Hydrogen peroxide(H_(2)O_(2))oxidation and reduction reactions(HPOR/HPRR)are pivotal in various innovative electrochemical energy conversion devices.A comprehensive understanding of these mechanisms is critical for ca...Hydrogen peroxide(H_(2)O_(2))oxidation and reduction reactions(HPOR/HPRR)are pivotal in various innovative electrochemical energy conversion devices.A comprehensive understanding of these mechanisms is critical for catalyst design and performance improvement in these applications.In this work,we systematically investigate the HPOR/HPRR mechanisms on low-index Pt surfaces,specifically Pt(111),Pt(100)and Pt(110),through density functional theory(DFT)calculations combined with the computational hydrogen electrode(CHE)model.For HPOR,all the low-index Pt surfaces exhibit a unified potential-determining step(PDS)involving the electrochemical oxidation of hydroperoxyl intermediates(HOO*).The binding free energy of HOO*(Δ_(GHOO*))emerges as an activity descriptor,with Pt(110)exhibiting the highest HPOR activity.The HPRR mechanism follows a chem-electrochemical(C-EC)pathway.The rate-determining step(RDS)of HPRR is either the cleavage of the HO-OH bond(chemical)or the reduction of HO(electrochemical),depending on their respective activation energies.These activation energies are functions of the HO*binding free energy,Δ_(GHO*),establishingΔ_(GHO*)as the descriptor for HPRR activity prediction.Pt(111)and Pt(100)are identified as the most active HPRR catalysts among the studied metal surfaces,although they still experience a significant overpotential.The scaling relationship betweenΔ_(GHOO*)andΔ_(GHO*)reveals a thermodynamic coupling of HPOR and HPRR,explaining their occurrence on Pt surfaces.These findings provide important insights and activity descriptors for both HPOR and HPRR,providing valuable guidance for the design of electrocatalysts in H_(2)O_(2)-related energy applications and fuel cells.展开更多
BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly...BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly impact the quality of life of patients.AIM To explore the correlations between ocular surface function,sleep quality,and anxiety/depression in patients with DED.METHODS This was a cross-sectional investigative study that included 358 patients with DED between January 2022 and January 2025.Ocular surface was assessed using the ocular surface disease index(OSDI),tear film break-up time,fluorescein staining score,and Schirmer I test.The Pittsburgh Sleep Quality Index(PSQI),Self-Rating Anxiety Scale(SAS),and Self-Rating Depression Scale(SDS)were used to evaluate sleep quality and anxiety/depression levels.Correlation and linear regression analyses were used to explore the relationships.RESULTS The mean PSQI score of the patients was 9.94±2.18;the mean SAS score was 47.30±4.90,and the mean SDS score was 50.08±5.52.These suggested a prevalence of sleep and psychological abnormalities.There was a significant correlation between the indicators of ocular surface function(OSDI,tear film break-up time,fluorescein staining,and Schirmer I test)and PSQI,SAS,and SDS scores(P<0.05).Moreover,multiple regression revealed that age≥50 years(β=1.55,P=0.029),PSQI scores(β=0.58,P<0.001),SAS scores(β=0.17,P=0.017),and SDS scores(β=0.15,P=0.019)were independent predictors of the OSDI scores.CONCLUSION Ocular surface function in patients with DED is closely related to sleep quality and anxiety/depression,emphasizing the need for holistic clinical management.展开更多
Global warming induced by increased CO_(2) has caused marked changes in the ocean.Previous estimates of ocean salinity change in response to global warming have considerable ambiguity,largely attributable to the diver...Global warming induced by increased CO_(2) has caused marked changes in the ocean.Previous estimates of ocean salinity change in response to global warming have considerable ambiguity,largely attributable to the diverse sensitivities of surface fluxes.This study utilizes data from the Flux-Anomaly-Forced Model Intercomparison Project to investigate how ocean salinity responds to perturbations of surface fluxes.The findings indicate the emergence of a sea surface salinity(SSS)dipole pattern predominantly in the North Atlantic and Pacific fresh pools,driven by surface flux perturbations.This results in an intensification of the“salty gets saltier and fresh gets fresher”SSS pattern across the global ocean.The spatial pattern amplification(PA)of SSS under global warming is estimated to be approximately 11.5%,with surface water flux perturbations being the most significant contributor to salinity PA,accounting for 8.1% of the change after 70 years in experiments since pre-industrial control(piControl).Notably,the zonal-depth distribution of salinity in the upper ocean exhibits lighter seawater above the denser water,with bowed isopycnals in the upper 400 m.This stable stratification inhibits vertical mixing of salinity and temperature.In response to the flux perturbations,there is a strong positive feedback due to consequent freshening.It is hypothesized that under global warming,an SSS amplification of 7.2%/℃ and a mixed-layer depth amplification of 12.5%/℃ will occur in the global ocean.It suggests that the salinity effect can exert a more stable ocean to hinder the downward transfer of heat,which provides positive feedback to future global warming.展开更多
The atmospheric surface layer of the tropical coastal ocean is commonly very unstable and experiences weakwind conditions.How the latent(LE)and sensible(H)heat fluxes behave under such conditions are unclear because o...The atmospheric surface layer of the tropical coastal ocean is commonly very unstable and experiences weakwind conditions.How the latent(LE)and sensible(H)heat fluxes behave under such conditions are unclear because of the lack of observation stations in the tropics.Thus,this study aims to analyze LE and H and the microclimate parameters influencing them.The authors deployed an eddy covariance system in a tropical coastal region for seven months.The microclimate parameters investigated were wind speed(U),vapor pressure deficit(Δe),temperature difference(ΔT),wind-vapor pressure deficit(UΔe),wind-temperature difference(UΔT),and atmospheric stability(z/L),where z is height and L is the Monin–Obukhov length.On the daily time scale,the results show that LE was more associated with U thanΔe,while H was more related toΔT than U.Cross-wavelet analysis revealed the strong coherence in the LE-U relationship for periods between one and two days,and for H–ΔT,0.5 to 1 day.Correlation and regression analyses confirmed the time series analyses results,where strong positive correlation coefficients(r)were obtained between LE and U(r=0.494)and H andΔT(r=0.365).Compared to other water bodies,the transfer coefficient of moisture(CE N)was found to be small(=0.40×10^(-3))and independent of stability;conversely,the transfer coefficient of heat(CH N)was closer to literature values(=1.00×10^(-3))and a function of stability.展开更多
