期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Enhanced stability and catalytic activity of subnanometric platinum cluster by surface doping of zirconium in CeO_(2)
1
作者 Zheng Zhao Ziteng Mao +11 位作者 Weixin Zhao Zihao Xu Dongming Chen Bowen Wang Yongqi Zhang Meisheng Cui Yongke Hou Wenzheng Xia Yuqing Ling Juanyu Yang Zongyu Feng Xiaowei Huang 《Journal of Rare Earths》 2025年第4期719-725,I0003,共8页
There has been a continuous effort to improve the thermal stability of subnanometric platinum(Pt)cluster(<2 nm) catalyst because Pt cluster on CeO_(2) support can be mobile and aggregated into nanoparticle on heati... There has been a continuous effort to improve the thermal stability of subnanometric platinum(Pt)cluster(<2 nm) catalyst because Pt cluster on CeO_(2) support can be mobile and aggregated into nanoparticle on heating at elevated temperatures,yet this great challenge remains.In this study,a strategy is reported to improve the thermal stability of subnanometric Pt cluster by hydrothermal deposition method.Based on this method,zirconium(Zr) was precisely doped on surface of Ce_(0.95)Zr_(0.05)O_(2) by accurately controlling Pt subnanometric cluster size.The surface doping of Zr is favorable for forming the Zr-O-Ce site and activating surface lattice oxygen atoms,which results in strong electronic interactions to stabilize the Pt subnanometric cluster.After high-temperature aging treatment at 1000℃/4 h,the single atom Pt supported on CeO_(2) is aggregated into larger sized(>3 nm) nanoparticle.In contrast,the single atom Pt supported on Ce_(0.95)Zr_(0.0)5O_(2) displays less agglomeration into subnanometric cluster with size of(1.4±0.3) nm.Moreover,the CO oxide catalytic performance of Ce_(0.95)Zr_(0.0)5O_(2)-Pt is 26% and 31%higher than that of CeO_(2)-Pt and commercial Al_(2)O_(3)-Pt catalysts,respectively.The experimental and density functional theory(DFT) calculations indicate that the Zr-O-Ce site and Pt subnanometric cluster interface have more defect sites and active oxygen species than CeO_(2)-Pt interface,which activate the Mars van Krevelen(MvK) mechanism,facilitating the catalytic performance. 展开更多
关键词 CeO_(2) STABILITY Rare earths Zr surface doping Subnanometric Pt cluster Catalytic activity
原文传递
Engineering of entropy-driven surface doping towards stabilized high-voltage NCM cathodes:Li(Ni,Co,Mn,Ce,La,Zr,Al)O_(x)
2
作者 Leqi Zhao Zezhou Lin +6 位作者 Yijun Zhong Hanwen Liu Xiao Sun Yu-Cheng Huang William D.A.Rickard Tony Tang Zongping Shao 《Materials Reports(Energy)》 2025年第4期80-90,共11页
Ni-rich LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NCM)cathodes in layered oxide cathodes are attractive for high-energy lithium-ion batteries but suffer from rapid capacity fade and thermal instability at high charge voltages.I... Ni-rich LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NCM)cathodes in layered oxide cathodes are attractive for high-energy lithium-ion batteries but suffer from rapid capacity fade and thermal instability at high charge voltages.In this study,we propose an entropy-assisted multi-element doping strategy to mitigate these issues.Specifically,two routes are designed and compared:bulk-like localized high-entropy doping(BHE-NCM)and surface-distributed high-entropy-zone doping(SHE-NCM).The surface entropy-doped NCM cathode delivers enhanced electrochemical performance,including higher capacity retention under 4.5 V cycling and superior rate capability,compared to both bulk-like and pristine counterparts.Comprehensive material characterization reveals that surface-localized doping stabilizes the layered structure with reduced microcrack formation and creates a uniform dopant-rich surface region with improved thermal and electrochemical stability.Overall,entropy-assisted doping at the near surface zone effectively alleviates structural degradation and interface reactions in Ni-rich NCM,enabling improved cycling performance at high voltage.This work highlights the significance of surface entropy engineering as a promising strategy for designing high-voltage cathodes with improved safety and longevity. 展开更多
关键词 Lithium-ion battery NCM811 cathode modification High-entropy surface doping High-voltage stability
在线阅读 下载PDF
A novel Ce_(0.485)Zr_(0.485)Y_(0.03)O_(2) composite oxide with surface doping of Y and its application in Pd-only three-way catalyst 被引量:2
3
作者 Zheng Zhao Wei-Xin Zhao +6 位作者 Yong-Qi Zhang Mei-Sheng Cui Yong-Ke Hou Dong-Ming Chen Juan-Yu Yang Zong-Yu Feng Xiao-Wei Huang 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期749-757,共9页
