The weakly compressible smooth particle hydrodynamics(WCSPH)model is studied to address the boundary pressure instability of the SPH method,resulting in the development of the SPH method with improved dynamic boundary...The weakly compressible smooth particle hydrodynamics(WCSPH)model is studied to address the boundary pressure instability of the SPH method,resulting in the development of the SPH method with improved dynamic boundary conditions.This method employs the‘fan’search method for free surface detection,effectively identifying cavity interface particles with diameters smaller than the support domain’s radius,thereby indirectly enhancing the algorithm’s accuracy.On this basis,an improved dynamic boundary condition is proposed by updating the boundary particle pressure calculation scheme to achieve a more stable and continuous pressure field,thereby effectively preventing particles from penetrating the boundary.The SPH method with improved dynamic boundary conditions is used to simulate typical high-speed impact problems such as wedge entry and dam break.The simulation results are in good agreement with the experimental data and other numerical results.展开更多
Microwave reflectometry is a powerful diagnostic that can measure the density profile and localized turbulence with high spatial and temporal resolution and will be used in ITER,so understanding the influence of plasm...Microwave reflectometry is a powerful diagnostic that can measure the density profile and localized turbulence with high spatial and temporal resolution and will be used in ITER,so understanding the influence of plasma perturbations on the reflect signal is important.The characteristics of the reflect signal from profile reflectometry,the time-of-flight(TOF)signal associated with the MHD instabilities,are investigated in EAST.Using a 1D full-wave simulation code by the Finite-DifferenceTime-Domain(FDTD)method,it is well validated that the local density flattening could induce the discontinuity of the simulated TOF signal and an obvious change of reflect amplitude.Experimental TOF signals under different types of MHD instabilities(sawtooth,sawtooth precursors and tearing mode)are studied in detail and show agreement with the simulation.Two new improved algorithms for detecting and localizing the radial positions of the low-order rational surface,the cross-correlation and gradient threshold(CGT)method and the 2D convolutional neural network approach(CNN)are presented for the first time.It is concluded that TOF signal analysis from profile reflectometry can provide a straightforward and localized measurement of the plasma perturbation from the edge to the core simultaneously and may be a complement or correction to the q-profile control,which will be beneficial for the advanced tokamak operation.展开更多
Longitudinal cracks are common defects of continuous casting slabs and may lead to serious quality accidents. Image capturing and recognition of hot slabs is an effective way for on-line detection of cracks, and recog...Longitudinal cracks are common defects of continuous casting slabs and may lead to serious quality accidents. Image capturing and recognition of hot slabs is an effective way for on-line detection of cracks, and recognition of cracks is essential because the surface of hot slabs is very complicated. In order to detect the surface longitudinal cracks of the slabs, a new feature extraction method based on Curvelet transform and kernel locality preserving projections (KLPP) is proposed. First, sample images are decomposed into three levels by Curvelet transform. Second, Fourier transform is applied to all sub-band images and the Fourier amplitude spectrum of each sub-band is computed to get features with translational invariance. Third, five kinds of statistical features of the Fourier amplitude spectrum are computed and combined in different forms. Then, KLPP is employed for dimensionality reduction of the obtained 62 types of high-dimensional combined features. Finally, a support vector machine (SVM) is used for sample set classification. Experiments with samples from a real production line of continuous casting slabs show that the algorithm is effective to detect longitudinal cracks, and the classification rate is 91.89%.展开更多
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o...This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems.展开更多
The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Sw...The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Swin Transformer as the backbone network.This approach leverages Swin Transformer's multi-head self-attention mechanism for improved feature extraction of defects spanning various scales.Integrated with the YOLOv8 detection head,our model achieves a mean average precision of 85.1%on our dataset,outperforming baseline methods by 1.4%.The model's effectiveness is further demonstrated on a steel-surface defect dataset,indicating its broad applicability in industrial surface defect detection.Our work highlights the potential of combining Swin Transformer and YOLOv8 for accurate and efficient defect detection.展开更多
Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as com...Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as complex defect morphology,texture similarity,and fuzzy edges,leading to poor accuracy and missed detections.In order to resolve these problems,we propose MSCM-Net(Multi-Scale Cross-Modal Network),a multiscale cross-modal framework focused on detecting rail surface defects.MSCM-Net introduces an attention mechanism to dynamically weight the fusion of RGB and depth maps,effectively capturing and enhancing features at different scales for each modality.To further enrich feature representation and improve edge detection in blurred areas,we propose a multi-scale void fusion module that integrates multi-scale feature information.To improve cross-modal feature fusion,we develop a cross-enhanced fusion module that transfers fused features between layers to incorporate interlayer information.We also introduce a multimodal feature integration module,which merges modality-specific features from separate decoders into a shared decoder,enhancing detection by leveraging richer complementary information.Finally,we validate MSCM-Net on the NEU RSDDS-AUG RGB-depth dataset,comparing it against 12 leading methods,and the results show that MSCM-Net achieves superior performance on all metrics.展开更多
Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version...Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version 7(YOLOv7)is proposed.First,a cascading style sheets(CSS)block module is proposed,which uses more lightweight operations to obtain redundant information in the feature map,reduces the amount of computation,and effectively improves the detection speed.Secondly,the improved spatial pyramid pooling with cross stage partial convolutions(SPPCSPC)structure is adopted to ensure that the model can also pay attention to the defect location information while predicting the defect category information,obtain richer defect features.In addition,the convolution operation in the original model is simplified,which significantly reduces the size of the model and helps to improve the detection speed.Finally,using efficient intersection over union(EIOU)loss to focus on high-quality anchors,speed up convergence and improve positioning accuracy.Experiments were carried out on the Northeastern University-defect(NEU-DET)steel surface defect dataset.Compared with the original YOLOv7 model,the number of parameters of this model was reduced by 40%,the frames per second(FPS)reached 112,and the average accuracy reached 79.1%,the detection accuracy and speed have been improved,which can meet the needs of steel surface defect detection.展开更多
In order to meet the requirements of accurate identification of surface defects on copper strip in industrial production,a detection model of surface defects based on machine vision,CSC-YOLO,is proposed.The model uses...In order to meet the requirements of accurate identification of surface defects on copper strip in industrial production,a detection model of surface defects based on machine vision,CSC-YOLO,is proposed.The model uses YOLOv4-tiny as the benchmark network.First,K-means clustering is introduced into the benchmark network to obtain anchor frames that match the self-built dataset.Second,a cross-region fusion module is introduced in the backbone network to solve the difficult target recognition problem by fusing contextual semantic information.Third,the spatial pyramid pooling-efficient channel attention network(SPP-E)module is introduced in the path aggregation network(PANet)to enhance the extraction of features.Fourth,to prevent the loss of channel information,a lightweight attention mechanism is introduced to improve the performance of the network.Finally,the performance of the model is improved by adding adjustment factors to correct the loss function for the dimensional characteristics of the surface defects.CSC-YOLO was tested on the self-built dataset of surface defects in copper strip,and the experimental results showed that the mAP of the model can reach 93.58%,which is a 3.37% improvement compared with the benchmark network,and FPS,although decreasing compared with the benchmark network,reached 104.CSC-YOLO takes into account the real-time requirements of copper strip production.The comparison experiments with Faster RCNN,SSD300,YOLOv3,YOLOv4,Resnet50-YOLOv4,YOLOv5s,YOLOv7,and other algorithms show that the algorithm obtains a faster computation speed while maintaining a higher detection accuracy.展开更多
The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect...The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect detection.In contrast to the subjective and inefficient manual visual inspection,deep learning-based algorithms for concrete defect detection exhibit remarkable advantages,emerging as a focal point in recent research.This paper comprehensively analyzes the research progress of deep learning algorithms in the field of surface defect detection in concrete bridges in recent years.It introduces the early detection methods for surface defects in concrete bridges and the development of deep learning.Subsequently,it provides an overview of deep learning-based concrete bridge surface defect detection research from three aspects:image classification,object detection,and semantic segmentation.The paper summarizes the strengths and weaknesses of existing methods and the challenges they face.Additionally,it analyzes and prospects the development trends of surface defect detection in concrete bridges.展开更多
Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of ...Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of small defect are still unsatisfactory.An improved object detection network based on You Only Look One-level Feature(YOLOF)is proposed to show excellent performance in surface defect detection of steel plate,called DLF-YOLOF.First,the anchor-free detector is used to reduce the network hyperparameters.Secondly,deformable convolution network and local spatial attention module are introduced into the feature extraction network to increase the contextual information in the feature maps.Also,the soft non-maximum suppression is used to improve detection accuracy significantly.Finally,data augmentation is performed for small defect objects during training to improve detection accuracy.Experiments show the average precision and average precision for small objects are 42.7%and 33.5%at a detection speed of 62 frames per second on a single GPU,respectively.This shows that DLF-YOLOF has excellent performance to meet the needs of industrial real-time detection.展开更多
Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become o...Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks.To improve the performance of PCB surface tiny defects detection,a PCB tiny defects detection model based on an improved attention residual network(YOLOX-AttResNet)is proposed.First,the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet(Squeeze and Excitation Network)attention network;then the improved K-means-SENet network is fused with the directly mapped edges of the traditional ResNet network to form an augmented residual network(AttResNet);and finally,the AttResNet module is substituted for the traditional ResNet structure in the backbone feature extraction network of mainstream excellent detection models,thus improving the ability to extract small features from the backbone of the target detection network.The results of ablation experiments on a PCB surface defect dataset show that AttResNet is a reliable and efficient module.In Torify the performance of AttResNet for detecting small defects in large-size complex circuit images,a series of comparison experiments are further performed.The results show that the AttResNet module combines well with the five best existing target detection frameworks(YOLOv3,YOLOX,Faster R-CNN,TDD-Net,Cascade R-CNN),and all the combined new models have improved detection accuracy compared to the original model,which suggests that the AttResNet module proposed in this paper can help the detection model to extract target features.Among them,the YOLOX-AttResNet model proposed in this paper performs the best,with the highest accuracy of 98.45% and the detection speed of 36 FPS(Frames Per Second),which meets the accuracy and real-time requirements for the detection of tiny defects on PCB surfaces.This study can provide some new ideas for other real-time online detection tasks of tiny targets with high-resolution images.展开更多
To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and...To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and LiDAR point-cloud projection for water surface target detection.Firstly,the visual recognition component employs an improved YOLOv7 algorithmbased on a self-built dataset for the detection of water surface targets.This algorithm modifies the original YOLOv7 architecture to a Slim-Neck structure,addressing the problemof excessive redundant information during feature extraction in the original YOLOv7 network model.Simultaneously,this modification simplifies the computational burden of the detector,reduces inference time,and maintains accuracy.Secondly,to tackle the issue of sample imbalance in the self-built dataset,slide loss function is introduced.Finally,this paper replaces the original Complete Intersection over Union(CIoU)loss function with the Minimum Point Distance Intersection over Union(MPDIoU)loss function in the YOLOv7 algorithm,which accelerates model learning and enhances robustness.To mitigate the problem of missed recognitions caused by complex water surface conditions in purely visual algorithms,this paper further adopts the fusion of LiDAR and camera data,projecting the threedimensional point-cloud data from LiDAR onto a two-dimensional pixel plane.This significantly reduces the rate of missed detections for water surface targets.展开更多
The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on ...The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.展开更多
There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilize...There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilized the convolutional neural network(CNN) + ghosting bottleneck(G_bneck) architecture to reduce redundant feature maps. Afterwards, we upgraded the original upsampling algorithm to content-aware reassembly of features(CARAFE) and increased the receptive field. Finally, we replaced the spatial pyramid pooling fast(SPPF) module with the basic receptive field block(Basic RFB) pooling module and added dilated convolution. After comparative experiments, we can see that the number of parameters and model size of the improved algorithm in this paper have been reduced by nearly half compared to the YOLOv5s. The frame rate per second(FPS) has been increased by 3.25 times. The mean average precision(m AP@0.5: 0.95) has increased by 8%—17% compared to other lightweight algorithms.展开更多
Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,...Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,and interference from contamination.To address these challenges,this paper proposes the Real-time Cable Defect Detection Network(RC2DNet),which achieves an optimal balance between detection accuracy and computational efficiency.Unlike conventional approaches,RC2DNet introduces a small object feature extraction module that enhances the semantic representation of small targets through feature pyramids,multi-level feature fusion,and an adaptive weighting mechanism.Additionally,a boundary feature enhancement module is designed,incorporating boundary-aware convolution,a novel boundary attention mechanism,and an improved loss function to significantly enhance boundary localization accuracy.Experimental results demonstrate that RC2DNet outperforms state-of-the-art methods in precision,recall,F1-score,mean Intersection over Union(mIoU),and frame rate,enabling real-time and highly accurate cable defect detection in complex backgrounds.展开更多
In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds...In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds in current intelligent inspection algorithms,this paper proposes CG-YOLOv8,a lightweight and improved model based on YOLOv8n for PCB surface defect detection.The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy,thereby enhancing the capability of identifying diverse defects under complex conditions.Specifically,a cascaded multi-receptive field(CMRF)module is adopted to replace the SPPF module in the backbone to improve feature perception,and an inverted residual mobile block(IRMB)is integrated into the C2f module to further enhance performance.Additionally,conventional convolution layers are replaced with GSConv to reduce computational cost,and a lightweight Convolutional Block Attention Module based Convolution(CBAMConv)module is introduced after Grouped Spatial Convolution(GSConv)to preserve accuracy through attention mechanisms.The detection head is also optimized by removing medium and large-scale detection layers,thereby enhancing the model’s ability to detect small-scale defects and further reducing complexity.Experimental results show that,compared to the original YOLOv8n,the proposed CG-YOLOv8 reduces parameter count by 53.9%,improves mAP@0.5 by 2.2%,and increases precision and recall by 2.0%and 1.8%,respectively.These improvements demonstrate that CG-YOLOv8 offers an efficient and lightweight solution for PCB surface defect detection.展开更多