Undesired ice accumulation on infrastructure and transportation systems leads to catastrophic events and significant economic losses.Although various anti-icing surfaces with photothermal effects can initially prevent...Undesired ice accumulation on infrastructure and transportation systems leads to catastrophic events and significant economic losses.Although various anti-icing surfaces with photothermal effects can initially prevent icing,any thawy droplets remaining on the horizontal surface can quickly re-freezing once the light diminishes.To address these challenges,we have developed a self-draining slippery surface(SDSS)that enables the thawy droplets to self-remove on the horizontal surface,thereby facilitating real-time anti-icing with the aid of sunlight(100 m W cm^(-2)).This is achieved by sandwiching a thin pyroelectric layer between slippery surface and photothermal film.Due to the synergy between the photothermal and pyroelectric layers,the SDSS not only maintains a high surface temperature of 19.8±2.2℃at the low temperature(-20.0±1.0℃),but also generates amount of charge through thermoelectric coupling.Thus,as cold droplets dropped on the SDSS,electrostatic force pushes the droplets off the charged surface because of the charge transfer mechanism.Even if the surface freezes overnight,the ice can melt and drain off the SDSS within 10 min of exposure to sunlight at-20.0±1.0℃,leaving a clean surface.This work provides a new perspective on the anti-icing system in the real-world environments.展开更多
A bulk superconductor hosting intrinsic surface superconductivity provides a unique platform for exploring Majorana bound states.Trigonal γ-PtBi_(2),a superconductor,is a promising candidate,as both surface supercond...A bulk superconductor hosting intrinsic surface superconductivity provides a unique platform for exploring Majorana bound states.Trigonal γ-PtBi_(2),a superconductor,is a promising candidate,as both surface superconducting gaps and topological surface states have been observed.However,the simultaneous presence of bulk and surface superconductivity has remained unresolved.In this study,we directly visualize coexisting bulk and surface superconducting gaps in trigonal PtBi2 using ultra-low-temperature scanning tunneling microscopy/spectroscopy.The bulk gap,Δ,is∼0.053 meV,with a critical temperature(T_(c))of∼0.5K and a critical field below 0.01 T,accompanied by a vortex lattice and vortex bound states and yielding a coherence length of∼200 nm.Remarkably,certain surface regions exhibit a much larger gap(Δ)of∼0.42 meV,persisting up to a T_(c)value of∼3K and surviving magnetic fields of up to 2 T,yet lacking a static vortex lattice.This coexistence of robust surface and bulk superconductivity establishes γ-PtBi_(2)as a unique platform for exploring the interplay between bulk and surface Cooper pairings in topological superconductors.展开更多
In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were invest...In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.展开更多
Workpiece rotational grinding is widely used in the ultra-precision machining of hard and brittle semiconductor materials,including single-crystal silicon,silicon carbide,and gallium arsenide.Surface roughness and sub...Workpiece rotational grinding is widely used in the ultra-precision machining of hard and brittle semiconductor materials,including single-crystal silicon,silicon carbide,and gallium arsenide.Surface roughness and subsurface damage depth(SDD)are crucial indicators for evaluating the surface quality of these materials after grinding.Existing prediction models lack general applicability and do not accurately account for the complex material behavior under grinding conditions.This paper introduces novel models for predicting both surface roughness and SDD in hard and brittle semiconductor materials.The surface roughness model uniquely incorporates the material’s elastic recovery properties,revealing the significant impact of these properties on prediction accuracy.The SDD model is distinguished by its analysis of the interactions between abrasive grits and the workpiece,as well as the mechanisms governing stress-induced damage evolution.The surface roughness model and SDD model both establish a stable relationship with the grit depth of cut(GDC).Additionally,we have developed an analytical relationship between the GDC and grinding process parameters.This,in turn,enables the establishment of an analytical framework for predicting surface roughness and SDD based on grinding process parameters,which cannot be achieved by previous models.The models were validated through systematic experiments on three different semiconductor materials,demonstrating excellent agreement with experimental data,with prediction errors of 6.3%for surface roughness and6.9%for SDD.Additionally,this study identifies variations in elastic recovery and material plasticity as critical factors influencing surface roughness and SDD across different materials.These findings significantly advance the accuracy of predictive models and broaden their applicability for grinding hard and brittle semiconductor materials.展开更多
In Earth system modeling,the land surface is coupled with the atmosphere through surface turbulent fluxes.These fluxes are computed using mean meteorological variables between the surface and a reference height in the...In Earth system modeling,the land surface is coupled with the atmosphere through surface turbulent fluxes.These fluxes are computed using mean meteorological variables between the surface and a reference height in the atmosphere.However,the dependence of flux computation on the reference height,which is usually set as the lowest level in the atmosphere in Earth system models,has not received much attention.Based on high-resolution large-eddy simulation(LES)data under unstable conditions,we find the setting of reference height is not trivial within the framework of current surface layer theory.With a reasonable prescription of aerodynamic roughness length(following the setting in LESs),reference heights near the top of the surface layer tend to provide the best estimate of surface fluxes,especially for the momentum flux.Furthermore,this conclusion for the sensible heat flux is insensitive to the ratio of roughness length for momentum versus heat.These results are robust,whether using the classical or revised surface layer theory.They provide a potential guide for setting the proper reference heights for Earth system modeling and can be further tested in the near future using observational data from land–atmosphere feedback observatories.展开更多
