Complicated geological structures make it difficult to analyze the stability of rock slopes, such as faults, weak intercalated layers or joint fissures. Based on 3D geological modeling and surface block identifying me...Complicated geological structures make it difficult to analyze the stability of rock slopes, such as faults, weak intercalated layers or joint fissures. Based on 3D geological modeling and surface block identifying methods, an integrated methodology framework was proposed and realized to analyze the stability of surface blocks in rock slopes. The surface blocks cut by geological structures, fissures or free faces could be identified subjected to the four principles of closure, completeness, uniqueness and validity. The factor of safety(FOS)of single key block was calculated by the limit equilibrium method. If there were two or more connected blocks, they were defined as a block-group. The FOS of a block-group was computed by the Sarma method. The proposed approach was applied to an actual rock slope of a hydropower project, and some possible instable blocks were demonstrated and analyzed visually. The obtained results on the key blocks or block-groups provide essential information for determining potential instable region of rock slopes and designing effective support scheme in advance.展开更多
Fabricating organic solar cells(OSCs)in open-air and room-temperature environments is essential for cost-effective roll-to-roll printing,but its performance is limited by non-ideal block and surface morphology of acti...Fabricating organic solar cells(OSCs)in open-air and room-temperature environments is essential for cost-effective roll-to-roll printing,but its performance is limited by non-ideal block and surface morphology of active layer.Herein,we demonstrate a record power conversion efficiency(PCE)of 19.72%in open-air and as-cast processed devices by using a lowcost terpolymer donor(PTQ20-5)to optimize the block and surface morphology.Compared with the counterpart PTQ10,PTQ20-5 shows increased hydrophobicity,which can better prevent the intrusion of H2O molecules in the film formation process in open-air environment,giving excellent humidity tolerance of corresponding devices.Moreover,the enhanced dielectric constant results in reduced exciton binding energy and improved charge transport of PTQ20-5,leading to improved charge separation and transfer,and suppressed carrier recombination in the devices.Besides,the PTQ20-5-based film has more appropriate block morphological features of balanced molecular self-assembly and phase separation,which simultaneously promotes the charge carrier transport and inhibits the carrier recombination at the donor/acceptor interface.This work is of great significance for promoting the industrialization of OSCs.展开更多
A novel integrated guidance and autopilot design method is proposed for homing missiles based on the adaptive block dynamic surface control approach. The fully integrated guidance and autopilot model is established by...A novel integrated guidance and autopilot design method is proposed for homing missiles based on the adaptive block dynamic surface control approach. The fully integrated guidance and autopilot model is established by combining the nonlinear missile dynamics with the nonlinear dynamics describing the pursuit situation of a missile and a target in the three-dimensional space. The integrated guidance and autopilot design problem is further converted to a state regulation problem of a time-varying nonlinear system with matched and unmatched uncertainties. A new and simple adaptive block dynamic surface control algorithm is proposed to address such a state regulation problem. The stability of the closed-loop system is proven based on the Lyapunov theory. The six degrees of freedom (6DOF) nonlinear numerical simulation results show that the proposed integrated guidance and autopilot algorithm can ensure the accuracy of target interception and the robust stability of the closed-loop system with respect to the uncertainties in the missile dynamics.展开更多
Some proteins secreted by microorganisms have large molecular weights. We report here an approach to prepare coating by multilayer polymers for antifouling of proteins, especially the proteins with a large molecular w...Some proteins secreted by microorganisms have large molecular weights. We report here an approach to prepare coating by multilayer polymers for antifouling of proteins, especially the proteins with a large molecular weight.Stainless steel was used as the model substrate. The substrate was first coated with a hybrid polymer film, which was formed by simultaneous hydrolytic polycondensation of 3-aminopropyltriethoxysilane and polymerization of dopamine(HPAPD). After grafting the macroinitiator 2-bromoisobutyryl bromide, the block polymer brushes PMMA-b-PHEMA were grafted. Three proteins were used to test protein adsorption and antifouling behavior of the coating, including recombinant green fluorescent(54 k Da), recombinant R-transaminase(2 × 90 k Da), and recombinant catalase(4 × 98 k Da). It is demonstrated that the block polymer brushes not only can prevent the adsorption of small molecular weight proteins, but also can significantly reduce the adsorption of the large molecular weight proteins.展开更多
基金Supported by the National Natural Science Foundation of China(No.51379006 and No.51321065)the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0404)
文摘Complicated geological structures make it difficult to analyze the stability of rock slopes, such as faults, weak intercalated layers or joint fissures. Based on 3D geological modeling and surface block identifying methods, an integrated methodology framework was proposed and realized to analyze the stability of surface blocks in rock slopes. The surface blocks cut by geological structures, fissures or free faces could be identified subjected to the four principles of closure, completeness, uniqueness and validity. The factor of safety(FOS)of single key block was calculated by the limit equilibrium method. If there were two or more connected blocks, they were defined as a block-group. The FOS of a block-group was computed by the Sarma method. The proposed approach was applied to an actual rock slope of a hydropower project, and some possible instable blocks were demonstrated and analyzed visually. The obtained results on the key blocks or block-groups provide essential information for determining potential instable region of rock slopes and designing effective support scheme in advance.