In the surface imaging of underwater structures, long working distance will reduce image quality due to the turbidity of water. To acquire high definition and large field of view(FOV) images for surface detection, a s...In the surface imaging of underwater structures, long working distance will reduce image quality due to the turbidity of water. To acquire high definition and large field of view(FOV) images for surface detection, a short-working-distance underwater imaging system is proposed based on camera array. A multi-view calibration and rectification method is developed. A look-up table(LUT) method and a multi-resolution spline(MRS) method are applied to stitch array images real-time and seamlessly.Experiments both in the air and in the water are conducted. Strength and weakness of the LUT and MRS methods are discussed.Based on the results, the effectiveness in surface detection of underwater structures is verified.展开更多
An ultra-sensitive and highly selective parathion methyl (PM) detection method by surface plasmon resonance (SPR) combined with molecularly imprinted films (MIF) was developed. The PM-imprinted film was prepared...An ultra-sensitive and highly selective parathion methyl (PM) detection method by surface plasmon resonance (SPR) combined with molecularly imprinted films (MIF) was developed. The PM-imprinted film was prepared by thermo initiated polymerization on the bare Au surface of an SPR sensor chip, Template PM molecules were quickly removed by an organic solution of acetonitrilelacetic acid (9:1, v/v), causing a shift of 0.5° in SPR angle. In the concentrations range of 10^-13-10^-10 mol/L, the refractive index showed a gradual increase with higher concentrations of template PM and the changes of SPR angles were linear with the negative logarithm of PM concentrations. In the experiment, the minimum detectable concentration was 10^-13 mol/L. The selectivity of the thin PM-imprinted film against diuron, tetrachlorvinphose and fenitrothion was examined, but no observable binding was detected. The results in the experiment suggested that the MIF had the advantages of high sensitivity and selectivity.展开更多
In response to the problem of the high cost and low efficiency of traditional water surface litter cleanup through manpower,a lightweight water surface litter detection algorithm based on improved YOLOv5s is proposed ...In response to the problem of the high cost and low efficiency of traditional water surface litter cleanup through manpower,a lightweight water surface litter detection algorithm based on improved YOLOv5s is proposed to provide core technical support for real-time water surface litter detection by water surface litter cleanup vessels.The method reduces network parameters by introducing the deep separable convolution GhostConv in the lightweight network GhostNet to substitute the ordinary convolution in the original YOLOv5s feature extraction and fusion network;introducing the C3Ghost module to substitute the C3 module in the original backbone and neck networks to further reduce computational effort.Using a Convolutional Block Attention Mechanism(CBAM)module in the backbone network to strengthen the network’s ability to extract significant target features from images.Finally,the loss function is optimized using the Focal-EIoU loss func-tion to improve the convergence speed and model accuracy.The experimental results illustrate that the improved algorithm outperforms the original Yolov5s in all aspects of the homemade water surface litter dataset and has certain advantages over some current mainstream algorithms in terms of model size,detection accuracy,and speed,which can deal with the problems of real-time detection of water surface litter in real life.展开更多
In the industrial production of expanded thermoplastic polyurethane (E-TPU) midsoles, the surface defects still rely on manual inspection at present, and the eligibility criteria are uneven. Therefore, this paper prop...In the industrial production of expanded thermoplastic polyurethane (E-TPU) midsoles, the surface defects still rely on manual inspection at present, and the eligibility criteria are uneven. Therefore, this paper proposes an E-TPU midsole surface defect detection method based on machine vision to achieve automatic detection and defect classification. The proposed method is divided into three parts: image preprocessing, block defect detection, and linear defect detection. Image preprocessing uses RGB three channel self-inspection to identify scorch and color pollution. Block defect detection uses superpixel segmentation and background prior mining to determine holes, impurities, and dirt. Linear defect detection uses Gabor filter and Hough transform to detect indentation and convex marks. After image preprocessing, block defect detection and linear defect detection are simultaneously performed by parallel computing. The false positive rate (FPR) of the proposed method in this paper is 8.3%, the false negatives rate (FNR) of the hole is 4.7%, the FNR of indentation is 2.1%, and the running time does not exceed 1.6 s. The test results show that this method can quickly and accurately detect various defects in the E-TPU midsole.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52071094).
文摘The weakly compressible smooth particle hydrodynamics(WCSPH)model is studied to address the boundary pressure instability of the SPH method,resulting in the development of the SPH method with improved dynamic boundary conditions.This method employs the‘fan’search method for free surface detection,effectively identifying cavity interface particles with diameters smaller than the support domain’s radius,thereby indirectly enhancing the algorithm’s accuracy.On this basis,an improved dynamic boundary condition is proposed by updating the boundary particle pressure calculation scheme to achieve a more stable and continuous pressure field,thereby effectively preventing particles from penetrating the boundary.The SPH method with improved dynamic boundary conditions is used to simulate typical high-speed impact problems such as wedge entry and dam break.The simulation results are in good agreement with the experimental data and other numerical results.