The Frenet-Serret formula is used to characterize the constant angle ruled surfaces in R3. When the surfaces are the tangent developmental and normal surfaces, that is, r(s, v) = tr(s) +v(cosα(s) . t(s) +s...The Frenet-Serret formula is used to characterize the constant angle ruled surfaces in R3. When the surfaces are the tangent developmental and normal surfaces, that is, r(s, v) = tr(s) +v(cosα(s) . t(s) +sina(s) . n(s)), it is shown that each of these surfaces is locally isometric to a piece of a plane or a certain special surface. When the surfaces are normal and binormal surfaces, that is, r ( s, v ) = σ ( s ) + v ( cosa ( s ) . n(s) + since(s) . b(s)), it is shown that each of these surfaces is locally isometric to a piece of a plane or a cylindrical surface.展开更多
This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b...This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.展开更多
The fatigue life of components can be significantly enhanced by the formation of the surface hardness layer through surface strengthening technology.To avoid the geometric distortion of thin-walled com-ponents caused ...The fatigue life of components can be significantly enhanced by the formation of the surface hardness layer through surface strengthening technology.To avoid the geometric distortion of thin-walled com-ponents caused by strengthening,the strengthening energy is limited and the ideal strengthening effect cannot be obtained.This work aims to propose a novel approach to address this issue effectively.The surface layer with high-density dislocations was obtained by a low-energy surface strengthening method(shot peening)at first.Then the surface strengthening mechanism changes from dislocation strengthen-ing to grain boundary strengthening after electropulsing treatment(EPT).The evolution of residual stress and microstructure was analyzed using multi-scale characterization techniques.The results demonstrate that EPT followed by surface strengthening makes a remarkable 304%increase in fatigue life of TC11 titanium alloy.The enhancement of fatigue life can be attributed to the grain refinement accompanied by the formation of nanotwins and sub-grains in the surface-strengthened layer,as well as the reduction in dislocation density within the substrate after EPT.This study demonstrates the significant potential of EPT in further enhancing the fatigue life of surface pre-strengthened thin-walled components.展开更多
The amount of impervious surface area increases with rapid urbanization.Remote sensing indices are used to detect impervious surface areas quickly,cheaply and accurately.This study used Landsat-OLI and Sentiel-2A MSI ...The amount of impervious surface area increases with rapid urbanization.Remote sensing indices are used to detect impervious surface areas quickly,cheaply and accurately.This study used Landsat-OLI and Sentiel-2A MSI images in the province of Ankara to compare six impervious surface extraction indices:Normalized Difference Builtup Index(NDBI),Combinational Biophysical Composition Index(CBCI),Normalized Impervious Surface Index(NISI),Urban Index(UI),Index-based Built-up Index(IBI),Enhanced Normalized Difference Impervious Surfaces Index(ENDISI).Spectral discrimination index(SDI)and error matrix were used to evaluate the performance of the indexes.In addition,a visual evaluation of the performance of the indices was made on different surface areas in the study area.展开更多
The intrinsic antiferromagnetic topological insulators in the Mn-Bi-Te family,composed of superlattice-like MnBi_(2)Te_(4)/(Bi_(2)Te_(3))_(n)(n=0,1,2,3,...)layered structure,present intriguing states of matter such as...The intrinsic antiferromagnetic topological insulators in the Mn-Bi-Te family,composed of superlattice-like MnBi_(2)Te_(4)/(Bi_(2)Te_(3))_(n)(n=0,1,2,3,...)layered structure,present intriguing states of matter such as quantum anomalous Hall effect and the axion insulator.However,the surface state gap,which is the prerequisite for the observation of these states,remains elusive.Here by molecular beam epitaxy,we obtain two types of MnBi_(4)Te_(7)films with the exclusive Bi_(2)Te_(3)(BT)or MnBi_(2)Te_(4)(MBT)terminations.By scanning tunneling spectroscopy,the mass terms in the surface states are identified on both surface terminations.Experimental results reveal the existence of a hybridization gap of approximately 23 meV in surface states on the BT termination.This gap comes from the hybridization between the surface states and the spin-split states in the adjacent MBT layer.On the MBT termination,an exchange mass term of about 28±2 meV in surface states is identified by taking magnetic-field-dependent Landau level spectra as well as theoretical simulations.In addition,the mass term varies with the field in the film with a heavy BiMn doping level in the Mn layers.These findings demonstrate the existence of mass terms in surface states on both types of terminations in our epitaxial MnBi_(4)Te_(7)films investigated by local probes.展开更多
Purpose–This study examines the effect of increased surface energy on adhesion strength.Surface modifications were made using chemical coating methods such as primer paint(primer)and cataphoresis(KTL,Kathodische Tauc...Purpose–This study examines the effect of increased surface energy on adhesion strength.Surface modifications were made using chemical coating methods such as primer paint(primer)and cataphoresis(KTL,Kathodische Tauchlackierung).The wetting behaviour of adhesive on these surfaces and the resulting contact angles were analysed to evaluate bonding effectiveness.Design/methodology/approach–Primer paint was applied to glass fibre reinforced plastic(GFRP)materials and cataphoresis coating was applied to steel.Contact angles of the coated surfaces were measured and compared to those of the uncoated(natural)surfaces.Findings–Results showed that applying primer to GFRP and KTL to steel increased their surface energy compared to untreated surfaces.A decrease in contact angle correlated with improved wetting,suggesting enhanced adhesion potential.Originality/value–While the effects of surface coatings on adhesion have been studied,there is limited research specifically on the adhesion-enhancing potential of KTL coatings.Typically used for corrosion resistance,KTL is shown here to also improve adhesion.The novelty lies in experimentally demonstrating KTL’s dual role as both a protective and adhesion-enhancing layer.展开更多