The ceria-zirconia compound oxide-supported noble metal Pd(Pd@CZ)is widely used in three-way catalyst.Moreover,the surface structure of CZ plays an important role in catalytic activity of Pd.However,how to regulate th... The ceria-zirconia compound oxide-supported noble metal Pd(Pd@CZ)is widely used in three-way catalyst.Moreover,the surface structure of CZ plays an important role in catalytic activity of Pd.However,how to regulate the surface structure of CZ and clarify the structure–activity relationship is still a challenge.In this paper,a strategy is proposed to develop high activity Pd@CZ nanocatalysts by tuning Y doping sites in CZ.The precipitate-deposition method is developed to prepare the novel Ce_(0.485)Zr_(0.485)Y_(0.03)O_(2) composite with surface doping of Y(CZ-Y-S).In addition,the Pd@CZ-Y-S(Pd supported on CZ-Y-S)exhibits superior catalytic activity for HC,CO,and NO oxide,wherein,for CO and C_(3)H_(6) oxidation,the low-temperature activity of Pd@CZ-Y-S is still 20%higher than that of Pd@CZ-Y-B(Y bulk doping)and commercial Pd@CZ after 1000℃/4 h aging.The effect mechanism is further studied by density functional theory(DFT)calculation.Compared with Pd@CZ-Y-B,Pd@CZ-Y-S shows the lower CO oxide reaction energy barriers due to the weaker adsorption strength of O2.The Y surface doping strategy could provide valuable insights for the development of highly efficient Pd@CZ catalyst with extensive applications. 展开更多
关键词 Rare earth Ceria-zirconia-supported Pd surface doping Experiment and theory Catalytic application
原文传递
Fabrication of ion doped WO_3 photocatalysts through bulk and surface doping 被引量:3
4
作者 Xiaoying Wang Laixue Pang +1 位作者 Xiuying Hu Nianfeng Han 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第9期76-82,共7页
Na+doped WO3 nanowire photocatalysts were prepared by using post-treatment(surface doping) and in situ(bulk doping) doping methods. Photocatalytic degradation of Methyl Blue was tested under visible light irradia... Na+doped WO3 nanowire photocatalysts were prepared by using post-treatment(surface doping) and in situ(bulk doping) doping methods. Photocatalytic degradation of Methyl Blue was tested under visible light irradiation, the results showed that 1 wt.% Na+bulk-doped WO3 performed better, with higher photoactivity than surface-doped WO3. Photoelectrochemical characterization revealed the differences in the photocatalytic process for surface doping and bulk doping. Uniform bulk doping could generate more electron–hole pairs, while minimizing the chance of electron–hole recombination. Some bulk properties such as the bandgap, Fermi level and band position could also be adjusted by bulk doping, but not by surface doping. 展开更多
关键词 WO3 Bulk doping surface doping Photocatalysis Photoelectrochemistry
原文传递
Surface doping manipulation of the insulating ground states in Ta_(2)Pd_(3)Te_(5) and Ta_(2)Ni_(3)Te_(5)
5
作者 江北 姚静宇 +8 位作者 闫大禹 郭照芃 屈歌星 邓修同 黄耀波 丁洪 石友国 王志俊 钱天 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期88-93,共6页
Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) a... Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications.Here we study the evolution of insulating ground states of Ta_(2)Pu_(3)Te_(5) and Ta_(2)Ni_(3)Te_(5) under in-situ surface potassium deposition via angle-resolved photoemission spectroscopy.Our results confirm the excitonic insulator character of Ta_(2)d_(3)Te_(5).Upon surface doping,the size of its global gap decreases obviously.After a deposition time of more than 7 min,the potassium atoms induce a metal-insulator phase transition and make the system recover to a normal state.In contrast,our results show that the isostructural compound Ta_(2)Ni_(3)Te_(5) is a conventional insulator.The size of its global gap decreases upon surface doping,but persists positive throughout the doping process.Our results not only confirm the excitonic origin of the band gap in Ta_(2)Pd_(3)Te_(5),but also offer an effective method for designing functional quantum devices in the future. 展开更多
关键词 excitonic insulator metal–insulator phase transition surface doping angle-resolved photoemission spectroscopy
原文传递
Surface Doping vs.Bulk Doping of Cathode Materials for Lithium-Ion Batteries:A Review 被引量:12
6
作者 Huaming Qian Haoqi Ren +8 位作者 Ying Zhang Xianfeng He Wenbin Li Jingjing Wang Junhua Hu Hong Yang Hirbod Maleki Kheimeh Sari Yu Chen Xifei Li 《Electrochemical Energy Reviews》 SCIE EI 2022年第4期254-285,共32页
