A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symb...A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect.展开更多
A numerical simulation analysis is conducted to examine the unsteady hydrodynamic characteristics of vortex-induced vibration(VIV)and the suppression effect of helical strakes on VIV in subsea pipelines.The analysis u...A numerical simulation analysis is conducted to examine the unsteady hydrodynamic characteristics of vortex-induced vibration(VIV)and the suppression effect of helical strakes on VIV in subsea pipelines.The analysis uses the standard k−εturbulence model for 4.5-and 12.75-inch pipes,and its accuracy is verified by comparing the results with large-scale hydrodynamic experiments.These experiments are designed to evaluate the suppression efficiency of VIV with and without helical strakes,focusing on displacement and drag coefficients under different flow conditions.Furthermore,the influence of important geometric parameters of the helical strakes on drag coefficients and VIV suppression efficiency at different flow rates is compared and discussed.Numerical results agree well with experimental data for drag coefficient and vortex shedding frequency.Spring-pipe self-excited vibration experimental tests reveal that the installation of helical strakes substantially reduces the drag coefficient of VIV within a certain flow rate range,achieving suppression efficiencies exceeding 90%with strake heights larger than 0.15D.Notably,the optimized parameter combination of helical strakes,with a pitch of 15D,a fin height of 0.2D,and 45°edge slopes,maintains high suppression efficiency,thereby exhibiting superior performance.This study provides a valuable reference for the design and application of helical strakes and VIV suppression in subsea engineering.展开更多
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s...A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.展开更多
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac...In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.展开更多
BACKGROUND Sustained viral load(VL)suppression is an important indicator of successful treatment among people living with human immunodeficiency virus(HIV).AIM To assess trends of different VL outcomes before and afte...BACKGROUND Sustained viral load(VL)suppression is an important indicator of successful treatment among people living with human immunodeficiency virus(HIV).AIM To assess trends of different VL outcomes before and after adoption of the Treat All policy among people living with HIV in Rwanda.METHODS Between 2014 and 2017,VL suppression[VL suppression(VLS)<200 copies/mL]was measured among people living with HIV from 28 healthcare facilities in Rwanda.Participant VL was measured at 6 months,18 months,and 30 months.The unit of analysis was visit-pair,with subjects across four visit-pair categories:(1)Sustained VL suppression(VL<200 copies/mL at two consecutive visits);(2)Persistent viremia(VL≥200 copies/mL at two consecutive visits);(3)Viral rebound(VL<200 copies/mL at prior visit only);and(4)Newly suppressed(VL<200 copies/mL at subsequent visit only).Poisson regression models with generalized estimating equations were used to estimate adjusted incidence risk ratio(aIRR)and 95%confidence intervals(CIs)for factors associated with sustained VLS.To handle missing data,multiple imputations was performed.RESULTS A total of 634 participants contributed 973 visit-pairs(295 single pairs and 339 double pairs).The median age was 37 years(interquartile range:32-43 years).The incidence rates of sustained VLS,persistent viremia,viral rebound,and new suppression were 85.2%,4.3%,4.6%,and 5.7%,respectively.Young individuals aged 18-24 years had higher incidence of viral rebound compared to those 25 years or older(14.8%vs 4.3%;P=0.011).Of the visit-pairs that had sustained VLS during the first two visits(49.8%;n=485),56.7%exhibited sustained VLS throughout follow-up.Compared to having no education,having at least primary education was associated with an increased likelihood of sustained VLS(aIRR=1.09;95%CI:1.01-1.17).Those who presented with advanced HIV disease at baseline had a 12%reduced likelihood of sustained VLS(aIRR=0.88;95%CI:0.79-0.99).Achieving sustained VLS did not differ before or after adoption of the Treat All policy.When the analysis was repeated on imputed datasets,similar results were found.CONCLUSION Although most people living with HIV have sustained VLS in Rwanda,individuals without formal education,those presenting with advanced HIV,and younger individuals were lagging on multiple outcomes.Interventions tailored to these individuals would improve treatment outcomes to achieve epidemic control.展开更多
An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This ...An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This paper presents a robust solution in the form of a fast flutter suppression digital control logic of edge computing aileron mechatronics(ECAM).We have effectively eliminated passive and active oscillating response biases by integrating nonlinear functional parameters and an antiphase hysteresis Schmitt trigger.Our findings demonstrate that self-tuning nonlinear parameters can optimize stability,robustness,and accuracy.At the same time,the antiphase hysteresis Schmitt trigger effectively rejects flutters without the need for collaborative navigation and guidance.Our hardware-in-the-loop simulation results confirm that this approach can eliminate aircraft jitter and shaking while ensuring expected stability and maneuverability.In conclusion,this nonlinear aileron mechatronics with a Schmitt positive feedback mechanism is a highly effective solution for distributed flight control and active flutter rejection.展开更多
Thin-walled parts have been widely employed as critical components in high-performance equipment due to the high specific strength and light weight.However,owing to their relatively weak rigidity and poor damping prop...Thin-walled parts have been widely employed as critical components in high-performance equipment due to the high specific strength and light weight.However,owing to their relatively weak rigidity and poor damping properties,chatter vibration is likely to occur during the milling process,which severely deteriorates surface quality and decreases machining productivity.Therefore,chatter suppression is essential for improving the dynamic machinability of thin-walled structures and has attracted extensive attention over the past few decades.This paper reviews the current state of the art in research concerning chatter suppression during the milling of thin-walled workpieces.In consideration of the dynamic characteristics of this process,the challenges in design and application of chatter attenuation methods are highlighted.Moreover,various chatter suppression techniques,involving passive,active,and semi-active methods,are comprehensively discussed in terms of basic concepts,working mechanism,optimal design,and application.Finally,future research opportunities in chatter mitigation technology for thin-wall milling are recommended.展开更多