基金supported by the Open Fund of Magnetic Confinement Laboratory of Anhui Province(No.2023 AMF03005)the China Postdoctoral Science Foundation(No.2021M703256)+4 种基金the Director Funding of Hefei Institutes of Physical Science,Chinese Academy of Sciences(No.YZJJ2022QN16)the National Key R&D Program of China(Nos.2022YFE03050003,2019YFE03080200,2019Y FE03040002,and 2022YFE03070004)National Natural Science Foundation of China(Nos.12075284,12175277,12275315 and 12275311)the National Magnetic Confinement Fusion Science Program of China(No.2022YFE03040001)the Science Foundation of the Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2021-08)。
文摘Microwave reflectometry is a powerful diagnostic that can measure the density profile and localized turbulence with high spatial and temporal resolution and will be used in ITER,so understanding the influence of plasma perturbations on the reflect signal is important.The characteristics of the reflect signal from profile reflectometry,the time-of-flight(TOF)signal associated with the MHD instabilities,are investigated in EAST.Using a 1D full-wave simulation code by the Finite-DifferenceTime-Domain(FDTD)method,it is well validated that the local density flattening could induce the discontinuity of the simulated TOF signal and an obvious change of reflect amplitude.Experimental TOF signals under different types of MHD instabilities(sawtooth,sawtooth precursors and tearing mode)are studied in detail and show agreement with the simulation.Two new improved algorithms for detecting and localizing the radial positions of the low-order rational surface,the cross-correlation and gradient threshold(CGT)method and the 2D convolutional neural network approach(CNN)are presented for the first time.It is concluded that TOF signal analysis from profile reflectometry can provide a straightforward and localized measurement of the plasma perturbation from the edge to the core simultaneously and may be a complement or correction to the q-profile control,which will be beneficial for the advanced tokamak operation.
基金Sponsored by Program for New Century Excellent Talents in University of China(NCET-08-0726)Beijing Nova Program of China(2007B027)
文摘Longitudinal cracks are common defects of continuous casting slabs and may lead to serious quality accidents. Image capturing and recognition of hot slabs is an effective way for on-line detection of cracks, and recognition of cracks is essential because the surface of hot slabs is very complicated. In order to detect the surface longitudinal cracks of the slabs, a new feature extraction method based on Curvelet transform and kernel locality preserving projections (KLPP) is proposed. First, sample images are decomposed into three levels by Curvelet transform. Second, Fourier transform is applied to all sub-band images and the Fourier amplitude spectrum of each sub-band is computed to get features with translational invariance. Third, five kinds of statistical features of the Fourier amplitude spectrum are computed and combined in different forms. Then, KLPP is employed for dimensionality reduction of the obtained 62 types of high-dimensional combined features. Finally, a support vector machine (SVM) is used for sample set classification. Experiments with samples from a real production line of continuous casting slabs show that the algorithm is effective to detect longitudinal cracks, and the classification rate is 91.89%.
基金funded by Woosong University Academic Research 2024.
文摘This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems.
基金supported by the Scientific and technological key project in Henan Province 22210224002the Natural Science Foundation of Henan Polytechnic University B2021-38.
文摘The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Swin Transformer as the backbone network.This approach leverages Swin Transformer's multi-head self-attention mechanism for improved feature extraction of defects spanning various scales.Integrated with the YOLOv8 detection head,our model achieves a mean average precision of 85.1%on our dataset,outperforming baseline methods by 1.4%.The model's effectiveness is further demonstrated on a steel-surface defect dataset,indicating its broad applicability in industrial surface defect detection.Our work highlights the potential of combining Swin Transformer and YOLOv8 for accurate and efficient defect detection.
基金funded by the National Natural Science Foundation of China(grant number 62306186)the Technology Plan Joint Foundation of Liaoning Province(grant number 2023-MSLH-246)the Technology Plan Joint Foundation of Liaoning Province(grant number 2023-BSBA-238).
文摘Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as complex defect morphology,texture similarity,and fuzzy edges,leading to poor accuracy and missed detections.In order to resolve these problems,we propose MSCM-Net(Multi-Scale Cross-Modal Network),a multiscale cross-modal framework focused on detecting rail surface defects.MSCM-Net introduces an attention mechanism to dynamically weight the fusion of RGB and depth maps,effectively capturing and enhancing features at different scales for each modality.To further enrich feature representation and improve edge detection in blurred areas,we propose a multi-scale void fusion module that integrates multi-scale feature information.To improve cross-modal feature fusion,we develop a cross-enhanced fusion module that transfers fused features between layers to incorporate interlayer information.We also introduce a multimodal feature integration module,which merges modality-specific features from separate decoders into a shared decoder,enhancing detection by leveraging richer complementary information.Finally,we validate MSCM-Net on the NEU RSDDS-AUG RGB-depth dataset,comparing it against 12 leading methods,and the results show that MSCM-Net achieves superior performance on all metrics.
基金supported by the National Natural Science Foundation of China(No.62103298)the Natural Science Foundation of Hebei Province(No.F2018209289)。
文摘Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version 7(YOLOv7)is proposed.First,a cascading style sheets(CSS)block module is proposed,which uses more lightweight operations to obtain redundant information in the feature map,reduces the amount of computation,and effectively improves the detection speed.Secondly,the improved spatial pyramid pooling with cross stage partial convolutions(SPPCSPC)structure is adopted to ensure that the model can also pay attention to the defect location information while predicting the defect category information,obtain richer defect features.In addition,the convolution operation in the original model is simplified,which significantly reduces the size of the model and helps to improve the detection speed.Finally,using efficient intersection over union(EIOU)loss to focus on high-quality anchors,speed up convergence and improve positioning accuracy.Experiments were carried out on the Northeastern University-defect(NEU-DET)steel surface defect dataset.Compared with the original YOLOv7 model,the number of parameters of this model was reduced by 40%,the frames per second(FPS)reached 112,and the average accuracy reached 79.1%,the detection accuracy and speed have been improved,which can meet the needs of steel surface defect detection.
