 Sm phases in the surface layer were gradually dissolved during HCPEB treatment,leading to the formation of a chemical homogeneous melted layers.Besides,deformation bands were formed in the treated layer due to the thermal stress generated during treatment.After 15 pulses treatment,the surface hardness increases to the maximum value of about 62.2 HV,about 61.2%higher than that of the untreated state.Electrochemical results show that the 15 pulses treated sample presents the best corrosion resistance in the 3.5wt%NaCl water solution by showing the highest corrosion potential(E_(corr))of-1.339V SEC and the lowest corrosion current density(I_(corr))of 1.48×10^(-6)A·cm^(-2).The results prove that the surface properties of the Mg-4Sm-2Al-0.5Mn alloy can be significantly improved by the HCPEB treatments under proper conditions.
文摘Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field.