The random noises of multi-sensor and the environment make observations uncertain and correlative, so the performance of fusion algorithms is reduced by using observations directly. To solve this problem, a multi-laye...The random noises of multi-sensor and the environment make observations uncertain and correlative, so the performance of fusion algorithms is reduced by using observations directly. To solve this problem, a multi-layer track fusion algorithm based on supporting degree matrix is proposed. Combined with the track fusion algorithm based on filtering step by step, it uses multi-sensor observations to establish supporting degree matrix and realize multi-layer fusion. Simulation results show its estimation precision is higher than the original algorithm and is increased by 20% around. Therefore, it solves the problem of target tracking further in the distributed track fusion system.展开更多
Impacted craters are commonly found on the surface of planets, satellites, asteroids and other solar system bodies. In order to speed up the rate of constructing the database of craters, it is important to develop cra...Impacted craters are commonly found on the surface of planets, satellites, asteroids and other solar system bodies. In order to speed up the rate of constructing the database of craters, it is important to develop crater detection algorithms. This paper presents a novel approach to automatically detect craters on planetary surfaces. The approach contains two parts: crater candidate region selection and crater detection. In the first part, crater candidate region selection is achieved by Kanade-Lucas-Tomasi (KLT) detector. Matrix-pattern-oriented least squares support vector machine (MatLSSVM), as the matrixization version of least square support vector machine (SVM), inherits the advantages of least squares support vector machine (LSSVM), reduces storage space greatly and reserves spatial redundancies within each image matrix compared with general LSSVM. The second part of the approach employs MatLSSVM to design classifier for crater detection. Experimental results on the dataset which comprises 160 preprocessed image patches from Google Mars demonstrate that the accuracy rate of crater detection can be up to 88%. In addition, the outstanding feature of the approach introduced in this paper is that it takes resized crater candidate region as input pattern directly to finish crater detection. The results of the last experiment demonstrate that MatLSSVM-based classifier can detect crater regions effectively on the basis of KLT-based crater candidate region selection.展开更多
For the current situation that the application of risk matrix method may result in too many risk ties which will block risk management and decision making, and based on the brief introduction of risk matrix method,thi...For the current situation that the application of risk matrix method may result in too many risk ties which will block risk management and decision making, and based on the brief introduction of risk matrix method,this paper subdivides the risk levels, gives an improved risk matrix method, conducts risk assessment of contractor support using the improved risk matrix method, and determines the risk rates and the acceptable level.展开更多
To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPT...To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.展开更多
Design and development of iron porphyrin-based artificial enzymes system have been attracting a lot of attention.Herein,without any toxic reductant and harsh processing,we present a facile one-pot method to fabricate ...Design and development of iron porphyrin-based artificial enzymes system have been attracting a lot of attention.Herein,without any toxic reductant and harsh processing,we present a facile one-pot method to fabricate bifunctional catalytic nanocomposites consisting of graphene and hemin by using vitamin C as a mild reduction reagent.The presence of graphene helps the formation of a high degree of highly active and stable hemin on the graphene surface in a monomeric form through theirπ-πstacking interaction.As a result,such nanocomposites possess a superior adsorption capacity and intrinsic peroxidase-like catalytic activity.Moreover,by the combination of their dye adsorption ability,RGOhemin nanocomposites can serve as a suitable candidate for efficient capture and removal of dyes via a synergistic effect.Our findings may pave the way to apply graphene-supported artificial enzymes in a variety of fields,such as environmental chemistry,bionics,medicine,and biotechnology.展开更多
Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is...Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method.展开更多