Based on the theoretical representation of piezoelectric quasicrystal,a generalized dynamic model is built to represent the transmission of wave aspects in surface acoustic pulse nano-devices.Surface elasticity,surfac...Based on the theoretical representation of piezoelectric quasicrystal,a generalized dynamic model is built to represent the transmission of wave aspects in surface acoustic pulse nano-devices.Surface elasticity,surface piezoelectricity,and surface permittivity help to include the surface effect,which equals additional thin sheets.It is shown that,under certain assumptions,this generalized dynamic model may be simplified to a few classical examples that are appropriate for both macro and nano-scale applications.In the current work,surface piezoelectricity is used to develop a theoretical model for shear horizontal(SH)waves where it contains the surface piezoelectricity theory and a linear spring model to quantitatively and qualitatively explore SH waves in an orthotropic piezoelectric quasicrystal layer overlying an elastic framework(Model I),a piezoelectric quasi-crystal nano substrate,and an orthotropic piezoelectric quasicrystal half-space(Model II).The theoretical model stimulates the numerical results,which establish the critical thickness.As the piezoelectric layer’s thickness gets closer to nanometres,surface energy must be included when analyzing dispersion properties.Furthermore,the effects of surface elasticity and density on wave velocity are investigated individually.The authors establish a parameter,precisely the ratio of the physical modulus along the width direction to along the direction of wave travel.The surface effect’s impact on the general char-acteristics of piezoelectric structures is seen as a spring force acting on bulk boundaries.Analytical presentation of frequency equations for both symmetric and anti-symmetric waves pertains to the case of an electrical short circuit in Model II.The project aims to analyze SH waves in orthogonal anisotropic,transversely isotropic piezoelectric layered nanostructures,providing a practical mathematical tool for surface effects analysis and adaptability to other wave types,including Rayleigh waves and acoustic surface waves.展开更多
While laser surface texturing(LST)is a promising manufacturing technique for surface functionalization,simultaneously realizing high precision and high efficiency in the LST of complex curved surface is challenging,du...While laser surface texturing(LST)is a promising manufacturing technique for surface functionalization,simultaneously realizing high precision and high efficiency in the LST of complex curved surface is challenging,due to continuously varied geometries of laser-matter incidence.In the present work,we propose a novel manufacturing system of 7-axis on-the-fly LST for complex curved surface,based on the integrated synchronization of 5-axis linkage motion platform with 2-axis galvanometer.Specifically,the algorithm for decomposing spatial texture trajectory on curved surface into low-frequency and high-frequency parts is established,based on which the kinematic model of synchronized 7-axis system is developed to derive the motion of each axis in both 5-axis linkage motion platform and 2-axis galvanometer simultaneously.Subsequently,the synchronized 7-axis LST system is experimentally realized,including the setup of mechanical stages integrated with optical path,the configuration of numerical control unit,and the development of processing software.Finally,case study of 7-axis on-the-fly LST of freeform aluminum surface is performed,and the advantages in terms of processing efficiency and texturing accuracy over 5-axis linkage LST are demonstrated.The correlation of reduced following errors between mechanical stages with the promoted performance of curved surface texturing by the 7-axis on-the-fly LST is further analyzed.Current work provides a feasible solution for establishing the manufacturing system for high performance LST of complex curved surface.展开更多
The title of the online version of the original article was revised.The title of the original article has been revised to:Hydrochemical characterization of surface waters in Northern Tehran:Integrating cluster-based t...The title of the online version of the original article was revised.The title of the original article has been revised to:Hydrochemical characterization of surface waters in Northern Tehran:Integrating cluster-based techniques with Self-Organizing Maps.展开更多
Utilizing superwettability micro/nanostructures to enhance the condensation heat transfer(CHT)performance of engineering materials has attracted great interest due to its values in basic research and technological inn...Utilizing superwettability micro/nanostructures to enhance the condensation heat transfer(CHT)performance of engineering materials has attracted great interest due to its values in basic research and technological innovations.Currently,exploring facile micro/nanofabrication approaches to create high-efficiency CHT surfaces has been one of research hotspots.In this work,we propose and demonstrate a type of new superwettability hybrid surface for high-efficiency CHT,which consists of superhydrophobic nanoneedle arrays and triangularly-patterned superhydrophilic microdots(SMDs).Such hybrid surface can be fabricated by the facile growth of densely-packed ZnO nanoneedles on the Zn-electroplated copper surface followed by fluorosilane modification and mask-assisted photodegradation.Through regulating the diameters and interspaces of SMDs,we obtain the optimized triangularly-patterned hybrid surface,which shows 42.7%higher CHT coefficient than the squarely-patterned hybrid surface and 58.5%higher CHT coefficient than the superhydrophobic surface.The key of such hybrid surface design is to considerably increase CHT coefficient brought about by SMD-triggered drop sweeping at the cost of slightly reducing heat transfer area of superhydrophobic functional zone for drop jumping.Such new strategy helps develop advanced CHT surfaces for high-efficiency electronic cooling and energy utilization.展开更多
Mantle plumes and surface erosion and sediment deposition affect the modes of continental lithospheric rupturing in extensional tectonic settings,modulating the evolution of rifting margins.However,their relative cont...Mantle plumes and surface erosion and sediment deposition affect the modes of continental lithospheric rupturing in extensional tectonic settings,modulating the evolution of rifting margins.However,their relative contributions to the overall evolution of rifting margins and possible roles in the formation of microcontinent are still elusive.Here,we use coupled geodynamic and surface processes numerical modeling to assess the extent to which surface processes may determine the formation of microcontinent during lithospheric stretching in presence or absence of a mantle plume underneath.Our modeling results indicate that fast extension rates and hillslope(i.e.,diffusion)erosion promote ridge jump events and therefore the formation of microcontinents.On the contrary,efficient fluvial erosion and far-reaching sediment transport(i.e.,stream power erosion)inhibits ridge jump events and the formation of microcontinents.The ridge jump event and overall evolution in our numerical models is consistent with the shift from the Mascarene Ridge to the Carlsberg Ridge that determined the formation of the Seychelles microcontinent.We therefore speculate that hillslope erosion,rather than fluvial erosion,was predominant during the formation of the Seychelles,a possible indication of overall dry local climate conditions.展开更多
基金Supported by the Shanxi Province Grant(202203021212007,2023SHB003).