Li metal is widely recognized as the desired anode for next-generation energy storage,Li metal batteries,due to its highest theoretical capacity and lowest potential.Nonetheless,it suffers from unstable electrochemica...Li metal is widely recognized as the desired anode for next-generation energy storage,Li metal batteries,due to its highest theoretical capacity and lowest potential.Nonetheless,it suffers from unstable electrochemical behaviors like dendrite growth and side reactions in practical application.Herein,we report a highly stable anode with collector,Li_(5)Mg@Cu,realized by the melting-rolling process.The Li_(5)Mg@Cu anode delivers ultrahigh cycle stability for 2000 and 1000 h at the current densities of 1 and 2 mA cm^(-2),respectively in symmetric cells.Meanwhile,the Li_(5)Mg@Cu|LFP cell exhibits a high-capacity retention of 91.8% for 1000 cycles and 78.8% for 2000 cycles at 1 C.Moreover,we investigate the suppression effects of Mg on the dendrite growth by studying the performance of Li_(x)Mg@Cu electrodes with different Mg contents(2.0-16.7 at%).The exchange current density,surface energy,Li^(+)diffusion coefficient,and chemical stability of Li_(x)Mg@Cu concretely reveal this improving suppression effect when Mg content becomes higher.In addition,a Mg-rich phase with“hollow brick”morphology forming in the high Mg content Li_(x)Mg@Cu guides the uniform deposition of Li.This study reveals the suppression effects of Mg on Li dendrites growth and offers a perspective for finding the optimal component of Li-Mg alloys.展开更多
A promising avenue to control mosquito-borne diseases such as dengue,malaria,and Zika involves releasing male mosquitoes carrying the bacterium Wolbachia in wild areas to drive female sterility by a mechanism called c...A promising avenue to control mosquito-borne diseases such as dengue,malaria,and Zika involves releasing male mosquitoes carrying the bacterium Wolbachia in wild areas to drive female sterility by a mechanism called cytoplasmic incompatibility(CI).In this work,we initiate a preliminary assessment of how the combined impact of dispersal,incomplete CI and mating competitiveness on mosquito population suppression by a delay differential equation model.Our theoretical analyses indicate that the immigration of eggs plays a significant role in the suppression dynamics.For the case without egg immigration,we identify a threshold dispersal rate v*of adult mosquitoes,threshold CI densityξ*,and threshold release ratio r*.A successful mosquito suppression would be established only when v<v*,ξ>ξ*,and r(t)≥r*uniformly.The immigration of eggs causes the threshold dynamics to be invalid,and warns an absolute failure of population suppression.The monotonicity of the adult steady-state in the dispersal rate and CI intensity indicates that choosing a suitable Wolbachia strain with strong CI intensity,or bringing down the dispersal rate of mosquitoes by blocking the suppression zones is a feasible strategy to obtain a better suppression level.展开更多
The propagation of solitary waves in fiber-reinforced hyperelastic cylindrical shells holds tremendous potential for structural health monitoring.However,solitary waves under external forces are unstable,and may break...The propagation of solitary waves in fiber-reinforced hyperelastic cylindrical shells holds tremendous potential for structural health monitoring.However,solitary waves under external forces are unstable,and may break then cause chaos in severe cases.In this paper,the stability of solitary waves and chaos suppression in fiber-reinforced compressible hyperelastic cylindrical shells are investigated,and sufficient conditions for chaos generation as well as chaos suppression in cylindrical shells are provided.Under the radial periodic load and structural damping,the traveling wave equation describing the single radial symmetric motion of the cylindrical shell is obtained by using the variational principle and traveling wave method.By employing the bifurcation theory of dynamical systems,the parameter space for the appearance of peak solitary waves,valley solitary waves,and periodic waves in an undisturbed system is determined.The sufficient conditions for chaos generation are derived by the Melnikov method.It is found that the disturbed system leads to chaotic motions in the form of period-doubling bifurcation.Furthermore,a second weak periodic disturbance is applied as the non-feedback control input to suppress chaos,and the initial phase difference serves as the control parameter.According to the Melnikov function,the sufficient conditions for the second excitation amplitude and initial phase difference to suppress chaos are determined.The chaotic motions can be successfully converted to some regular motions by weak periodic perturbations.The results of theoretical analyses are compared with numerical simulation,and they are in good agreement.This paper extends the research scope of nonlinear elastic dynamics,and provides a strategy for controlling chaotic responses of hyperelastic structures.展开更多
The Internet of Things (IoT) has gained popularity and is widely used in modern society. The growth in the sizes of IoT networks with more internet‑connected devices has led to concerns regarding privacy and security....The Internet of Things (IoT) has gained popularity and is widely used in modern society. The growth in the sizes of IoT networks with more internet‑connected devices has led to concerns regarding privacy and security. In particular, related to the routing protocol for low‑power and lossy networks (RPL), which lacks robust security functions, many IoT devices in RPL networks are resource‑constrained, with limited computing power, bandwidth, memory, and bat‑tery life. This causes them to face various vulnerabilities and potential attacks, such as DIO neighbor suppression attacks. This type of attack specifcally targets neighboring nodes through DIO messages and poses a signifcant security threat to RPL‑based IoT networks. Recent studies have proposed methods for detecting and mitigating this attack;however, they produce high false‑positive and false‑negative rates in detection tasks and cannot fully protect RPL networks against this attack type. In this paper, we propose a novel fuzzy logic‑based intrusion detection scheme to secure the RPL protocol (FLSec‑RPL) to protect against this attack. Our method is built of three key phases consecu‑tively: (1) it tracks attack activity variables to determine potential malicious behaviors;(2) it performs fuzzy logic‑based intrusion detection to identify malicious neighbor nodes;and (3) it provides a detection validation and blocking mechanism to ensure that both malicious and suspected malicious nodes are accurately detected and blocked. To evaluate the efectiveness of our method, we conduct comprehensive experiments across diverse scenarios, including Static‑RPL and Mobile‑RPL networks. We compare the performance of our proposed method with that of the state‑of‑the‑art methods. The results demonstrate that our method outperforms existing methods in terms of the detection accuracy, F1 score, power consumption, end‑to‑end delay, and packet delivery ratio metrics.展开更多
The use of blended acquisition technology in marine seismic exploration has the advantages of high acquisition efficiency and low exploration costs.However,during acquisition,the primary source may be disturbed by adj...The use of blended acquisition technology in marine seismic exploration has the advantages of high acquisition efficiency and low exploration costs.However,during acquisition,the primary source may be disturbed by adjacent sources,resulting in blended noise that can adversely affect data processing and interpretation.Therefore,the de-blending method is needed to suppress blended noise and improve the quality of subsequent processing.Conventional de-blending methods,such as denoising and inversion methods,encounter challenges in parameter selection and entail high computational costs.In contrast,deep learning-based de-blending methods demonstrate reduced reliance on manual intervention and provide rapid calculation speeds post-training.In this study,we propose a Uformer network using a nonoverlapping window multihead attention mechanism designed for de-blending blended data in the common shot domain.We add the depthwise convolution to the feedforward network to improve Uformer’s ability to capture local context information.The loss function comprises SSIM and L1 loss.Our test results indicate that the Uformer outperforms convolutional neural networks and traditional denoising methods across various evaluation metrics,thus highlighting the effectiveness and advantages of Uformer in de-blending blended data.展开更多