基金the Key Project of Basic Research of Yunnan Province(No.202101AS070016)。
文摘In order to meet the requirements of accurate identification of surface defects on copper strip in industrial production,a detection model of surface defects based on machine vision,CSC-YOLO,is proposed.The model uses YOLOv4-tiny as the benchmark network.First,K-means clustering is introduced into the benchmark network to obtain anchor frames that match the self-built dataset.Second,a cross-region fusion module is introduced in the backbone network to solve the difficult target recognition problem by fusing contextual semantic information.Third,the spatial pyramid pooling-efficient channel attention network(SPP-E)module is introduced in the path aggregation network(PANet)to enhance the extraction of features.Fourth,to prevent the loss of channel information,a lightweight attention mechanism is introduced to improve the performance of the network.Finally,the performance of the model is improved by adding adjustment factors to correct the loss function for the dimensional characteristics of the surface defects.CSC-YOLO was tested on the self-built dataset of surface defects in copper strip,and the experimental results showed that the mAP of the model can reach 93.58%,which is a 3.37% improvement compared with the benchmark network,and FPS,although decreasing compared with the benchmark network,reached 104.CSC-YOLO takes into account the real-time requirements of copper strip production.The comparison experiments with Faster RCNN,SSD300,YOLOv3,YOLOv4,Resnet50-YOLOv4,YOLOv5s,YOLOv7,and other algorithms show that the algorithm obtains a faster computation speed while maintaining a higher detection accuracy.
基金supported by the Key Research and Development Program of Shaanxi Province-International Science and Technology Cooperation Program Project (No.2020KW-001)the Contract for Xi'an Municipal Science and Technology Plan Project-Xi'an City Strong Foundation Innovation Plan (No.21XJZZ0074)the Key Project of Graduate Student Innovation Fund at Xi'an University of Posts and Telecommunications (No.CXJJZL2023013)。
文摘The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect detection.In contrast to the subjective and inefficient manual visual inspection,deep learning-based algorithms for concrete defect detection exhibit remarkable advantages,emerging as a focal point in recent research.This paper comprehensively analyzes the research progress of deep learning algorithms in the field of surface defect detection in concrete bridges in recent years.It introduces the early detection methods for surface defects in concrete bridges and the development of deep learning.Subsequently,it provides an overview of deep learning-based concrete bridge surface defect detection research from three aspects:image classification,object detection,and semantic segmentation.The paper summarizes the strengths and weaknesses of existing methods and the challenges they face.Additionally,it analyzes and prospects the development trends of surface defect detection in concrete bridges.
基金supported by the Natural Science Foundation of Liaoning Province(No.2022-MS-353)Basic Scientific Research Project of Education Department of Liaoning Province(Nos.2020LNZD06 and LJKMZ20220640)。
文摘Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of small defect are still unsatisfactory.An improved object detection network based on You Only Look One-level Feature(YOLOF)is proposed to show excellent performance in surface defect detection of steel plate,called DLF-YOLOF.First,the anchor-free detector is used to reduce the network hyperparameters.Secondly,deformable convolution network and local spatial attention module are introduced into the feature extraction network to increase the contextual information in the feature maps.Also,the soft non-maximum suppression is used to improve detection accuracy significantly.Finally,data augmentation is performed for small defect objects during training to improve detection accuracy.Experiments show the average precision and average precision for small objects are 42.7%and 33.5%at a detection speed of 62 frames per second on a single GPU,respectively.This shows that DLF-YOLOF has excellent performance to meet the needs of industrial real-time detection.
基金supported by the National Natural Science Foundation of China(No.61976083)Hubei Province Key R&D Program of China(No.2022BBA0016).
文摘Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks.To improve the performance of PCB surface tiny defects detection,a PCB tiny defects detection model based on an improved attention residual network(YOLOX-AttResNet)is proposed.First,the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet(Squeeze and Excitation Network)attention network;then the improved K-means-SENet network is fused with the directly mapped edges of the traditional ResNet network to form an augmented residual network(AttResNet);and finally,the AttResNet module is substituted for the traditional ResNet structure in the backbone feature extraction network of mainstream excellent detection models,thus improving the ability to extract small features from the backbone of the target detection network.The results of ablation experiments on a PCB surface defect dataset show that AttResNet is a reliable and efficient module.In Torify the performance of AttResNet for detecting small defects in large-size complex circuit images,a series of comparison experiments are further performed.The results show that the AttResNet module combines well with the five best existing target detection frameworks(YOLOv3,YOLOX,Faster R-CNN,TDD-Net,Cascade R-CNN),and all the combined new models have improved detection accuracy compared to the original model,which suggests that the AttResNet module proposed in this paper can help the detection model to extract target features.Among them,the YOLOX-AttResNet model proposed in this paper performs the best,with the highest accuracy of 98.45% and the detection speed of 36 FPS(Frames Per Second),which meets the accuracy and real-time requirements for the detection of tiny defects on PCB surfaces.This study can provide some new ideas for other real-time online detection tasks of tiny targets with high-resolution images.