To address the capacity degradation,voltage fading,structural instability and adverse interface reactions in cathode materi-als of lithium-ion batteries(LIBs),numerous modification strategies have been developed,mainl... To address the capacity degradation,voltage fading,structural instability and adverse interface reactions in cathode materi-als of lithium-ion batteries(LIBs),numerous modification strategies have been developed,mainly including coating and doping.In particular,the important strategy of doping(surface doping and bulk doping)has been considered an effective strategy to modulate the crystal lattice structure of cathode materials.However,special insights into the mechanisms and effectiveness of the doping strategy,especially comparisons between surface doping and bulk doping in cathode materials,are still lacking.In this review,recent significant progress in surface doping and bulk doping strategies is demonstrated in detail by focusing on their inherent differences as well as effects on the structural stability,lithium-ion(Li-ion)diffusion and electrochemical properties of cathode materials from the following mechanistic insights:preventing the exposure of reactive Ni on the surface,stabilizing the Li slabs,mitigating the migration of transition metal(TM)ions,alleviating unde-sired structural transformations and adverse interface issues,enlarging the Li interslab spacing,forming three-dimensional(3D)Li-ion diffusion channels,and providing more active sites for the charge-transfer process.Moreover,insights into the correlation between the mechanisms of hybrid surface engineering strategies(doping and coating)and their influences on the electrochemical performance of cathode materials are provided by emphasizing the stabilization of the Li slabs,the enhancement of the surface chemical stability,and the alleviation of TM ion migration.Furthermore,the existing challenges and future perspectives in this promising field are indicated. 展开更多
关键词 Lithium-ion batteries Cathode materials surface doping Bulk doping Hybrid surface engineering Structural stability Lithium-ion diffusion
在线阅读 下载PDF
Building surface defects by doping with transition metal on ultrafine TiO_2 to enhance the photocatalytic H_2 production activity 被引量:7
7
作者 Qi‐Feng Liu Qian Zhang +2 位作者 Bing‐Rui Liu Shiyou Li Jing‐Jun Ma 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第3期542-548,共7页
Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photoc... Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photocatalyst materials are beneficial for photocatalytic activity.In this study,surface defects(oxygen vacancies and metal cation replacement defects)were induced with a facile and effective approach by surface doping with low‐cost transition metals(Co,Ni,Cu,and Mn)on ultrafine TiO2.The obtained surface‐defective TiO2exhibited a3–4‐fold improved activity compared to that of the original ultrafine TiO2.In addition,a H2production rate of3.4μmol/h was obtained using visible light(λ>420nm)irradiation.The apparent quantum yield(AQY)at365nm reached36.9%over TiO2‐Cu,significantly more than the commercial P25TiO2.The enhancement of photocatalytic H2production activity can be attributed to improved rapid charge separation efficiency andexpanded light absorption window.This hydrothermal treatment with transition metal was proven to be a very facile and effective method for obtaining surface defects. 展开更多
关键词 Construction of surface defects Ultrafine TiO2 Low‐cost transition metal surface doping Photocatalytic H2 production
在线阅读 下载PDF
Highly efficient modulation of the electronic properties of organic semiconductors by surface doping with 2D molecular crystals 被引量:1
8
作者 Yu Zhang Shuyuan Yang +6 位作者 Xiaoting Zhu Fei Zhai Yiyu Feng Wei Feng Xiaotao Zhang Rongjin Li Wenping Hu 《Science China Chemistry》 SCIE EI CAS CSCD 2020年第7期973-979,共7页
Doping is a critically important strategy to modulate the properties of organic semiconductors(OSCs) to improve their optoelectrical performances. Conventional bulk doping involves the incorporation of foreign molecul... Doping is a critically important strategy to modulate the properties of organic semiconductors(OSCs) to improve their optoelectrical performances. Conventional bulk doping involves the incorporation of foreign molecular species(i.e., dopants) into the lattice of the host OSCs, and thus disrupts the packing of the host OSCs and induces structural defects, which tends to reduce the mobility and(or) the on/off ratio in organic field-effect transistors(OFETs). In this article, we report a highly efficient and highly controllable surface doping strategy utilizing 2D molecular crystals(2DMCs) as dopants to boost the mobility and to modulate the threshold voltage of OFETs. The amount of dopants, i.e., the thickness of the 2DMCs, is controlled at monolayer precision, enabling fine tuning of the electrical properties of the OSCs at unprecedented accuracy. As a result, a prominent increase of the average mobility from 1.31 to 4.71 cm2 V-1 s-1 and a substantial reduction of the threshold voltage from -18.5 to -1.8 V are observed. Meanwhile, high on/off ratios of up to 108 are retained. 展开更多