文摘Hydrogen peroxide(H_(2)O_(2))oxidation and reduction reactions(HPOR/HPRR)are pivotal in various innovative electrochemical energy conversion devices.A comprehensive understanding of these mechanisms is critical for catalyst design and performance improvement in these applications.In this work,we systematically investigate the HPOR/HPRR mechanisms on low-index Pt surfaces,specifically Pt(111),Pt(100)and Pt(110),through density functional theory(DFT)calculations combined with the computational hydrogen electrode(CHE)model.For HPOR,all the low-index Pt surfaces exhibit a unified potential-determining step(PDS)involving the electrochemical oxidation of hydroperoxyl intermediates(HOO*).The binding free energy of HOO*(Δ_(GHOO*))emerges as an activity descriptor,with Pt(110)exhibiting the highest HPOR activity.The HPRR mechanism follows a chem-electrochemical(C-EC)pathway.The rate-determining step(RDS)of HPRR is either the cleavage of the HO-OH bond(chemical)or the reduction of HO(electrochemical),depending on their respective activation energies.These activation energies are functions of the HO*binding free energy,Δ_(GHO*),establishingΔ_(GHO*)as the descriptor for HPRR activity prediction.Pt(111)and Pt(100)are identified as the most active HPRR catalysts among the studied metal surfaces,although they still experience a significant overpotential.The scaling relationship betweenΔ_(GHOO*)andΔ_(GHO*)reveals a thermodynamic coupling of HPOR and HPRR,explaining their occurrence on Pt surfaces.These findings provide important insights and activity descriptors for both HPOR and HPRR,providing valuable guidance for the design of electrocatalysts in H_(2)O_(2)-related energy applications and fuel cells.
文摘BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly impact the quality of life of patients.AIM To explore the correlations between ocular surface function,sleep quality,and anxiety/depression in patients with DED.METHODS This was a cross-sectional investigative study that included 358 patients with DED between January 2022 and January 2025.Ocular surface was assessed using the ocular surface disease index(OSDI),tear film break-up time,fluorescein staining score,and Schirmer I test.The Pittsburgh Sleep Quality Index(PSQI),Self-Rating Anxiety Scale(SAS),and Self-Rating Depression Scale(SDS)were used to evaluate sleep quality and anxiety/depression levels.Correlation and linear regression analyses were used to explore the relationships.RESULTS The mean PSQI score of the patients was 9.94±2.18;the mean SAS score was 47.30±4.90,and the mean SDS score was 50.08±5.52.These suggested a prevalence of sleep and psychological abnormalities.There was a significant correlation between the indicators of ocular surface function(OSDI,tear film break-up time,fluorescein staining,and Schirmer I test)and PSQI,SAS,and SDS scores(P<0.05).Moreover,multiple regression revealed that age≥50 years(β=1.55,P=0.029),PSQI scores(β=0.58,P<0.001),SAS scores(β=0.17,P=0.017),and SDS scores(β=0.15,P=0.019)were independent predictors of the OSDI scores.CONCLUSION Ocular surface function in patients with DED is closely related to sleep quality and anxiety/depression,emphasizing the need for holistic clinical management.
基金supported by the Laoshan Laboratory[grant number LSKJ202202403]the National Natural Science Foundation of China[grant number 42030410]+1 种基金additionally supported by the Startup Foundation for Introducing Talent of NUISTJiangsu Innovation Research Group[grant number JSSCTD202346]。
文摘Global warming induced by increased CO_(2) has caused marked changes in the ocean.Previous estimates of ocean salinity change in response to global warming have considerable ambiguity,largely attributable to the diverse sensitivities of surface fluxes.This study utilizes data from the Flux-Anomaly-Forced Model Intercomparison Project to investigate how ocean salinity responds to perturbations of surface fluxes.The findings indicate the emergence of a sea surface salinity(SSS)dipole pattern predominantly in the North Atlantic and Pacific fresh pools,driven by surface flux perturbations.This results in an intensification of the“salty gets saltier and fresh gets fresher”SSS pattern across the global ocean.The spatial pattern amplification(PA)of SSS under global warming is estimated to be approximately 11.5%,with surface water flux perturbations being the most significant contributor to salinity PA,accounting for 8.1% of the change after 70 years in experiments since pre-industrial control(piControl).Notably,the zonal-depth distribution of salinity in the upper ocean exhibits lighter seawater above the denser water,with bowed isopycnals in the upper 400 m.This stable stratification inhibits vertical mixing of salinity and temperature.In response to the flux perturbations,there is a strong positive feedback due to consequent freshening.It is hypothesized that under global warming,an SSS amplification of 7.2%/℃ and a mixed-layer depth amplification of 12.5%/℃ will occur in the global ocean.It suggests that the salinity effect can exert a more stable ocean to hinder the downward transfer of heat,which provides positive feedback to future global warming.