基金supported by the National Natural Science Foundation of China(No.51876114)the Shanghai Engineering Research Center of Marine Renewable Energy(Grant No.19DZ2254800).
文摘To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and LiDAR point-cloud projection for water surface target detection.Firstly,the visual recognition component employs an improved YOLOv7 algorithmbased on a self-built dataset for the detection of water surface targets.This algorithm modifies the original YOLOv7 architecture to a Slim-Neck structure,addressing the problemof excessive redundant information during feature extraction in the original YOLOv7 network model.Simultaneously,this modification simplifies the computational burden of the detector,reduces inference time,and maintains accuracy.Secondly,to tackle the issue of sample imbalance in the self-built dataset,slide loss function is introduced.Finally,this paper replaces the original Complete Intersection over Union(CIoU)loss function with the Minimum Point Distance Intersection over Union(MPDIoU)loss function in the YOLOv7 algorithm,which accelerates model learning and enhances robustness.To mitigate the problem of missed recognitions caused by complex water surface conditions in purely visual algorithms,this paper further adopts the fusion of LiDAR and camera data,projecting the threedimensional point-cloud data from LiDAR onto a two-dimensional pixel plane.This significantly reduces the rate of missed detections for water surface targets.
基金supported by the National Science Foundation of China(Grant Nos.52068049 and 51908266)the Science Fund for Distinguished Young Scholars of Gansu Province(No.21JR7RA267)Hongliu Outstanding Young Talents Program of Lanzhou University of Technology.
文摘The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.
基金supported by the Shanghai Sailing Program,China (No.20YF1447600)the Research Start-Up Project of Shanghai Institute of Technology (No.YJ2021-60)+1 种基金the Collaborative Innovation Project of Shanghai Institute of Technology (No.XTCX2020-12)the Science and Technology Talent Development Fund for Young and Middle-Aged Teachers at Shanghai Institute of Technology (No.ZQ2022-6)。
文摘There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilized the convolutional neural network(CNN) + ghosting bottleneck(G_bneck) architecture to reduce redundant feature maps. Afterwards, we upgraded the original upsampling algorithm to content-aware reassembly of features(CARAFE) and increased the receptive field. Finally, we replaced the spatial pyramid pooling fast(SPPF) module with the basic receptive field block(Basic RFB) pooling module and added dilated convolution. After comparative experiments, we can see that the number of parameters and model size of the improved algorithm in this paper have been reduced by nearly half compared to the YOLOv5s. The frame rate per second(FPS) has been increased by 3.25 times. The mean average precision(m AP@0.5: 0.95) has increased by 8%—17% compared to other lightweight algorithms.
基金supported by the National Natural Science Foundation of China under Grant 62306128the Basic Science Research Project of Jiangsu Provincial Department of Education under Grant 23KJD520003the Leading Innovation Project of Changzhou Science and Technology Bureau under Grant CQ20230072.
文摘Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,and interference from contamination.To address these challenges,this paper proposes the Real-time Cable Defect Detection Network(RC2DNet),which achieves an optimal balance between detection accuracy and computational efficiency.Unlike conventional approaches,RC2DNet introduces a small object feature extraction module that enhances the semantic representation of small targets through feature pyramids,multi-level feature fusion,and an adaptive weighting mechanism.Additionally,a boundary feature enhancement module is designed,incorporating boundary-aware convolution,a novel boundary attention mechanism,and an improved loss function to significantly enhance boundary localization accuracy.Experimental results demonstrate that RC2DNet outperforms state-of-the-art methods in precision,recall,F1-score,mean Intersection over Union(mIoU),and frame rate,enabling real-time and highly accurate cable defect detection in complex backgrounds.
基金funded by the Joint Funds of the National Natural Science Foundation of China(U2341223)the Beijing Municipal Natural Science Foundation(No.4232067).
文摘In printed circuit board(PCB)manufacturing,surface defects can significantly affect product quality.To address the performance degradation,high false detection rates,and missed detections caused by complex backgrounds in current intelligent inspection algorithms,this paper proposes CG-YOLOv8,a lightweight and improved model based on YOLOv8n for PCB surface defect detection.The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy,thereby enhancing the capability of identifying diverse defects under complex conditions.Specifically,a cascaded multi-receptive field(CMRF)module is adopted to replace the SPPF module in the backbone to improve feature perception,and an inverted residual mobile block(IRMB)is integrated into the C2f module to further enhance performance.Additionally,conventional convolution layers are replaced with GSConv to reduce computational cost,and a lightweight Convolutional Block Attention Module based Convolution(CBAMConv)module is introduced after Grouped Spatial Convolution(GSConv)to preserve accuracy through attention mechanisms.The detection head is also optimized by removing medium and large-scale detection layers,thereby enhancing the model’s ability to detect small-scale defects and further reducing complexity.Experimental results show that,compared to the original YOLOv8n,the proposed CG-YOLOv8 reduces parameter count by 53.9%,improves mAP@0.5 by 2.2%,and increases precision and recall by 2.0%and 1.8%,respectively.These improvements demonstrate that CG-YOLOv8 offers an efficient and lightweight solution for PCB surface defect detection.