Multiple suppression is an important element of marine seismic data processing.Intelligent suppression of multiples us-ing artificial intelligence reduces labor costs,minimizes dependence on unknown prior information,...Multiple suppression is an important element of marine seismic data processing.Intelligent suppression of multiples us-ing artificial intelligence reduces labor costs,minimizes dependence on unknown prior information,and improves data processing ef-ficiency.In this study,we propose an intelligent method for suppressing marine seismic multiples using deep learning approaches.The proposed method enables the intelligent suppression of free-surface-related multiples from seismic records.Initially,we construct a multi-category marine seismic multiple dataset through finite difference forward modeling under different boundary conditions.We use various models and data augmentation methods,including sample rotation,noise addition,and random channel omission.Then,we apply depthwise separable convolution to develop our deep learning Mobilenet-Unet model.The Mobilenet-Unet framework sig-nificantly reduces the number of operations required for multiple elimination without sacrificing model performance,ultimately reali-zing the optimal multiple suppression model.The trained Mobilenet-Unet is applied to the test set for verification.Moreover,to deter-mine its generalization ability,it is implemented to seismic records containing multiples generated by two marine geophysical models that were not included in the training process.The performance of Mobilenet-Unet is also compared with that of different network structures.The results indicate that,despite its small size,our proposed Mobilenet-Unet deep learning model can rapidly and effective-ly separate multiples in marine seismic data,possessing reasonable generalization ability.展开更多
Satellite communication plays an important role in 6G systems.However,satellite communication systems are more susceptible to intentional or unintentional interference signals than other communication systems because ...Satellite communication plays an important role in 6G systems.However,satellite communication systems are more susceptible to intentional or unintentional interference signals than other communication systems because of their working mechanism of transparent forwarding.For the purpose of eliminating the influence of interference,this paper develops an angle reciprocal interference suppression scheme based on the reconstruction of interferenceplus-noise covariance matrix(ARIS-RIN).Firstly,we utilize the reciprocity between the known beam central angle and the unknown signal arrival angle to estimate the angle of arrival(AOA)of desired signal due to the multi-beam coverage.Then,according to the priori known spatial spectrum distribution,the interferenceplus-noise covariance matrix(INCM)is reconstructed by integrating within the range except the direction of desired signal.In order to correct the estimation bias of the first two steps,the worst-case performance optimization technology is adopted in the process of solving the beamforming vector.Numerical simulation results show that the developed scheme:1)has a higher output signal-to-interference-plus-noise ratio(SINR)under arbitrary signal-to-noise ratio(SNR);2)still has good performance under small snapshots;3)is robuster and easier to be realized when comparing with minimum variance distortionless response(MVDR)and the traditional diagonal loading algorithms.展开更多
Current research on active flutter suppression considering time delays tends to focus on fixed time delays.To address situations where the control loop may experience time-varying delays with uncertainty,a time-varyin...Current research on active flutter suppression considering time delays tends to focus on fixed time delays.To address situations where the control loop may experience time-varying delays with uncertainty,a time-varying-delay Active Disturbance Rejection Control(TVD-ADRC)is proposed.First,a parameterized unsteady aerodynamic reduced-order model(ROM)based on a long short-term memory network is introduced into the aeroservoelastic modeling.This model is applied to predict unsteady aerodynamic forces and aeroservoelastic(ASE)behaviors across a wide range of Mach numbers.Its effectiveness in capturing the characteristics of unsteady aerodynamics is validated through comparisons with the high-fid elity computational fluid dynamics(CFD)simulations.Second,the proposed method integrates ADRC with a delayed input and a time-d elay identification module in the controller design.Specifically,the timevarying delay is identified using the cross-correlation function method with a moving window,and this method dynamically updates the time-delay compensation module.Additionally,a genetic algorithm is employed to optimize controller parameters,and the integral of the time-weighted absolute error is selected as the performance evaluation index for the control system.Finally,a three-degree-of-freedom aeroservoelastic system of an airfoil with a trailing-edge control surface is studied for flutter suppression.Flutter control under uncertain time-varying delays during flutter occurrence is investigated,and the impact of the magnitude of the time delay on the effectiveness of the flutter control is analyzed.Simulation results indicate that the proposed TVDADRC controller could effectively suppress the aeroelastic instabilities across a wide range of Mach numbers and effectively counteract the negative effects of time-varying delays.展开更多
Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the phy...Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the physical array aperture,azimuth ambiguity occurs,making range-azimuth imaging on a moving platform challenging.To address this issue,we theoretically analyze azimuth ambiguity generation in sparse motion arrays and propose a dual-aperture adaptive processing(DAAP)method for suppressing azimuth ambiguity.This method combines spatial multiple-input multiple-output(MIMO)arrays with sparse motion arrays to achieve high-resolution range-azimuth imaging.In addition,an adaptive QR decomposition denoising method for sparse array signals based on iterative low-rank matrix approximation(LRMA)and regularized QR is proposed to preprocess sparse motion array signals.Simulations and experiments show that on a two-transmitter-four-receiver array,the signal-to-noise ratio(SNR)of the sparse motion array signal after noise suppression via adaptive QR decomposition can exceed 0 dB,and the azimuth ambiguity signal ratio(AASR)can be reduced to below-20 dB.展开更多