基金supported by the National Natural Science Foundation of China(No.52103240)the Science and Technology Department of Henan Province(No.242301420056).
文摘Fabricating organic solar cells(OSCs)in open-air and room-temperature environments is essential for cost-effective roll-to-roll printing,but its performance is limited by non-ideal block and surface morphology of active layer.Herein,we demonstrate a record power conversion efficiency(PCE)of 19.72%in open-air and as-cast processed devices by using a lowcost terpolymer donor(PTQ20-5)to optimize the block and surface morphology.Compared with the counterpart PTQ10,PTQ20-5 shows increased hydrophobicity,which can better prevent the intrusion of H2O molecules in the film formation process in open-air environment,giving excellent humidity tolerance of corresponding devices.Moreover,the enhanced dielectric constant results in reduced exciton binding energy and improved charge transport of PTQ20-5,leading to improved charge separation and transfer,and suppressed carrier recombination in the devices.Besides,the PTQ20-5-based film has more appropriate block morphological features of balanced molecular self-assembly and phase separation,which simultaneously promotes the charge carrier transport and inhibits the carrier recombination at the donor/acceptor interface.This work is of great significance for promoting the industrialization of OSCs.
基金the Fundamental Research Funds for the Central Universities(No.HIT.NSRIF.2013039)the National Natural Science Foundation of China(Nos.61203125 and 61021002)
文摘A novel integrated guidance and autopilot design method is proposed for homing missiles based on the adaptive block dynamic surface control approach. The fully integrated guidance and autopilot model is established by combining the nonlinear missile dynamics with the nonlinear dynamics describing the pursuit situation of a missile and a target in the three-dimensional space. The integrated guidance and autopilot design problem is further converted to a state regulation problem of a time-varying nonlinear system with matched and unmatched uncertainties. A new and simple adaptive block dynamic surface control algorithm is proposed to address such a state regulation problem. The stability of the closed-loop system is proven based on the Lyapunov theory. The six degrees of freedom (6DOF) nonlinear numerical simulation results show that the proposed integrated guidance and autopilot algorithm can ensure the accuracy of target interception and the robust stability of the closed-loop system with respect to the uncertainties in the missile dynamics.
基金Supported by the National Natural Science Foundation of China(21476023)
文摘Some proteins secreted by microorganisms have large molecular weights. We report here an approach to prepare coating by multilayer polymers for antifouling of proteins, especially the proteins with a large molecular weight.Stainless steel was used as the model substrate. The substrate was first coated with a hybrid polymer film, which was formed by simultaneous hydrolytic polycondensation of 3-aminopropyltriethoxysilane and polymerization of dopamine(HPAPD). After grafting the macroinitiator 2-bromoisobutyryl bromide, the block polymer brushes PMMA-b-PHEMA were grafted. Three proteins were used to test protein adsorption and antifouling behavior of the coating, including recombinant green fluorescent(54 k Da), recombinant R-transaminase(2 × 90 k Da), and recombinant catalase(4 × 98 k Da). It is demonstrated that the block polymer brushes not only can prevent the adsorption of small molecular weight proteins, but also can significantly reduce the adsorption of the large molecular weight proteins.