关键词 organic field-effect transistor organic single crystal 2D molecular crystal surface doping charge transport
原文传递
Synergistic surface restructuring and cation mixing via ultrafast Joule heating enhancing ultrahigh-nickel cathodes for advanced lithium-ion batteries 被引量:1
9
作者 Haoyu Wang Jinyang Dong +10 位作者 Meng Wang Yun Lu Hongyun Zhang Jinzhong Liu Yun Liu Na Liu Ning Li Qing Huang Feng Wu Yuefeng Su Lai Chen 《Journal of Energy Chemistry》 2025年第4期371-382,共12页
The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructur... The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructuring in ultrahigh-nickel cathode materials is rapidly facilitated through an ultrafast Joule heating method.Density functional theory(DFT)calculations,synchrotron X-ray absorption spectroscopy(XAS),and single-particle force test confirmed the establishment of a stable crystal framework and lattice oxygen,which mitigated H2-H3 phase transitions and improved structural reversibility.Additionally,the Sc doping process exhibits a pinning effect on the grain boundaries,as shown by scanning transmission electron microscopy(STEM),enhancing Li~+diffusion kinetics and decreasing mechanical strain during cycling.The in situ development of a cation-mixing layer at grain boundaries also creates a robust cathode/electrolyte interphase,effectively reducing interfacial parasitic reactions and transition metal dissolution,as validated by STEM and time-of-flight secondary ion mass spectrometry(TOF-SIMS).These synergistic modifications reduce particle cracking and surface/interface degradation,leading to enhanced rate capability,structural integrity,and thermal stability.Consequently,the optimized Sc-modified ultrahigh-Ni cathode(Sc-1)exhibits 93.99%capacity retention after 100 cycles at 1 C(25℃)and87.06%capacity retention after 100 cycles at 1 C(50℃),indicating excellent cycling and thermal stability.By presenting a one-step multifunctional modification approach,this research delivers an extensive analysis of the mechanisms governing the structure,microstructure,and interface properties of nickel-rich layered cathode materials(NCMs).These results underscore the potential of ultrahigh-Ni cathodes as viable candidates for advanced lithium-ion batteries(LIBs)in next-generation electric vehicles(EVs). 展开更多
关键词 Lithium-ion batteries Ultrahigh-nickel layered cathodes In situ surface doping Cation mixing layer Structure and thermal stability
在线阅读 下载PDF
Surface charge transfer doping of graphene using a strong molecular dopant CN6-CP
10
作者 Xiaojuan Dai Liyao Liu +2 位作者 Zhen Ji Qing Meng Ye Zou 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第3期553-556,共4页
Surface charge transfer doping of graphene plays an important role in graphene-based electronics due to its simplicity,high doping efficiency,and easy-controllability.Here,we demonstrate the effective surface charge t... Surface charge transfer doping of graphene plays an important role in graphene-based electronics due to its simplicity,high doping efficiency,and easy-controllability.Here,we demonstrate the effective surface charge transfer hole doping of graphene by using a strong p-type molecular dopant hexacyanotrimethylene-cyclopropane (CN6-CP).The CN6-CP exhibits a very high intrinsic work function of 6.37 e V,which facilitates remarkable electron transfer from graphene to CN6-CP as revealed by in situ photoelectron spectroscopy investigations.Consequently,hole accumulation appears in the graphene layer at the direct contact with CN6-CP.As evidenced by Hall effect measurements,the areal hole density of graphene significantly increased from 8.3×10^(12)cm^(-2) to 2.21×10^(13)cm^(-2) upon 6 nm CN6-CP evaporation.The CN6-CP acceptor with strong p-doping effect has great implications for both graphene-based and organic electronics. 展开更多
关键词 GRAPHENE surface charge transfer doping Molecular dopant CN6-CP Hall effect
原文传递
Surface electron doping induced double gap opening in T_(d)-WTe_(2)
11
作者 Qi-Yuan Li Yang-Yang Lv +4 位作者 Yong-Jie Xu Li Zhu Wei-Min Zhao Yanbin Chen Shao-Chun Li 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期620-624,共5页