A two-dimensional large eddy simulation numerical model is proposed to study the transient vortex flow and pressure oscillation of a large-aspect-ratio solid rocket motor.The numerical model is validated through exper...A two-dimensional large eddy simulation numerical model is proposed to study the transient vortex flow and pressure oscillation of a large-aspect-ratio solid rocket motor.The numerical model is validated through experimental data,finite element analysis and cumulative error analysis.The numerical simulations are executed to obtain the characteristics of the vortex-acoustic and pressure oscillation.The results show that the burning surface regression decreases the motor aspect ratio,increasing the corresponding natural frequency from 260 Hz to 293 Hz.The pressure oscillation phenomenon is formed due to the vortex-acoustic coupling.Decreasing the corner vortex shedding intensity shows negative effects on the dimensionless amplitude of the pressure oscillation.The head cavity without the injection can decrease the vortex-acoustic coupling level at the acoustic pressure antinode.The modified motor with head cavity can obtain a lower dimensionless oscillating pressure amplitude 0.00149 in comparison with 0.00895 of the original motor.The aspect ratio and volume of the head cavity without the injection have great effects on the pressure oscillation suppression,particularly at the low aspect ratio or large volume.The reason is that the mass in the region around the acoustic pressure antinode is extracted centrally,reducing the energy contribution to the acoustic system.With the volume increasing,the acoustic energy capacity increases.展开更多
Although numerousfindings show that people experience both positive and negative experiences with regards to solitude,the relationship between solitude capacity and emotional experience remains unclear.The current stud...Although numerousfindings show that people experience both positive and negative experiences with regards to solitude,the relationship between solitude capacity and emotional experience remains unclear.The current study investigated the extent to which emotion regulation may play a suppressive role in the relationship between solitude capacity and emotional experience.Questionnaires on solitude capacity,emotion regulation,and emotional experience were completed by a sample of Chinese college students(n=844;432 females;Meanage=19.79 years,SD=1.43 years).The results of the indirect effect test showed that cognitive reappraisal suppresses the prediction of solitude capacity on positive emotions,while the solitude capacity prediction of negative emotions was suppressed by both cognitive reappraisal and expressive suppression.This suggests that solitude capacity does not predict emotional experience directly,but instead is realized through an antagonistic system consisting of adaptive and nonadaptive emotion regulation strategies.Thesefindings provide cross-sectional empirical support for the ecological niche hypothesis of solitude,and are of theoretical significance in clarifying the role of internal mechanisms of solitude capacity on the human emotional experience.展开更多
Seawater electrolysis offers a promising pathway to generate green hydrogen,which is crucial for the net-zero emission targets.Indirect seawater electrolysis is severely limited by high energy demands and system compl...Seawater electrolysis offers a promising pathway to generate green hydrogen,which is crucial for the net-zero emission targets.Indirect seawater electrolysis is severely limited by high energy demands and system complexity,while the direct seawater electrolysis bypasses pre-treatment,offering a simpler and more cost-effective solution.However,the chlorine evolution reaction and impurities in the seawater lead to severe corrosion and hinder electrolysis’s efficiency.Herein,we review recent advances in the rational design of chlorine-suppressive catalysts and integrated electrolysis systems architectures for chloride-induced corrosion,with simultaneous enhancement of Faradaic efficiency and reduction of electrolysis’s cost.Furthermore,promising directions are proposed for durable and efficient seawater electrolysis systems.This review provides perspectives for seawater electrolysis toward sustainable energy conversion and environmental protection.展开更多
The unavoidable dendrite growth and shuttle effect have long been stranglehold challenges limiting the safety and practicality of lithium-sulfur batteries.Herein,we propose a dual-action strategy to address the lithiu...The unavoidable dendrite growth and shuttle effect have long been stranglehold challenges limiting the safety and practicality of lithium-sulfur batteries.Herein,we propose a dual-action strategy to address the lithium dendrite issue in stages by constructing a multifunctional surface-negatively-charged nanodiamond layer with high ductility and robust puncture resistance on polypropylene (PP) separator.The uniformly loaded compact negative layer can not only significantly enhance electron transmission efficiency and promote uniform lithium deposition,but also reduce the formation of dendrite during early deposition stage.Most importantly,under the strong puncture stress encountered during the deterioration of lithium dendrite growth under limiting current,the high ductility and robust puncture resistance(145.88 MPa) of as-obtained nanodiamond layer can effectively prevent short circuits caused by unavoidable lithium dendrite.The Li||Li symmetrical cells assembled with nanodiamond layer modified PP demonstrated a stable cycle of over 1000 h at 2 mA cm^(-2)with a polarization voltage of only 29.3 mV.Additionally,the negative charged layer serves as a physical barrier blocking lithium polysulfide ions,effectively mitigating capacity attenuation.The improved cells achieved a capacity decay of only 0.042%per cycle after 700 cycles at 3 C,demonstrating effective suppression of dendrite growth and capacity attenuation,showing promising prospect.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U21A20447 and 61971079)。
文摘A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect.
基金Supported by the National Natural Science Foundation of China (Grant No. 52222111)the National Science and Technology Major Project of China “Key Technologies and Equipment for Deepwater Dry Oil and Gas Production and Processing Platforms”(No. 2024ZD1403300)+1 种基金Subproject 5 “Research on Safety Risk Assessment Technology System for Deepwater Dry Oil and Gas Production and Processing Platforms”(No. 2024ZD1403305)the China Scholarship Council (202306440019)。
文摘A numerical simulation analysis is conducted to examine the unsteady hydrodynamic characteristics of vortex-induced vibration(VIV)and the suppression effect of helical strakes on VIV in subsea pipelines.The analysis uses the standard k−εturbulence model for 4.5-and 12.75-inch pipes,and its accuracy is verified by comparing the results with large-scale hydrodynamic experiments.These experiments are designed to evaluate the suppression efficiency of VIV with and without helical strakes,focusing on displacement and drag coefficients under different flow conditions.Furthermore,the influence of important geometric parameters of the helical strakes on drag coefficients and VIV suppression efficiency at different flow rates is compared and discussed.Numerical results agree well with experimental data for drag coefficient and vortex shedding frequency.Spring-pipe self-excited vibration experimental tests reveal that the installation of helical strakes substantially reduces the drag coefficient of VIV within a certain flow rate range,achieving suppression efficiencies exceeding 90%with strake heights larger than 0.15D.Notably,the optimized parameter combination of helical strakes,with a pitch of 15D,a fin height of 0.2D,and 45°edge slopes,maintains high suppression efficiency,thereby exhibiting superior performance.This study provides a valuable reference for the design and application of helical strakes and VIV suppression in subsea engineering.