The knowledge of subnuclear localization in eukaryotic cells is indispensable for under-standing the biological function of nucleus, genome regulation and drug discovery. In this study, a new feature representation wa...The knowledge of subnuclear localization in eukaryotic cells is indispensable for under-standing the biological function of nucleus, genome regulation and drug discovery. In this study, a new feature representation was pro-posed by combining position specific scoring matrix (PSSM) and auto covariance (AC). The AC variables describe the neighboring effect between two amino acids, so that they incorpo-rate the sequence-order information;PSSM de-scribes the information of biological evolution of proteins. Based on this new descriptor, a support vector machine (SVM) classifier was built to predict subnuclear localization. To evaluate the power of our predictor, the benchmark dataset that contains 714 proteins localized in nine subnuclear compartments was utilized. The total jackknife cross validation ac-curacy of our method is 76.5%, that is higher than those of the Nuc-PLoc (67.4%), the OET- KNN (55.6%), AAC based SVM (48.9%) and ProtLoc (36.6%). The prediction software used in this article and the details of the SVM parameters are freely available at http://chemlab.scu.edu.cn/ predict_SubNL/index.htm and the dataset used in our study is from Shen and Chou’s work by downloading at http://chou.med.harvard.edu/ bioinf/Nuc-PLoc/Data.htm.展开更多
Identification of the drug-binding residues on the surface of proteins is a vital step in drug discovery and it is important for understanding protein function. Most previous researches are based on the structural inf...Identification of the drug-binding residues on the surface of proteins is a vital step in drug discovery and it is important for understanding protein function. Most previous researches are based on the structural information of proteins, but the structures of most proteins are not available. So in this article, a sequence-based method was proposed by combining the support vector machine (SVM)-based ensemble learning and the improved position specific scoring matrix (PSSM). In order to take the local environment information of a drug-binding site into account, an improved PSSM profile scaled by the sliding window and smoothing window was used to improve the prediction result. In addition, a new SVM-based ensemble learning method was developed to deal with the imbalanced data classification problem that commonly exists in the binding site predictions. When performed on the dataset of 985 drug-binding residues, the method achieved a very promising prediction result with the area under the curve (AUC) of 0.9264. Furthermore, an independent dataset of 349 drug- binding residues was used to evaluate the pre- diction model and the prediction accuracy is 84.68%. These results suggest that our method is effective for predicting the drug-binding sites in proteins. The code and all datasets used in this article are freely available at http://cic.scu.edu.cn/bioinformatics/Ensem_DBS.zip.展开更多
Driven by the challenge of integrating large amount of experimental data, classification technique emerges as one of the major and popular tools in computational biology and bioinformatics research. Machine learning m...Driven by the challenge of integrating large amount of experimental data, classification technique emerges as one of the major and popular tools in computational biology and bioinformatics research. Machine learning methods, especially kernel methods with Support Vector Machines (SVMs) are very popular and effective tools. In the perspective of kernel matrix, a technique namely Eigen- matrix translation has been introduced for protein data classification. The Eigen-matrix translation strategy has a lot of nice properties which deserve more exploration. This paper investigates the major role of Eigen-matrix translation in classification. The authors propose that its importance lies in the dimension reduction of predictor attributes within the data set. This is very important when the dimension of features is huge. The authors show by numerical experiments on real biological data sets that the proposed framework is crucial and effective in improving classification accuracy. This can therefore serve as a novel perspective for future research in dimension reduction problems.展开更多
提出了一种模糊最优间隔分布矩阵分类器(Fuzzy Optimal-margin Distribution Matrix Classifier,FODMC)。该模型通过整合模糊隶属度理论与间隔分布优化机制,实现了矩阵结构信息的有效提取与异常值的鲁棒处理。具体而言,FODMC采用基于间...提出了一种模糊最优间隔分布矩阵分类器(Fuzzy Optimal-margin Distribution Matrix Classifier,FODMC)。该模型通过整合模糊隶属度理论与间隔分布优化机制,实现了矩阵结构信息的有效提取与异常值的鲁棒处理。具体而言,FODMC采用基于间隔分布的损失函数来优化分类边界,结合核范数正则化策略保持矩阵的低秩特性,并利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)实现模型的高效训练。在多个基准数据集上的实验结果表明:与现有方法相比,FODMC在分类准确率、鲁棒性和泛化能力等方面均展现出显著优势,为矩阵数据分类问题提供了一种有效的解决方案。展开更多