基金supported by a PETRONAS-Academia Collabora-tion Dialogue 2022 Grant[Grant number PACD 2022]from PETRONAS Research Sdn.Bhd。
文摘The atmospheric surface layer of the tropical coastal ocean is commonly very unstable and experiences weakwind conditions.How the latent(LE)and sensible(H)heat fluxes behave under such conditions are unclear because of the lack of observation stations in the tropics.Thus,this study aims to analyze LE and H and the microclimate parameters influencing them.The authors deployed an eddy covariance system in a tropical coastal region for seven months.The microclimate parameters investigated were wind speed(U),vapor pressure deficit(Δe),temperature difference(ΔT),wind-vapor pressure deficit(UΔe),wind-temperature difference(UΔT),and atmospheric stability(z/L),where z is height and L is the Monin–Obukhov length.On the daily time scale,the results show that LE was more associated with U thanΔe,while H was more related toΔT than U.Cross-wavelet analysis revealed the strong coherence in the LE-U relationship for periods between one and two days,and for H–ΔT,0.5 to 1 day.Correlation and regression analyses confirmed the time series analyses results,where strong positive correlation coefficients(r)were obtained between LE and U(r=0.494)and H andΔT(r=0.365).Compared to other water bodies,the transfer coefficient of moisture(CE N)was found to be small(=0.40×10^(-3))and independent of stability;conversely,the transfer coefficient of heat(CH N)was closer to literature values(=1.00×10^(-3))and a function of stability.
基金supported by the National Natural Science Foundation of China(52273101,51922018,and 21875011)the Fundamental Research Funds for the Central Universities(KG21015201 and KG21020801)China Postdoctoral Science Foundation(2025M77422)。
文摘Undesired ice accumulation on infrastructure and transportation systems leads to catastrophic events and significant economic losses.Although various anti-icing surfaces with photothermal effects can initially prevent icing,any thawy droplets remaining on the horizontal surface can quickly re-freezing once the light diminishes.To address these challenges,we have developed a self-draining slippery surface(SDSS)that enables the thawy droplets to self-remove on the horizontal surface,thereby facilitating real-time anti-icing with the aid of sunlight(100 m W cm^(-2)).This is achieved by sandwiching a thin pyroelectric layer between slippery surface and photothermal film.Due to the synergy between the photothermal and pyroelectric layers,the SDSS not only maintains a high surface temperature of 19.8±2.2℃at the low temperature(-20.0±1.0℃),but also generates amount of charge through thermoelectric coupling.Thus,as cold droplets dropped on the SDSS,electrostatic force pushes the droplets off the charged surface because of the charge transfer mechanism.Even if the surface freezes overnight,the ice can melt and drain off the SDSS within 10 min of exposure to sunlight at-20.0±1.0℃,leaving a clean surface.This work provides a new perspective on the anti-icing system in the real-world environments.
基金supported by the National Natural Science Foundation of China(Grant No.62488201)the National Key Research and Development Projects of China(Grant Nos.2022YFA1204100 and 2023YFA1607400)+1 种基金the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-003)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)。
文摘A bulk superconductor hosting intrinsic surface superconductivity provides a unique platform for exploring Majorana bound states.Trigonal γ-PtBi_(2),a superconductor,is a promising candidate,as both surface superconducting gaps and topological surface states have been observed.However,the simultaneous presence of bulk and surface superconductivity has remained unresolved.In this study,we directly visualize coexisting bulk and surface superconducting gaps in trigonal PtBi2 using ultra-low-temperature scanning tunneling microscopy/spectroscopy.The bulk gap,Δ,is∼0.053 meV,with a critical temperature(T_(c))of∼0.5K and a critical field below 0.01 T,accompanied by a vortex lattice and vortex bound states and yielding a coherence length of∼200 nm.Remarkably,certain surface regions exhibit a much larger gap(Δ)of∼0.42 meV,persisting up to a T_(c)value of∼3K and surviving magnetic fields of up to 2 T,yet lacking a static vortex lattice.This coexistence of robust surface and bulk superconductivity establishes γ-PtBi_(2)as a unique platform for exploring the interplay between bulk and surface Cooper pairings in topological superconductors.
文摘In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.
基金supported by the National Key Research and Development Program of China(2022YFB3605902)the National Natural Science Foundation of China(52375411,52293402)。
文摘Workpiece rotational grinding is widely used in the ultra-precision machining of hard and brittle semiconductor materials,including single-crystal silicon,silicon carbide,and gallium arsenide.Surface roughness and subsurface damage depth(SDD)are crucial indicators for evaluating the surface quality of these materials after grinding.Existing prediction models lack general applicability and do not accurately account for the complex material behavior under grinding conditions.This paper introduces novel models for predicting both surface roughness and SDD in hard and brittle semiconductor materials.The surface roughness model uniquely incorporates the material’s elastic recovery properties,revealing the significant impact of these properties on prediction accuracy.The SDD model is distinguished by its analysis of the interactions between abrasive grits and the workpiece,as well as the mechanisms governing stress-induced damage evolution.The surface roughness model and SDD model both establish a stable relationship with the grit depth of cut(GDC).Additionally,we have developed an analytical relationship between the GDC and grinding process parameters.This,in turn,enables the establishment of an analytical framework for predicting surface roughness and SDD based on grinding process parameters,which cannot be achieved by previous models.The models were validated through systematic experiments on three different semiconductor materials,demonstrating excellent agreement with experimental data,with prediction errors of 6.3%for surface roughness and6.9%for SDD.Additionally,this study identifies variations in elastic recovery and material plasticity as critical factors influencing surface roughness and SDD across different materials.These findings significantly advance the accuracy of predictive models and broaden their applicability for grinding hard and brittle semiconductor materials.
基金supported by the Natural Science Foundation of China(Grant Nos.42088101 and 42375163)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030007)the specific research fund of The Innovation Platform for Academicians of Hainan Province(Grant No.YSPTZX202143)。
文摘In Earth system modeling,the land surface is coupled with the atmosphere through surface turbulent fluxes.These fluxes are computed using mean meteorological variables between the surface and a reference height in the atmosphere.However,the dependence of flux computation on the reference height,which is usually set as the lowest level in the atmosphere in Earth system models,has not received much attention.Based on high-resolution large-eddy simulation(LES)data under unstable conditions,we find the setting of reference height is not trivial within the framework of current surface layer theory.With a reasonable prescription of aerodynamic roughness length(following the setting in LESs),reference heights near the top of the surface layer tend to provide the best estimate of surface fluxes,especially for the momentum flux.Furthermore,this conclusion for the sensible heat flux is insensitive to the ratio of roughness length for momentum versus heat.These results are robust,whether using the classical or revised surface layer theory.They provide a potential guide for setting the proper reference heights for Earth system modeling and can be further tested in the near future using observational data from land–atmosphere feedback observatories.