基金The National Natural Science Foundation of China(No.U19B2031).
文摘A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.
基金supported by the National Natural Science Foundation of China(62272049,62236006,62172045)the Key Projects of Beijing Union University(ZKZD202301).
文摘In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.
文摘BACKGROUND Sustained viral load(VL)suppression is an important indicator of successful treatment among people living with human immunodeficiency virus(HIV).AIM To assess trends of different VL outcomes before and after adoption of the Treat All policy among people living with HIV in Rwanda.METHODS Between 2014 and 2017,VL suppression[VL suppression(VLS)<200 copies/mL]was measured among people living with HIV from 28 healthcare facilities in Rwanda.Participant VL was measured at 6 months,18 months,and 30 months.The unit of analysis was visit-pair,with subjects across four visit-pair categories:(1)Sustained VL suppression(VL<200 copies/mL at two consecutive visits);(2)Persistent viremia(VL≥200 copies/mL at two consecutive visits);(3)Viral rebound(VL<200 copies/mL at prior visit only);and(4)Newly suppressed(VL<200 copies/mL at subsequent visit only).Poisson regression models with generalized estimating equations were used to estimate adjusted incidence risk ratio(aIRR)and 95%confidence intervals(CIs)for factors associated with sustained VLS.To handle missing data,multiple imputations was performed.RESULTS A total of 634 participants contributed 973 visit-pairs(295 single pairs and 339 double pairs).The median age was 37 years(interquartile range:32-43 years).The incidence rates of sustained VLS,persistent viremia,viral rebound,and new suppression were 85.2%,4.3%,4.6%,and 5.7%,respectively.Young individuals aged 18-24 years had higher incidence of viral rebound compared to those 25 years or older(14.8%vs 4.3%;P=0.011).Of the visit-pairs that had sustained VLS during the first two visits(49.8%;n=485),56.7%exhibited sustained VLS throughout follow-up.Compared to having no education,having at least primary education was associated with an increased likelihood of sustained VLS(aIRR=1.09;95%CI:1.01-1.17).Those who presented with advanced HIV disease at baseline had a 12%reduced likelihood of sustained VLS(aIRR=0.88;95%CI:0.79-0.99).Achieving sustained VLS did not differ before or after adoption of the Treat All policy.When the analysis was repeated on imputed datasets,similar results were found.CONCLUSION Although most people living with HIV have sustained VLS in Rwanda,individuals without formal education,those presenting with advanced HIV,and younger individuals were lagging on multiple outcomes.Interventions tailored to these individuals would improve treatment outcomes to achieve epidemic control.
基金supported in part by the Aeronautical Science Foundation of China under Grant 2022Z005057001the Joint Research Fund of Shanghai Commercial Aircraft System Engineering Science and Technology Innovation Center under CASEF-2023-M19.
文摘An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This paper presents a robust solution in the form of a fast flutter suppression digital control logic of edge computing aileron mechatronics(ECAM).We have effectively eliminated passive and active oscillating response biases by integrating nonlinear functional parameters and an antiphase hysteresis Schmitt trigger.Our findings demonstrate that self-tuning nonlinear parameters can optimize stability,robustness,and accuracy.At the same time,the antiphase hysteresis Schmitt trigger effectively rejects flutters without the need for collaborative navigation and guidance.Our hardware-in-the-loop simulation results confirm that this approach can eliminate aircraft jitter and shaking while ensuring expected stability and maneuverability.In conclusion,this nonlinear aileron mechatronics with a Schmitt positive feedback mechanism is a highly effective solution for distributed flight control and active flutter rejection.
基金supported by the National Natural Science Foundation of China(Grant No.U22A20202)。
文摘Thin-walled parts have been widely employed as critical components in high-performance equipment due to the high specific strength and light weight.However,owing to their relatively weak rigidity and poor damping properties,chatter vibration is likely to occur during the milling process,which severely deteriorates surface quality and decreases machining productivity.Therefore,chatter suppression is essential for improving the dynamic machinability of thin-walled structures and has attracted extensive attention over the past few decades.This paper reviews the current state of the art in research concerning chatter suppression during the milling of thin-walled workpieces.In consideration of the dynamic characteristics of this process,the challenges in design and application of chatter attenuation methods are highlighted.Moreover,various chatter suppression techniques,involving passive,active,and semi-active methods,are comprehensively discussed in terms of basic concepts,working mechanism,optimal design,and application.Finally,future research opportunities in chatter mitigation technology for thin-wall milling are recommended.
基金supported by the Qingdao Jiuhuanxinyue New Energy Technology Co.,Ltd.the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021B1515120071)+2 种基金the 21C Innovation Laboratory,Contemporary Amperex Technology Ltd.(Grant No.21C-OP-202112)the financial support from the Guangdong Basic and Applied Basic Research Foundation(Grant No.2024A1515011873)the Shenzhen Science and Technology Program(Grant No.JCYJ20220531095212027).