By using scanning tunneling microscopy,we investigated the electronic evolution of T_(d)-WTe_(2) via in-situ surface alkali K atoms deposition.The T_(d)-WTe_(2) surface is electron doped upon K deposition,and as the K... By using scanning tunneling microscopy,we investigated the electronic evolution of T_(d)-WTe_(2) via in-situ surface alkali K atoms deposition.The T_(d)-WTe_(2) surface is electron doped upon K deposition,and as the K coverage increases,two gaps are sequentially opened near Fermi energy,which probably indicates that two phase transitions concomitantly occur during electron doping.The two gaps both show a dome-like dependence on the K coverage.While the bigger gap shows no prominent dependence on the magnetic field,the smaller one can be well suppressed and thus possibly corresponds to the superconducting transition.This work indicates that T_(d)-WTe_(2) exhibits rich quantum states closely related to the carrier concentration. 展开更多
关键词 scanning tunneling microscopy T_(d)-WTe_(2) surface electron doping superconductivity transition
原文传递
Theoretically predicted innovative palladium stripe dopingcobalt(111) surface with excellent catalytic performance for carbonmonoxide oxidative coupling to dimethyl oxalate
12
作者 Bingying Han Neng Shi +5 位作者 Mengjie Dong Ye Liu Runping Ye Lixia Ling Riguang Zhang Baojun Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期235-243,共9页
Pd-based catalysts are extensively employed to catalyze CO oxidative coupling to generate DMO,while the expensive price and high usage of Pd hinder its massive application in industrial production.Designing Pd-based c... Pd-based catalysts are extensively employed to catalyze CO oxidative coupling to generate DMO,while the expensive price and high usage of Pd hinder its massive application in industrial production.Designing Pd-based catalysts with high efficiency and low Pd usage as well as expounding the catalytic mechanisms are significant for the reaction.In this study,we theoretically predict that Pd stripe doping Co(111)surface exhibits excellent performance than pure Pd(111),Pd monolayer supporting on Co(111)and Pd single atom doping Co(111)surface,and clearly expound the catalytic mechanisms through the density functional theory(DFT)calculation and micro-reaction kinetic model analysis.It is obtained that the favorable reaction pathway is COOCH_(3)-COOCH_(3)coupling pathway over these four catalysts,while the rate-controlling step is COOCH_(3)+CO+OCH_(3)→2COOCH_(3)on Pd stripe doping Co(111)surface,which is different from the case(2COOCH_(3)→DMO)on pure Pd(111),Pd monolayer supporting on Co(111)and Pd single atom doping Co(111)surface.This study can contribute a certain reference value for developing Pd-based catalysts with high efficiency and low Pd usage for CO oxidative coupling to DMO. 展开更多
关键词 CO oxidative coupling to DMO Pd stripe doping Co(111)surface Catalytic mechanism DFT calculation Micro-reaction kinetic model analysis Catalytic performance
在线阅读 下载PDF
Origin of two-dimensional hole gas at the hydrogen-terminated diamond surfaces:Negative interface valence-induced upward band bending
13
作者 Qingzhong Gui Wei Yu +9 位作者 Chunmin Cheng Hailing Guo Xiaoming Zha Ruyue Cao Hongxia Zhong John Robertson Sheng Liu Zhaofu Zhang Zhuo Jiang Yuzheng Guo 《Journal of Materials Science & Technology》 2025年第4期76-85,共10页
The surface transfer doping model has been extensively adopted as a mechanism to account for the generation of hole accumulation layers below hydrogen-terminated diamond(H-diamond)surfaces.To achieve effective surface... The surface transfer doping model has been extensively adopted as a mechanism to account for the generation of hole accumulation layers below hydrogen-terminated diamond(H-diamond)surfaces.To achieve effective surface transfer doping,surface electron acceptor materials with high electron affinity(EA)are required to produce a high density of two-dimensional hole gas(2DHG)on the H-diamond subsurface.We have established ingenious theoretical models to demonstrate that even if these solid materials do not have a high EA value,they remain capable of absorbing electrons from the H-diamond surface by forming a negatively charged interface to act as a surface electron acceptor in the surface transfer doping model.Our calculations,particularly for the local density of states,provide compelling evidence that the effect of an interface with negative charges induces an upward band bending on the H-diamond side.Furthermore,the valence band maximum of the diamond atoms at the interface crosses the Fermi level,giving rise to strong surface transfer p-type doping.These results give a strong theoretical interpretation of the origin of 2DHG on H-diamond surfaces.The proposed guidelines contribute to further improvements in the performance of 2DHG H-diamond field effect transistors. 展开更多