基金The National Natural Science Foundation of China(No.10971029,11101078,11171064)the Natural Science Foundation of Jiangsu Province(No.BK2011583)
文摘The Frenet-Serret formula is used to characterize the constant angle ruled surfaces in R3. When the surfaces are the tangent developmental and normal surfaces, that is, r(s, v) = tr(s) +v(cosα(s) . t(s) +sina(s) . n(s)), it is shown that each of these surfaces is locally isometric to a piece of a plane or a certain special surface. When the surfaces are normal and binormal surfaces, that is, r ( s, v ) = σ ( s ) + v ( cosa ( s ) . n(s) + since(s) . b(s)), it is shown that each of these surfaces is locally isometric to a piece of a plane or a cylindrical surface.
文摘This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.
基金supported by the National Nature Science Foun-dation of China(Grant No.50875061).
文摘The fatigue life of components can be significantly enhanced by the formation of the surface hardness layer through surface strengthening technology.To avoid the geometric distortion of thin-walled com-ponents caused by strengthening,the strengthening energy is limited and the ideal strengthening effect cannot be obtained.This work aims to propose a novel approach to address this issue effectively.The surface layer with high-density dislocations was obtained by a low-energy surface strengthening method(shot peening)at first.Then the surface strengthening mechanism changes from dislocation strengthen-ing to grain boundary strengthening after electropulsing treatment(EPT).The evolution of residual stress and microstructure was analyzed using multi-scale characterization techniques.The results demonstrate that EPT followed by surface strengthening makes a remarkable 304%increase in fatigue life of TC11 titanium alloy.The enhancement of fatigue life can be attributed to the grain refinement accompanied by the formation of nanotwins and sub-grains in the surface-strengthened layer,as well as the reduction in dislocation density within the substrate after EPT.This study demonstrates the significant potential of EPT in further enhancing the fatigue life of surface pre-strengthened thin-walled components.
文摘The amount of impervious surface area increases with rapid urbanization.Remote sensing indices are used to detect impervious surface areas quickly,cheaply and accurately.This study used Landsat-OLI and Sentiel-2A MSI images in the province of Ankara to compare six impervious surface extraction indices:Normalized Difference Builtup Index(NDBI),Combinational Biophysical Composition Index(CBCI),Normalized Impervious Surface Index(NISI),Urban Index(UI),Index-based Built-up Index(IBI),Enhanced Normalized Difference Impervious Surfaces Index(ENDISI).Spectral discrimination index(SDI)and error matrix were used to evaluate the performance of the indexes.In addition,a visual evaluation of the performance of the indices was made on different surface areas in the study area.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1403102)the National Natural Science Foundation of China(Grant Nos.12474478,92065102,and 61804056).
文摘The intrinsic antiferromagnetic topological insulators in the Mn-Bi-Te family,composed of superlattice-like MnBi_(2)Te_(4)/(Bi_(2)Te_(3))_(n)(n=0,1,2,3,...)layered structure,present intriguing states of matter such as quantum anomalous Hall effect and the axion insulator.However,the surface state gap,which is the prerequisite for the observation of these states,remains elusive.Here by molecular beam epitaxy,we obtain two types of MnBi_(4)Te_(7)films with the exclusive Bi_(2)Te_(3)(BT)or MnBi_(2)Te_(4)(MBT)terminations.By scanning tunneling spectroscopy,the mass terms in the surface states are identified on both surface terminations.Experimental results reveal the existence of a hybridization gap of approximately 23 meV in surface states on the BT termination.This gap comes from the hybridization between the surface states and the spin-split states in the adjacent MBT layer.On the MBT termination,an exchange mass term of about 28±2 meV in surface states is identified by taking magnetic-field-dependent Landau level spectra as well as theoretical simulations.In addition,the mass term varies with the field in the film with a heavy BiMn doping level in the Mn layers.These findings demonstrate the existence of mass terms in surface states on both types of terminations in our epitaxial MnBi_(4)Te_(7)films investigated by local probes.
基金supported by the Sakarya University of Applied Sciences-Scientific Research Projects Coordination in the scope of master’s thesis Project under project number 285–2025.
文摘Purpose–This study examines the effect of increased surface energy on adhesion strength.Surface modifications were made using chemical coating methods such as primer paint(primer)and cataphoresis(KTL,Kathodische Tauchlackierung).The wetting behaviour of adhesive on these surfaces and the resulting contact angles were analysed to evaluate bonding effectiveness.Design/methodology/approach–Primer paint was applied to glass fibre reinforced plastic(GFRP)materials and cataphoresis coating was applied to steel.Contact angles of the coated surfaces were measured and compared to those of the uncoated(natural)surfaces.Findings–Results showed that applying primer to GFRP and KTL to steel increased their surface energy compared to untreated surfaces.A decrease in contact angle correlated with improved wetting,suggesting enhanced adhesion potential.Originality/value–While the effects of surface coatings on adhesion have been studied,there is limited research specifically on the adhesion-enhancing potential of KTL coatings.Typically used for corrosion resistance,KTL is shown here to also improve adhesion.The novelty lies in experimentally demonstrating KTL’s dual role as both a protective and adhesion-enhancing layer.