文摘Li metal is widely recognized as the desired anode for next-generation energy storage,Li metal batteries,due to its highest theoretical capacity and lowest potential.Nonetheless,it suffers from unstable electrochemical behaviors like dendrite growth and side reactions in practical application.Herein,we report a highly stable anode with collector,Li_(5)Mg@Cu,realized by the melting-rolling process.The Li_(5)Mg@Cu anode delivers ultrahigh cycle stability for 2000 and 1000 h at the current densities of 1 and 2 mA cm^(-2),respectively in symmetric cells.Meanwhile,the Li_(5)Mg@Cu|LFP cell exhibits a high-capacity retention of 91.8% for 1000 cycles and 78.8% for 2000 cycles at 1 C.Moreover,we investigate the suppression effects of Mg on the dendrite growth by studying the performance of Li_(x)Mg@Cu electrodes with different Mg contents(2.0-16.7 at%).The exchange current density,surface energy,Li^(+)diffusion coefficient,and chemical stability of Li_(x)Mg@Cu concretely reveal this improving suppression effect when Mg content becomes higher.In addition,a Mg-rich phase with“hollow brick”morphology forming in the high Mg content Li_(x)Mg@Cu guides the uniform deposition of Li.This study reveals the suppression effects of Mg on Li dendrites growth and offers a perspective for finding the optimal component of Li-Mg alloys.
基金Supported by the National Natural Science Foundation of China(12226414,11471085,11631005,12171112)。
文摘A promising avenue to control mosquito-borne diseases such as dengue,malaria,and Zika involves releasing male mosquitoes carrying the bacterium Wolbachia in wild areas to drive female sterility by a mechanism called cytoplasmic incompatibility(CI).In this work,we initiate a preliminary assessment of how the combined impact of dispersal,incomplete CI and mating competitiveness on mosquito population suppression by a delay differential equation model.Our theoretical analyses indicate that the immigration of eggs plays a significant role in the suppression dynamics.For the case without egg immigration,we identify a threshold dispersal rate v*of adult mosquitoes,threshold CI densityξ*,and threshold release ratio r*.A successful mosquito suppression would be established only when v<v*,ξ>ξ*,and r(t)≥r*uniformly.The immigration of eggs causes the threshold dynamics to be invalid,and warns an absolute failure of population suppression.The monotonicity of the adult steady-state in the dispersal rate and CI intensity indicates that choosing a suitable Wolbachia strain with strong CI intensity,or bringing down the dispersal rate of mosquitoes by blocking the suppression zones is a feasible strategy to obtain a better suppression level.
基金support from the National Natural Science Foundation of China(Nos.12102242 and 12172086)the Educational Foundation of Liaoning Province(No.JYTQN2023261)the Key R&D Program of Shandong Province of China(No.2022SFGC0801).
文摘The propagation of solitary waves in fiber-reinforced hyperelastic cylindrical shells holds tremendous potential for structural health monitoring.However,solitary waves under external forces are unstable,and may break then cause chaos in severe cases.In this paper,the stability of solitary waves and chaos suppression in fiber-reinforced compressible hyperelastic cylindrical shells are investigated,and sufficient conditions for chaos generation as well as chaos suppression in cylindrical shells are provided.Under the radial periodic load and structural damping,the traveling wave equation describing the single radial symmetric motion of the cylindrical shell is obtained by using the variational principle and traveling wave method.By employing the bifurcation theory of dynamical systems,the parameter space for the appearance of peak solitary waves,valley solitary waves,and periodic waves in an undisturbed system is determined.The sufficient conditions for chaos generation are derived by the Melnikov method.It is found that the disturbed system leads to chaotic motions in the form of period-doubling bifurcation.Furthermore,a second weak periodic disturbance is applied as the non-feedback control input to suppress chaos,and the initial phase difference serves as the control parameter.According to the Melnikov function,the sufficient conditions for the second excitation amplitude and initial phase difference to suppress chaos are determined.The chaotic motions can be successfully converted to some regular motions by weak periodic perturbations.The results of theoretical analyses are compared with numerical simulation,and they are in good agreement.This paper extends the research scope of nonlinear elastic dynamics,and provides a strategy for controlling chaotic responses of hyperelastic structures.
基金funded by a Royal Scholarship from Her Royal Highness Prin‑cess Maha Chakri Sirindhorn Education Project to Cambodia for 2020,faculty of College of Computing,Khon Kaen University.
文摘The Internet of Things (IoT) has gained popularity and is widely used in modern society. The growth in the sizes of IoT networks with more internet‑connected devices has led to concerns regarding privacy and security. In particular, related to the routing protocol for low‑power and lossy networks (RPL), which lacks robust security functions, many IoT devices in RPL networks are resource‑constrained, with limited computing power, bandwidth, memory, and bat‑tery life. This causes them to face various vulnerabilities and potential attacks, such as DIO neighbor suppression attacks. This type of attack specifcally targets neighboring nodes through DIO messages and poses a signifcant security threat to RPL‑based IoT networks. Recent studies have proposed methods for detecting and mitigating this attack;however, they produce high false‑positive and false‑negative rates in detection tasks and cannot fully protect RPL networks against this attack type. In this paper, we propose a novel fuzzy logic‑based intrusion detection scheme to secure the RPL protocol (FLSec‑RPL) to protect against this attack. Our method is built of three key phases consecu‑tively: (1) it tracks attack activity variables to determine potential malicious behaviors;(2) it performs fuzzy logic‑based intrusion detection to identify malicious neighbor nodes;and (3) it provides a detection validation and blocking mechanism to ensure that both malicious and suspected malicious nodes are accurately detected and blocked. To evaluate the efectiveness of our method, we conduct comprehensive experiments across diverse scenarios, including Static‑RPL and Mobile‑RPL networks. We compare the performance of our proposed method with that of the state‑of‑the‑art methods. The results demonstrate that our method outperforms existing methods in terms of the detection accuracy, F1 score, power consumption, end‑to‑end delay, and packet delivery ratio metrics.