关键词 Hydrogen-terminated diamond surface transfer doping Two-dimensional hole gas First-principles calculations
原文传递
Ultra-fast and high-responsivity self-powered vis-NIR photodetector via surface charge transfer doping in MoTe_(2)/ReS_(2)heterostructures
14
作者 Haozhe Ruan Yongkang Liu +5 位作者 Jianyu Wang Linjiang Xie Yixuan Wang Mengting Dong Zhangting Wu Liang Zheng 《Journal of Semiconductors》 2026年第1期99-106,共8页
The development of optoelectronic technologies demands photodetectors with miniaturization,broadband operation,high sensitivity,and low power consumption.Although 2D van der Waals(vd W)heterostructures are promising c... The development of optoelectronic technologies demands photodetectors with miniaturization,broadband operation,high sensitivity,and low power consumption.Although 2D van der Waals(vd W)heterostructures are promising candidates due to their built-in electric fields,ultrafast photocarrier separation,and tunable bandgaps,defect states limit their performance.Therefore,the modulation of the optoelectronic properties in such heterostructures is imperative.Surface charge transfer doping(SCTD)has emerged as a promising strategy for non-destructive modulation of electronic and optoelectronic characteristics in two-dimensional materials.In this work,we demonstrate the construction of high-performance p-i-n vertical heterojunction photodetectors through SCTD of MoTe_(2)/ReS_(2)heterostructure using p-type F_(4)-TCNQ.Systematic characterization reveals that the interfacial doping process effectively amplifies the built-in electric field,enhancing photogenerated carrier separation efficiency.Compared to the pristine heterojunction device,the doped photodetector exhibits remarkable visible to nearinfrared(635-1064 nm)performance.Particularly under 1064 nm illumination at zero bias,the device achieves a responsivity of 2.86 A/W and specific detectivity of 1.41×10^(12)Jones.Notably,the external quantum efficiency reaches an exceptional value of 334%compared to the initial 11.5%,while maintaining ultrafast response characteristics with rise/fall times of 11.6/15.6μs.This work provides new insights into interface engineering through molecular doping for developing high-performance vd W optoelectronic devices. 展开更多
关键词 MoTe_(2)/ReS_(2)heterostructure broadband photodetector surface charge transfer doping p-i-n
在线阅读 下载PDF
Tailoring the functionalities of MoS_(2)field-effect transistors by an area-selective surface charge transfer doping strategy
15
作者 Jianzhi Hu Mingjie Li +3 位作者 Zhongyang Liu Yingtao Ding Yilin Sun Zhiming Chen 《Nano Research》 2025年第5期628-636,共9页
Surface charge transfer doping(SCTD)is widely recognized as an effective and non-destructive method for modulating the electrical properties of atomically thin transition metal dichalcogenides(TMDs),capitalizing on th... Surface charge transfer doping(SCTD)is widely recognized as an effective and non-destructive method for modulating the electrical properties of atomically thin transition metal dichalcogenides(TMDs),capitalizing on their distinctive two-dimensional(2D)structure.Nevertheless,the challenges of achieving precise area-selective doping using conventional methods,such as dopant vaporization,have impeded the advancement of practical optoelectronic and electronic devices based on TMDs.Herein,we propose a simple and reliable area-selective SCTD strategy to facilitate transfer,doping,and encapsulation simultaneously during the polyvinyl alcohol(PVA)-assistant transfer process.The electrical performance of PVA-doped molybdenum disulfide(MoS_(2))field-effect transistor(FET)exhibited significant enhancement,with carrier concentrations reaching up to 1013 cm^(−2),on-state currents increasing to 10μA·μm^(−1),and on/off ratios attaining a remarkable value of 107.Optical photothermal infrared(O-PTIR)spectroscopy was employed to elaborate the intrinsic temperature-dependent doping mechanism.The functionalization of MoS_(2)FETs was successfully achieved by introducing a hexagonal boron nitride(hBN)capping layer to define the doping area,enabling the creation of a homojunction with a rectification ratio of 106,an inverter fabricated within a single channel,and a Schottky barrier as low as 30.17 meV at the Au/MoS_(2)interface.This area-selective SCTD strategy,enabled by the PVA-assisted transfer process,offers a reliable,efficient,and economical approach for tailoring the functionalities of TMD-based devices,demonstrating substantial potential for diverse electronic applications. 展开更多