基金supported by the National Key Technology R&D Program(Grant No.2014BAK11B04)the National Natural Science Foundation of China(Grant Nos.11272089,11327201,11532005&11602056)
文摘In the surface imaging of underwater structures, long working distance will reduce image quality due to the turbidity of water. To acquire high definition and large field of view(FOV) images for surface detection, a short-working-distance underwater imaging system is proposed based on camera array. A multi-view calibration and rectification method is developed. A look-up table(LUT) method and a multi-resolution spline(MRS) method are applied to stitch array images real-time and seamlessly.Experiments both in the air and in the water are conducted. Strength and weakness of the LUT and MRS methods are discussed.Based on the results, the effectiveness in surface detection of underwater structures is verified.
基金supported by the National Natural Science Foundation of China (No.20771015)the National ‘‘111’’ Project of China’s Higher Education (No.B07012)
文摘An ultra-sensitive and highly selective parathion methyl (PM) detection method by surface plasmon resonance (SPR) combined with molecularly imprinted films (MIF) was developed. The PM-imprinted film was prepared by thermo initiated polymerization on the bare Au surface of an SPR sensor chip, Template PM molecules were quickly removed by an organic solution of acetonitrilelacetic acid (9:1, v/v), causing a shift of 0.5° in SPR angle. In the concentrations range of 10^-13-10^-10 mol/L, the refractive index showed a gradual increase with higher concentrations of template PM and the changes of SPR angles were linear with the negative logarithm of PM concentrations. In the experiment, the minimum detectable concentration was 10^-13 mol/L. The selectivity of the thin PM-imprinted film against diuron, tetrachlorvinphose and fenitrothion was examined, but no observable binding was detected. The results in the experiment suggested that the MIF had the advantages of high sensitivity and selectivity.
基金Support for this work was in part from the China University Industry-University Research Innovation Fund Project(No.2022BL052),author B.T,https://www.cutech.edu.cnin part by the Science and Technology InnovationR&DProject of the State GeneralAdministration of Sports of China(No.22KJCX024),author B.T,https://www.sport.gov.cn+1 种基金in part by the Major Project of Philosophy and Social Science Research in Higher Education Institutions in Hubei Province(No.21ZD054),author B.T,https://jyt.hubei.gov.cnKey Project of Hubei Provincial Key Laboratory of Intelligent Transportation Technology and Equipment Open Fund(No.2022XZ106),author B.T,https://hbpu.edu.cn.
文摘In response to the problem of the high cost and low efficiency of traditional water surface litter cleanup through manpower,a lightweight water surface litter detection algorithm based on improved YOLOv5s is proposed to provide core technical support for real-time water surface litter detection by water surface litter cleanup vessels.The method reduces network parameters by introducing the deep separable convolution GhostConv in the lightweight network GhostNet to substitute the ordinary convolution in the original YOLOv5s feature extraction and fusion network;introducing the C3Ghost module to substitute the C3 module in the original backbone and neck networks to further reduce computational effort.Using a Convolutional Block Attention Mechanism(CBAM)module in the backbone network to strengthen the network’s ability to extract significant target features from images.Finally,the loss function is optimized using the Focal-EIoU loss func-tion to improve the convergence speed and model accuracy.The experimental results illustrate that the improved algorithm outperforms the original Yolov5s in all aspects of the homemade water surface litter dataset and has certain advantages over some current mainstream algorithms in terms of model size,detection accuracy,and speed,which can deal with the problems of real-time detection of water surface litter in real life.
文摘In the industrial production of expanded thermoplastic polyurethane (E-TPU) midsoles, the surface defects still rely on manual inspection at present, and the eligibility criteria are uneven. Therefore, this paper proposes an E-TPU midsole surface defect detection method based on machine vision to achieve automatic detection and defect classification. The proposed method is divided into three parts: image preprocessing, block defect detection, and linear defect detection. Image preprocessing uses RGB three channel self-inspection to identify scorch and color pollution. Block defect detection uses superpixel segmentation and background prior mining to determine holes, impurities, and dirt. Linear defect detection uses Gabor filter and Hough transform to detect indentation and convex marks. After image preprocessing, block defect detection and linear defect detection are simultaneously performed by parallel computing. The false positive rate (FPR) of the proposed method in this paper is 8.3%, the false negatives rate (FNR) of the hole is 4.7%, the FNR of indentation is 2.1%, and the running time does not exceed 1.6 s. The test results show that this method can quickly and accurately detect various defects in the E-TPU midsole.