基金supported by the National Natural Science Foundation of China(Research on Dynamic Location of Receiving Points and Wave Field Separation Technology Based on Deep Learning in OBN Seismic Exploration,No.42074140)the Sinopec Geophysical Corporation,Project of OBC/OBN Seismic Data Wave Field Characteristics Analysis and Ghost Wave Suppression(No.SGC-202206)。
文摘The use of blended acquisition technology in marine seismic exploration has the advantages of high acquisition efficiency and low exploration costs.However,during acquisition,the primary source may be disturbed by adjacent sources,resulting in blended noise that can adversely affect data processing and interpretation.Therefore,the de-blending method is needed to suppress blended noise and improve the quality of subsequent processing.Conventional de-blending methods,such as denoising and inversion methods,encounter challenges in parameter selection and entail high computational costs.In contrast,deep learning-based de-blending methods demonstrate reduced reliance on manual intervention and provide rapid calculation speeds post-training.In this study,we propose a Uformer network using a nonoverlapping window multihead attention mechanism designed for de-blending blended data in the common shot domain.We add the depthwise convolution to the feedforward network to improve Uformer’s ability to capture local context information.The loss function comprises SSIM and L1 loss.Our test results indicate that the Uformer outperforms convolutional neural networks and traditional denoising methods across various evaluation metrics,thus highlighting the effectiveness and advantages of Uformer in de-blending blended data.
基金supported by the Key Laboratory of Ma-rine Mineral Resources,Ministry of Natural Resources,Guangzhou(No.KLMMR-2022-G09)the Guangzhou Ba-sic Research Program-Basic and Basic Applied Research Project(No.2023A04J0917)the PI Project of South-ern Marine Science and Engineering Guangdong Labora-tory(Guangzhou)(No.GML2020GD0802).
文摘Multiple suppression is an important element of marine seismic data processing.Intelligent suppression of multiples us-ing artificial intelligence reduces labor costs,minimizes dependence on unknown prior information,and improves data processing ef-ficiency.In this study,we propose an intelligent method for suppressing marine seismic multiples using deep learning approaches.The proposed method enables the intelligent suppression of free-surface-related multiples from seismic records.Initially,we construct a multi-category marine seismic multiple dataset through finite difference forward modeling under different boundary conditions.We use various models and data augmentation methods,including sample rotation,noise addition,and random channel omission.Then,we apply depthwise separable convolution to develop our deep learning Mobilenet-Unet model.The Mobilenet-Unet framework sig-nificantly reduces the number of operations required for multiple elimination without sacrificing model performance,ultimately reali-zing the optimal multiple suppression model.The trained Mobilenet-Unet is applied to the test set for verification.Moreover,to deter-mine its generalization ability,it is implemented to seismic records containing multiples generated by two marine geophysical models that were not included in the training process.The performance of Mobilenet-Unet is also compared with that of different network structures.The results indicate that,despite its small size,our proposed Mobilenet-Unet deep learning model can rapidly and effective-ly separate multiples in marine seismic data,possessing reasonable generalization ability.
基金supported by the National Natural Science Foundation of China under Grants No.61671367 and 62471381the Research Foundation of Science and Technology on Communication Networks Laboratory,and the National Key Laboratory of Wireless Communications Foundation under Grant No.IFN202401.
文摘Satellite communication plays an important role in 6G systems.However,satellite communication systems are more susceptible to intentional or unintentional interference signals than other communication systems because of their working mechanism of transparent forwarding.For the purpose of eliminating the influence of interference,this paper develops an angle reciprocal interference suppression scheme based on the reconstruction of interferenceplus-noise covariance matrix(ARIS-RIN).Firstly,we utilize the reciprocity between the known beam central angle and the unknown signal arrival angle to estimate the angle of arrival(AOA)of desired signal due to the multi-beam coverage.Then,according to the priori known spatial spectrum distribution,the interferenceplus-noise covariance matrix(INCM)is reconstructed by integrating within the range except the direction of desired signal.In order to correct the estimation bias of the first two steps,the worst-case performance optimization technology is adopted in the process of solving the beamforming vector.Numerical simulation results show that the developed scheme:1)has a higher output signal-to-interference-plus-noise ratio(SINR)under arbitrary signal-to-noise ratio(SNR);2)still has good performance under small snapshots;3)is robuster and easier to be realized when comparing with minimum variance distortionless response(MVDR)and the traditional diagonal loading algorithms.
基金supported by the National Natural Science Foundation of China(12302027,11702255)the Natural Science Foundation of Henan(232300421357)+1 种基金the Scientific Research Team Plan of Zhengzhou University of Aeronautics(23ZHTD01006)the Open Funding of Henan Key Laboratory of General Aviation Technology(ZHKF-240211)。
文摘Current research on active flutter suppression considering time delays tends to focus on fixed time delays.To address situations where the control loop may experience time-varying delays with uncertainty,a time-varying-delay Active Disturbance Rejection Control(TVD-ADRC)is proposed.First,a parameterized unsteady aerodynamic reduced-order model(ROM)based on a long short-term memory network is introduced into the aeroservoelastic modeling.This model is applied to predict unsteady aerodynamic forces and aeroservoelastic(ASE)behaviors across a wide range of Mach numbers.Its effectiveness in capturing the characteristics of unsteady aerodynamics is validated through comparisons with the high-fid elity computational fluid dynamics(CFD)simulations.Second,the proposed method integrates ADRC with a delayed input and a time-d elay identification module in the controller design.Specifically,the timevarying delay is identified using the cross-correlation function method with a moving window,and this method dynamically updates the time-delay compensation module.Additionally,a genetic algorithm is employed to optimize controller parameters,and the integral of the time-weighted absolute error is selected as the performance evaluation index for the control system.Finally,a three-degree-of-freedom aeroservoelastic system of an airfoil with a trailing-edge control surface is studied for flutter suppression.Flutter control under uncertain time-varying delays during flutter occurrence is investigated,and the impact of the magnitude of the time delay on the effectiveness of the flutter control is analyzed.Simulation results indicate that the proposed TVDADRC controller could effectively suppress the aeroelastic instabilities across a wide range of Mach numbers and effectively counteract the negative effects of time-varying delays.
基金supported by the National Natural Science Foundation of China under Grant 62301051.