关键词 molybdenum disulfide surface doping HOMOJUNCTION inverter Schottky barrier
原文传递
Channel Lateral Pocket or Halo Region of NMOSFET Characterized by Interface State R G Current of the Forward Gated Diode
16
作者 何进 黄爱华 +1 位作者 张兴 黄如 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2001年第7期826-831,共6页
The channel lateral pocket or halo region of NMOSFET characterized by interface state R G current of a forward gated diode has been investigated numerically for the first time.The result of numerical analysis demons... The channel lateral pocket or halo region of NMOSFET characterized by interface state R G current of a forward gated diode has been investigated numerically for the first time.The result of numerical analysis demonstrates that the effective surface doping concentration and the interface state density of the pocket or halo region are interface states R G current peak position dependent and amplitude dependent,respectively.It can be expressed quantitatively according to the device physics knowledge,thus,the direct characterization of the interface state density and the effective surface doping concentration of the pocket or halo becomes very easy. 展开更多
关键词 forward gated diode R G current MOSFET pocket or halo implant region interface states effective surface doping concentration
在线阅读 下载PDF
Surface yttrium-doping induced by element segregation to suppress oxygen release in Li-rich layered oxide cathodes 被引量:8
17
作者 Si-Yu Liu Yu-Huan Zhou +6 位作者 Yi-Bin Zhang Sheng-Jie Xia Ying Li Xin Zhou Bao Qiu Guang-Jie Shao Zhao-Ping Liu 《Tungsten》 EI 2022年第4期336-345,共10页
Doping electrochemically inert elements in Li-rich layered oxide cathodes usually stabilizes the structure to improve electrochemical performance at the expense of available capacity.Here,we use an element segregation... Doping electrochemically inert elements in Li-rich layered oxide cathodes usually stabilizes the structure to improve electrochemical performance at the expense of available capacity.Here,we use an element segregation principle to realize a uniform surface doping without capacity sacrifice.On the basis of Hume-Rothery rule,element yttrium is chosen as a candidate dopant to spontaneously segregate at particle surface due to mismatched ionic size.Combined with X-ray photoelectron spectroscopy and electron energy loss spectroscopy mapping,yttrium is demonstrated uniformly distributed on particle surface.More importantly,a significant alleviation of oxygen release after surface doping is detected by operando differential electrochemical mass spectrometry.As a result,the modified sample exhibits improved reversibility of oxygen redox with 82.1%coulombic efficiency and excellent cycle performances with 84.15%capacity retention after 140 cycles.Postmortem analysis by transmission electron microscopy,Raman spectroscopy and X-ray diffraction reveal that the modified sample maintains the layered structure without a significant structure transformation after long cycles.This work provides an effective strategy with a series of elements to meet the industrial application. 展开更多
关键词 Li-ion batteries Cathode materials Li-rich layered oxides surface doping
原文传递
Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices 被引量:8
18
作者 Yanan Wang Yue Zheng +1 位作者 Cheng Han Wei Chen 《Nano Research》 SCIE EI CAS CSCD 2021年第6期1682-1697,共16页
Doping of semiconductors,i.e.,accurately modulating the charge carrier type and concentration in a controllable manner,is a key technology foundation for modern electronics and optoelectronics.However,the conventional... Doping of semiconductors,i.e.,accurately modulating the charge carrier type and concentration in a controllable manner,is a key technology foundation for modern electronics and optoelectronics.However,the conventional doping technologies widely utilized in silicon industry,such as ion implantation and thermal diffusion,always fail when applied to two-dimensional(2D)materials with atomically-thin nature.Surface charge transfer doping(SCTD)is emerging as an effective and non-destructive doping technique to provide reliable doping capability for 2D materials,in particular 2D semiconductors.Herein,we summarize the recent advances and developments on the SCTD of 2D semiconductors and its application in electronic and optoelectronic devices.The underlying mechanism of STCD processes on 2D semiconductors is briefly introduced.Its impact on tuning the fundamental properties of various 2D systems is highlighted.We particularly emphasize on the SCTD-enabled high-performance 2D functional devices.Finally,the challenges and opportunities for the future development of SCTD are discussed. 展开更多