文摘Based on the theoretical representation of piezoelectric quasicrystal,a generalized dynamic model is built to represent the transmission of wave aspects in surface acoustic pulse nano-devices.Surface elasticity,surface piezoelectricity,and surface permittivity help to include the surface effect,which equals additional thin sheets.It is shown that,under certain assumptions,this generalized dynamic model may be simplified to a few classical examples that are appropriate for both macro and nano-scale applications.In the current work,surface piezoelectricity is used to develop a theoretical model for shear horizontal(SH)waves where it contains the surface piezoelectricity theory and a linear spring model to quantitatively and qualitatively explore SH waves in an orthotropic piezoelectric quasicrystal layer overlying an elastic framework(Model I),a piezoelectric quasi-crystal nano substrate,and an orthotropic piezoelectric quasicrystal half-space(Model II).The theoretical model stimulates the numerical results,which establish the critical thickness.As the piezoelectric layer’s thickness gets closer to nanometres,surface energy must be included when analyzing dispersion properties.Furthermore,the effects of surface elasticity and density on wave velocity are investigated individually.The authors establish a parameter,precisely the ratio of the physical modulus along the width direction to along the direction of wave travel.The surface effect’s impact on the general char-acteristics of piezoelectric structures is seen as a spring force acting on bulk boundaries.Analytical presentation of frequency equations for both symmetric and anti-symmetric waves pertains to the case of an electrical short circuit in Model II.The project aims to analyze SH waves in orthogonal anisotropic,transversely isotropic piezoelectric layered nanostructures,providing a practical mathematical tool for surface effects analysis and adaptability to other wave types,including Rayleigh waves and acoustic surface waves.
基金the support by the Harbin Manufacturing Science and Technology Innovation Talent Project(No.2023CXRCGD035)the Open Research Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology in Huazhong University of Science and Technology,China(No.IMETKF2023012).
文摘While laser surface texturing(LST)is a promising manufacturing technique for surface functionalization,simultaneously realizing high precision and high efficiency in the LST of complex curved surface is challenging,due to continuously varied geometries of laser-matter incidence.In the present work,we propose a novel manufacturing system of 7-axis on-the-fly LST for complex curved surface,based on the integrated synchronization of 5-axis linkage motion platform with 2-axis galvanometer.Specifically,the algorithm for decomposing spatial texture trajectory on curved surface into low-frequency and high-frequency parts is established,based on which the kinematic model of synchronized 7-axis system is developed to derive the motion of each axis in both 5-axis linkage motion platform and 2-axis galvanometer simultaneously.Subsequently,the synchronized 7-axis LST system is experimentally realized,including the setup of mechanical stages integrated with optical path,the configuration of numerical control unit,and the development of processing software.Finally,case study of 7-axis on-the-fly LST of freeform aluminum surface is performed,and the advantages in terms of processing efficiency and texturing accuracy over 5-axis linkage LST are demonstrated.The correlation of reduced following errors between mechanical stages with the promoted performance of curved surface texturing by the 7-axis on-the-fly LST is further analyzed.Current work provides a feasible solution for establishing the manufacturing system for high performance LST of complex curved surface.
文摘The title of the online version of the original article was revised.The title of the original article has been revised to:Hydrochemical characterization of surface waters in Northern Tehran:Integrating cluster-based techniques with Self-Organizing Maps.
基金supported by National Natural Science Foundation of China(No.21573276)Natural Science Foundation of Jiangsu Province(No.BK20170007)Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2022ZB846).
文摘Utilizing superwettability micro/nanostructures to enhance the condensation heat transfer(CHT)performance of engineering materials has attracted great interest due to its values in basic research and technological innovations.Currently,exploring facile micro/nanofabrication approaches to create high-efficiency CHT surfaces has been one of research hotspots.In this work,we propose and demonstrate a type of new superwettability hybrid surface for high-efficiency CHT,which consists of superhydrophobic nanoneedle arrays and triangularly-patterned superhydrophilic microdots(SMDs).Such hybrid surface can be fabricated by the facile growth of densely-packed ZnO nanoneedles on the Zn-electroplated copper surface followed by fluorosilane modification and mask-assisted photodegradation.Through regulating the diameters and interspaces of SMDs,we obtain the optimized triangularly-patterned hybrid surface,which shows 42.7%higher CHT coefficient than the squarely-patterned hybrid surface and 58.5%higher CHT coefficient than the superhydrophobic surface.The key of such hybrid surface design is to considerably increase CHT coefficient brought about by SMD-triggered drop sweeping at the cost of slightly reducing heat transfer area of superhydrophobic functional zone for drop jumping.Such new strategy helps develop advanced CHT surfaces for high-efficiency electronic cooling and energy utilization.
基金financially supported by the National Science Foundation of China(No.41920104010)the China Postdoctoral Science Foundation(No.2024M762767)+3 种基金the Fundamental Research Funds for the Central University,CHD(No.300102264104)by the Postdoctoral Fellowship Program of CPSF(No.GZC20241444)supported by Fondazione Cariplo and Fondazione CDP(No.2022-1546_001)by the Italian Ministry of Education,MUR(Project Dipartimenti di Eccellenza,TECLA,Department of Earth and Environmental Sciences,University of Milano-Bicocca)。
文摘Mantle plumes and surface erosion and sediment deposition affect the modes of continental lithospheric rupturing in extensional tectonic settings,modulating the evolution of rifting margins.However,their relative contributions to the overall evolution of rifting margins and possible roles in the formation of microcontinent are still elusive.Here,we use coupled geodynamic and surface processes numerical modeling to assess the extent to which surface processes may determine the formation of microcontinent during lithospheric stretching in presence or absence of a mantle plume underneath.Our modeling results indicate that fast extension rates and hillslope(i.e.,diffusion)erosion promote ridge jump events and therefore the formation of microcontinents.On the contrary,efficient fluvial erosion and far-reaching sediment transport(i.e.,stream power erosion)inhibits ridge jump events and the formation of microcontinents.The ridge jump event and overall evolution in our numerical models is consistent with the shift from the Mascarene Ridge to the Carlsberg Ridge that determined the formation of the Seychelles microcontinent.We therefore speculate that hillslope erosion,rather than fluvial erosion,was predominant during the formation of the Seychelles,a possible indication of overall dry local climate conditions.