文摘Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the physical array aperture,azimuth ambiguity occurs,making range-azimuth imaging on a moving platform challenging.To address this issue,we theoretically analyze azimuth ambiguity generation in sparse motion arrays and propose a dual-aperture adaptive processing(DAAP)method for suppressing azimuth ambiguity.This method combines spatial multiple-input multiple-output(MIMO)arrays with sparse motion arrays to achieve high-resolution range-azimuth imaging.In addition,an adaptive QR decomposition denoising method for sparse array signals based on iterative low-rank matrix approximation(LRMA)and regularized QR is proposed to preprocess sparse motion array signals.Simulations and experiments show that on a two-transmitter-four-receiver array,the signal-to-noise ratio(SNR)of the sparse motion array signal after noise suppression via adaptive QR decomposition can exceed 0 dB,and the azimuth ambiguity signal ratio(AASR)can be reduced to below-20 dB.
基金supported by the Natural Science Foundation of Hunan Province of China(No.2023JJ40672)the Innovation Science Fund Project of National University of Defense Technology,China(No.ZK2023-039)。
文摘A two-dimensional large eddy simulation numerical model is proposed to study the transient vortex flow and pressure oscillation of a large-aspect-ratio solid rocket motor.The numerical model is validated through experimental data,finite element analysis and cumulative error analysis.The numerical simulations are executed to obtain the characteristics of the vortex-acoustic and pressure oscillation.The results show that the burning surface regression decreases the motor aspect ratio,increasing the corresponding natural frequency from 260 Hz to 293 Hz.The pressure oscillation phenomenon is formed due to the vortex-acoustic coupling.Decreasing the corner vortex shedding intensity shows negative effects on the dimensionless amplitude of the pressure oscillation.The head cavity without the injection can decrease the vortex-acoustic coupling level at the acoustic pressure antinode.The modified motor with head cavity can obtain a lower dimensionless oscillating pressure amplitude 0.00149 in comparison with 0.00895 of the original motor.The aspect ratio and volume of the head cavity without the injection have great effects on the pressure oscillation suppression,particularly at the low aspect ratio or large volume.The reason is that the mass in the region around the acoustic pressure antinode is extracted centrally,reducing the energy contribution to the acoustic system.With the volume increasing,the acoustic energy capacity increases.
基金supported by grants from the Doctoral Research Project of Yan’an University(2003-205040349)the 2022 General Special Scientific Research Plan Project of the Shaanxi Provincial Department of Education(YDZZYB23-40)the Social Science Foundation of Shaanxi Province(2023P013 and 2024P028).
文摘Although numerousfindings show that people experience both positive and negative experiences with regards to solitude,the relationship between solitude capacity and emotional experience remains unclear.The current study investigated the extent to which emotion regulation may play a suppressive role in the relationship between solitude capacity and emotional experience.Questionnaires on solitude capacity,emotion regulation,and emotional experience were completed by a sample of Chinese college students(n=844;432 females;Meanage=19.79 years,SD=1.43 years).The results of the indirect effect test showed that cognitive reappraisal suppresses the prediction of solitude capacity on positive emotions,while the solitude capacity prediction of negative emotions was suppressed by both cognitive reappraisal and expressive suppression.This suggests that solitude capacity does not predict emotional experience directly,but instead is realized through an antagonistic system consisting of adaptive and nonadaptive emotion regulation strategies.Thesefindings provide cross-sectional empirical support for the ecological niche hypothesis of solitude,and are of theoretical significance in clarifying the role of internal mechanisms of solitude capacity on the human emotional experience.
基金supported by the National Natural Science Foundation of China(Nos.22208376,UA22A20429)Shandong Provincial Natural Science Foundation(Nos.ZR2024QB175,ZR2023LFG005)+1 种基金Qingdao New Energy Shandong Laboratory Open Project(QNESL OP 202303)Ministry of Education University-Industry Collaborative Education Program(No.230804132140429).
文摘Seawater electrolysis offers a promising pathway to generate green hydrogen,which is crucial for the net-zero emission targets.Indirect seawater electrolysis is severely limited by high energy demands and system complexity,while the direct seawater electrolysis bypasses pre-treatment,offering a simpler and more cost-effective solution.However,the chlorine evolution reaction and impurities in the seawater lead to severe corrosion and hinder electrolysis’s efficiency.Herein,we review recent advances in the rational design of chlorine-suppressive catalysts and integrated electrolysis systems architectures for chloride-induced corrosion,with simultaneous enhancement of Faradaic efficiency and reduction of electrolysis’s cost.Furthermore,promising directions are proposed for durable and efficient seawater electrolysis systems.This review provides perspectives for seawater electrolysis toward sustainable energy conversion and environmental protection.
基金National Natural Science Foundation of China (Grant 52372083, 52173255)Opening Project of the Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials (JSKC24025)+1 种基金Special Funds for the Trans-formation of Scientific and Technological Achievements in Jiangsu Province(BA2023003)Collaborative Innovation Center for Advanced Micro/nanomaterials and Equipment (Co-constructed by Jiangsu Province and Ministry of Education)。
文摘The unavoidable dendrite growth and shuttle effect have long been stranglehold challenges limiting the safety and practicality of lithium-sulfur batteries.Herein,we propose a dual-action strategy to address the lithium dendrite issue in stages by constructing a multifunctional surface-negatively-charged nanodiamond layer with high ductility and robust puncture resistance on polypropylene (PP) separator.The uniformly loaded compact negative layer can not only significantly enhance electron transmission efficiency and promote uniform lithium deposition,but also reduce the formation of dendrite during early deposition stage.Most importantly,under the strong puncture stress encountered during the deterioration of lithium dendrite growth under limiting current,the high ductility and robust puncture resistance(145.88 MPa) of as-obtained nanodiamond layer can effectively prevent short circuits caused by unavoidable lithium dendrite.The Li||Li symmetrical cells assembled with nanodiamond layer modified PP demonstrated a stable cycle of over 1000 h at 2 mA cm^(-2)with a polarization voltage of only 29.3 mV.Additionally,the negative charged layer serves as a physical barrier blocking lithium polysulfide ions,effectively mitigating capacity attenuation.The improved cells achieved a capacity decay of only 0.042%per cycle after 700 cycles at 3 C,demonstrating effective suppression of dendrite growth and capacity attenuation,showing promising prospect.