针对传统频谱感知算法在复杂信道环境下鲁棒性欠佳的问题,以及深度学习感知算法面临的模型训练复杂度高等局限,提出了一种融合多种群人工鱼群算法与模糊孪生支持向量机(fuzzy twin support vector machine,FTSVM)的频谱感知方法.首先,...针对传统频谱感知算法在复杂信道环境下鲁棒性欠佳的问题,以及深度学习感知算法面临的模型训练复杂度高等局限,提出了一种融合多种群人工鱼群算法与模糊孪生支持向量机(fuzzy twin support vector machine,FTSVM)的频谱感知方法.首先,通过计算接收信号协方差矩阵的迹及其对角线外元素的均值,构建一个二维特征向量,由FTSVM进行训练识别;然后,使用样本的模糊隶属度调整了FTSVM超平面,从而使训练得到的模型更倾向于识别出初级用户存在的信号;最后,设计了多种群机制的改进人工鱼群算法,对频谱感知模型参数进行优化.仿真实验结果表明,在面临小样本数据集和低信噪比环境时,所提方法相较于其它的特征提取和SVM方法,在模型感知性能上实现了有效提升,−20 dB信噪比下检测概率达0.7以上.同时,优化算法的多种群机制缩短了模型的训练时间,相较于改进人工鱼群算法,训练时间缩短了约81%.展开更多
基金Supported by the Aviation Science Funds (20090580013)the Fundamental Research Funds for the Central Universities (ZYGX2009J092)
文摘The random noises of multi-sensor and the environment make observations uncertain and correlative, so the performance of fusion algorithms is reduced by using observations directly. To solve this problem, a multi-layer track fusion algorithm based on supporting degree matrix is proposed. Combined with the track fusion algorithm based on filtering step by step, it uses multi-sensor observations to establish supporting degree matrix and realize multi-layer fusion. Simulation results show its estimation precision is higher than the original algorithm and is increased by 20% around. Therefore, it solves the problem of target tracking further in the distributed track fusion system.
基金co-supported by the National Natural Science Foundation of China (No. 61203170)the Fundamental Research Funds for the Central Universities (No. NS2012026)Startup Foundation for Introduced Talents of Nanjing University of Aeronautics and Astronautics (No. 1007-YAH10047)
文摘Impacted craters are commonly found on the surface of planets, satellites, asteroids and other solar system bodies. In order to speed up the rate of constructing the database of craters, it is important to develop crater detection algorithms. This paper presents a novel approach to automatically detect craters on planetary surfaces. The approach contains two parts: crater candidate region selection and crater detection. In the first part, crater candidate region selection is achieved by Kanade-Lucas-Tomasi (KLT) detector. Matrix-pattern-oriented least squares support vector machine (MatLSSVM), as the matrixization version of least square support vector machine (SVM), inherits the advantages of least squares support vector machine (LSSVM), reduces storage space greatly and reserves spatial redundancies within each image matrix compared with general LSSVM. The second part of the approach employs MatLSSVM to design classifier for crater detection. Experimental results on the dataset which comprises 160 preprocessed image patches from Google Mars demonstrate that the accuracy rate of crater detection can be up to 88%. In addition, the outstanding feature of the approach introduced in this paper is that it takes resized crater candidate region as input pattern directly to finish crater detection. The results of the last experiment demonstrate that MatLSSVM-based classifier can detect crater regions effectively on the basis of KLT-based crater candidate region selection.
文摘For the current situation that the application of risk matrix method may result in too many risk ties which will block risk management and decision making, and based on the brief introduction of risk matrix method,this paper subdivides the risk levels, gives an improved risk matrix method, conducts risk assessment of contractor support using the improved risk matrix method, and determines the risk rates and the acceptable level.
文摘To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.
基金supported by the National Nature Science Foundation (Nos.21771150,21401154,U1405226)the Fundamental Research Funds for the Central Universities of China (Nos. 20720170011,20720140528,20720160127)+1 种基金111 Project (No. B16029)Doctoral Fund of the Ministry of Education (No.20130121110018)
文摘Design and development of iron porphyrin-based artificial enzymes system have been attracting a lot of attention.Herein,without any toxic reductant and harsh processing,we present a facile one-pot method to fabricate bifunctional catalytic nanocomposites consisting of graphene and hemin by using vitamin C as a mild reduction reagent.The presence of graphene helps the formation of a high degree of highly active and stable hemin on the graphene surface in a monomeric form through theirπ-πstacking interaction.As a result,such nanocomposites possess a superior adsorption capacity and intrinsic peroxidase-like catalytic activity.Moreover,by the combination of their dye adsorption ability,RGOhemin nanocomposites can serve as a suitable candidate for efficient capture and removal of dyes via a synergistic effect.Our findings may pave the way to apply graphene-supported artificial enzymes in a variety of fields,such as environmental chemistry,bionics,medicine,and biotechnology.