关键词 surface charge transfer doping two-dimensional(2D)semiconductors property modulation electronic devices optoelectronic devices
原文传递
Tune the photoresponse of monolayer MoS_(2) by decorating CsPbBr_(3) perovskite nanoparticles 被引量:3
19
作者 Chao Tan Rui Tao +5 位作者 Zhihao Yang Lei Yang Xiaolei Huang Yong Yang Fei Qi Zegao Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期345-349,共5页
Tuning the photoresponse of monolayer MoS_(2) could extend its potential application in many fields,however,it is still a challenge.In this study,CsPbBr_(3) nanoparticles were prepared and spin-coated on the surface o... Tuning the photoresponse of monolayer MoS_(2) could extend its potential application in many fields,however,it is still a challenge.In this study,CsPbBr_(3) nanoparticles were prepared and spin-coated on the surface of monolayer MoS_(2) to fabricate hybrid CsPbBr_(3)/MoS_(2) photodetectors.By combing the photoelectrical property of the CsPbBr_(3),the synergistic effect has been systematically studied from its carrier mobility,photoresponse and detectivity.It was found that nanofilm-coating of CsPbBr_(3)would impede the photoelectric performance due to the electron-hole recombination facilitated by the defects at the interface of C PbBr_(3) and MoS_(2) films.While the nanoparticles decorating was observed to significantly improve the conductivity of the monolayer Mo S_(2),which also increased the on/off ratio of the MoS_(2) transistor from 8.2×10~3 to 4.4×10^(4),and enhanced the carrier mobility from 0.090 cm^(2)V^(-1)s^(-1)to 0.202 cm^(2)V^(-1)s^(-1),ascribing to a mixed electron recombination-injection process.Furthermore,the CsPbBr_(3) nanofilm would decrease the responsivity to 136 and 178 A/W under the light wavelength of 400 and 500 nm,respectively,while decorating CsPbBr_(3) nanoparticles improve the photoresponse to 948 and 883 A/W with the detectivity at the level of 10^(11)Jones.This work may provide an easy and cost-efficient way to tune the photoresponse of MoS_(2) photodetectors. 展开更多
关键词 MoS_(2)photodetector CsPbBr_(3)NPs surface charge doping Carrier mobility PHOTORESPONSE
原文传递
Tuning anionic redox activity to boost high-performance sodium-storage in low-cost Na_(0.67)Fe_(0.5)Mn_(0.5)O_(2) cathode 被引量:3
20
作者 Jianyue Jiao Kang Wu +6 位作者 Na Li Enyue Zhao Wen Yin Zhongbo Hu Fangwei Wang Jinkui Zhao Xiaoling Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期214-222,I0005,共10页
Na-based layered iron-manganese oxide Na_(0.67)Fe_(0.5)Mn_(0.5)O_(2) containing only low-cost elements is a promising cathode for Na-ion batteries used in large-scale energy storage systems.However,the poor cycle stab... Na-based layered iron-manganese oxide Na_(0.67)Fe_(0.5)Mn_(0.5)O_(2) containing only low-cost elements is a promising cathode for Na-ion batteries used in large-scale energy storage systems.However,the poor cycle stability restricts its practical application.The capacity decay of Na_(0.67)Fe_(0.6)Mn_(0.5)O_(2) mainly originates from the irreversible anionic redox reaction charge compensation due to the high-level hybridization between oxygen and iron.Herein,we rationally design a surface Ti doping strategy to tune the anionic redox reaction activity of Na_(0.67)Fe_(0.5)Mn_(0.5)O_(2) and improve its Na-storage properties.The doped Ti ions not only enlarge the Na migration spacing layer but also improve the structure stability thanks to the strong Ti-O bond.More importantly,the d0-shell electronic structure of Ti^(4+) can suppress the charge transfer from the oxidized anions to cations,thus reducing the anionic redox reaction activity and enhancing the reversibility of charge compensation.The modified Na_(0.67)Fe_(0.5)Mn_(0.5)O_(2) cathode shows a reversible capacity of 198 mA h g^(-1) and an increased capacity retention from 15% to 73% after about1 month of cycling.Meanwhile,a superior Na-ion diffusion kinetics and rate capability are also observed.This work advances the commercialization process of Na-based layered iron-manganese oxide cathodes;on the other hand,the proposed modification strategy paves the way for the design of high-performance electrode materials relying on anionic redox reactions. 展开更多
关键词 Na-ion battery P2-Na_(0.67)Fe_(0.5)Mn_(0.5)O_(2) Anionic redox reaction surface Ti doping
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部