基金supported by the National Natural Science Fundation of China (60736021)the Joint Funds of NSFC-Guangdong Province(U0735003)
文摘Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method.
文摘The knowledge of subnuclear localization in eukaryotic cells is indispensable for under-standing the biological function of nucleus, genome regulation and drug discovery. In this study, a new feature representation was pro-posed by combining position specific scoring matrix (PSSM) and auto covariance (AC). The AC variables describe the neighboring effect between two amino acids, so that they incorpo-rate the sequence-order information;PSSM de-scribes the information of biological evolution of proteins. Based on this new descriptor, a support vector machine (SVM) classifier was built to predict subnuclear localization. To evaluate the power of our predictor, the benchmark dataset that contains 714 proteins localized in nine subnuclear compartments was utilized. The total jackknife cross validation ac-curacy of our method is 76.5%, that is higher than those of the Nuc-PLoc (67.4%), the OET- KNN (55.6%), AAC based SVM (48.9%) and ProtLoc (36.6%). The prediction software used in this article and the details of the SVM parameters are freely available at http://chemlab.scu.edu.cn/ predict_SubNL/index.htm and the dataset used in our study is from Shen and Chou’s work by downloading at http://chou.med.harvard.edu/ bioinf/Nuc-PLoc/Data.htm.
文摘Identification of the drug-binding residues on the surface of proteins is a vital step in drug discovery and it is important for understanding protein function. Most previous researches are based on the structural information of proteins, but the structures of most proteins are not available. So in this article, a sequence-based method was proposed by combining the support vector machine (SVM)-based ensemble learning and the improved position specific scoring matrix (PSSM). In order to take the local environment information of a drug-binding site into account, an improved PSSM profile scaled by the sliding window and smoothing window was used to improve the prediction result. In addition, a new SVM-based ensemble learning method was developed to deal with the imbalanced data classification problem that commonly exists in the binding site predictions. When performed on the dataset of 985 drug-binding residues, the method achieved a very promising prediction result with the area under the curve (AUC) of 0.9264. Furthermore, an independent dataset of 349 drug- binding residues was used to evaluate the pre- diction model and the prediction accuracy is 84.68%. These results suggest that our method is effective for predicting the drug-binding sites in proteins. The code and all datasets used in this article are freely available at http://cic.scu.edu.cn/bioinformatics/Ensem_DBS.zip.
基金supported by Research Grants Council of Hong Kong under Grant No.17301214HKU CERG Grants,Fundamental Research Funds for the Central Universities+2 种基金the Research Funds of Renmin University of ChinaHung Hing Ying Physical Research Grantthe Natural Science Foundation of China under Grant No.11271144
文摘Driven by the challenge of integrating large amount of experimental data, classification technique emerges as one of the major and popular tools in computational biology and bioinformatics research. Machine learning methods, especially kernel methods with Support Vector Machines (SVMs) are very popular and effective tools. In the perspective of kernel matrix, a technique namely Eigen- matrix translation has been introduced for protein data classification. The Eigen-matrix translation strategy has a lot of nice properties which deserve more exploration. This paper investigates the major role of Eigen-matrix translation in classification. The authors propose that its importance lies in the dimension reduction of predictor attributes within the data set. This is very important when the dimension of features is huge. The authors show by numerical experiments on real biological data sets that the proposed framework is crucial and effective in improving classification accuracy. This can therefore serve as a novel perspective for future research in dimension reduction problems.
文摘提出了一种模糊最优间隔分布矩阵分类器(Fuzzy Optimal-margin Distribution Matrix Classifier,FODMC)。该模型通过整合模糊隶属度理论与间隔分布优化机制,实现了矩阵结构信息的有效提取与异常值的鲁棒处理。具体而言,FODMC采用基于间隔分布的损失函数来优化分类边界,结合核范数正则化策略保持矩阵的低秩特性,并利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)实现模型的高效训练。在多个基准数据集上的实验结果表明:与现有方法相比,FODMC在分类准确率、鲁棒性和泛化能力等方面均展现出显著优势,为矩阵数据分类问题提供了一种有效的解决方案。