期刊文献+
共找到592篇文章
< 1 2 30 >
每页显示 20 50 100
MULTI-LAYER TRACK FUSION ALGORITHM BASED ON SUPPORTING DEGREE MATRIX 被引量:2
1
作者 Zhang Wei Quan Li Zhang Ke 《Journal of Electronics(China)》 2012年第3期229-236,共8页
The random noises of multi-sensor and the environment make observations uncertain and correlative, so the performance of fusion algorithms is reduced by using observations directly. To solve this problem, a multi-laye... The random noises of multi-sensor and the environment make observations uncertain and correlative, so the performance of fusion algorithms is reduced by using observations directly. To solve this problem, a multi-layer track fusion algorithm based on supporting degree matrix is proposed. Combined with the track fusion algorithm based on filtering step by step, it uses multi-sensor observations to establish supporting degree matrix and realize multi-layer fusion. Simulation results show its estimation precision is higher than the original algorithm and is increased by 20% around. Therefore, it solves the problem of target tracking further in the distributed track fusion system. 展开更多
关键词 Track fusion Filtering step by step supporting degree matrix Target tracking
在线阅读 下载PDF
Novel approach of crater detection by crater candidate region selection and matrix-pattern-oriented least squares support vector machine 被引量:4
2
作者 Ding Meng Cao Yunfeng Wu Qingxian 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第2期385-393,共9页
Impacted craters are commonly found on the surface of planets, satellites, asteroids and other solar system bodies. In order to speed up the rate of constructing the database of craters, it is important to develop cra... Impacted craters are commonly found on the surface of planets, satellites, asteroids and other solar system bodies. In order to speed up the rate of constructing the database of craters, it is important to develop crater detection algorithms. This paper presents a novel approach to automatically detect craters on planetary surfaces. The approach contains two parts: crater candidate region selection and crater detection. In the first part, crater candidate region selection is achieved by Kanade-Lucas-Tomasi (KLT) detector. Matrix-pattern-oriented least squares support vector machine (MatLSSVM), as the matrixization version of least square support vector machine (SVM), inherits the advantages of least squares support vector machine (LSSVM), reduces storage space greatly and reserves spatial redundancies within each image matrix compared with general LSSVM. The second part of the approach employs MatLSSVM to design classifier for crater detection. Experimental results on the dataset which comprises 160 preprocessed image patches from Google Mars demonstrate that the accuracy rate of crater detection can be up to 88%. In addition, the outstanding feature of the approach introduced in this paper is that it takes resized crater candidate region as input pattern directly to finish crater detection. The results of the last experiment demonstrate that MatLSSVM-based classifier can detect crater regions effectively on the basis of KLT-based crater candidate region selection. 展开更多
关键词 Crater candidate region Crater detection algorithm Kanade–Lucas–Tomasi detector Least squares support vector machine matrixization
原文传递
Risk Assessment of Contractor Support Based on Improved Risk Matrix Method 被引量:1
3
作者 张福元 李东阳 +1 位作者 耿斌 刘占岭 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第4期464-467,共4页
For the current situation that the application of risk matrix method may result in too many risk ties which will block risk management and decision making, and based on the brief introduction of risk matrix method,thi... For the current situation that the application of risk matrix method may result in too many risk ties which will block risk management and decision making, and based on the brief introduction of risk matrix method,this paper subdivides the risk levels, gives an improved risk matrix method, conducts risk assessment of contractor support using the improved risk matrix method, and determines the risk rates and the acceptable level. 展开更多
关键词 risk matrix contractor support risk assessment
原文传递
Classification using wavelet packet decomposition and support vector machine for digital modulations 被引量:4
4
作者 Zhao Fucai Hu Yihua Hao Shiqi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期914-918,共5页
To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPT... To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications. 展开更多
关键词 modulation classification wavelet packet transform modulus maxima matrix support vector machine fuzzy density.
在线阅读 下载PDF
Graphene-supported biomimetic catalysts with synergistic effect of adsorption and degradation for efficient dye capture and removal 被引量:1
5
作者 Qin Li Xiaopei Wang +6 位作者 Xueqing Xiong Shuihong Zhu Zhaohui Meng Yongying Hong Changxu Lin Xiangyang Liu Youhui Lin 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第1期239-243,共5页
Design and development of iron porphyrin-based artificial enzymes system have been attracting a lot of attention.Herein,without any toxic reductant and harsh processing,we present a facile one-pot method to fabricate ... Design and development of iron porphyrin-based artificial enzymes system have been attracting a lot of attention.Herein,without any toxic reductant and harsh processing,we present a facile one-pot method to fabricate bifunctional catalytic nanocomposites consisting of graphene and hemin by using vitamin C as a mild reduction reagent.The presence of graphene helps the formation of a high degree of highly active and stable hemin on the graphene surface in a monomeric form through theirπ-πstacking interaction.As a result,such nanocomposites possess a superior adsorption capacity and intrinsic peroxidase-like catalytic activity.Moreover,by the combination of their dye adsorption ability,RGOhemin nanocomposites can serve as a suitable candidate for efficient capture and removal of dyes via a synergistic effect.Our findings may pave the way to apply graphene-supported artificial enzymes in a variety of fields,such as environmental chemistry,bionics,medicine,and biotechnology. 展开更多
关键词 Nanozymes Pollutant removal Solid matrix supported catalyst Synergistic effect
原文传递
Kernel matrix learning with a general regularized risk functional criterion 被引量:3
6
作者 Chengqun Wang Jiming Chen +1 位作者 Chonghai Hu Youxian Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期72-80,共9页
Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is... Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method. 展开更多
关键词 kernel method support vector machine kernel matrix learning HKRS geometric distribution regularized risk functional criterion.
在线阅读 下载PDF
Using position specific scoring matrix and auto covariance to predict protein subnuclear localization 被引量:2
7
作者 Rong-Quan Xiao Yan-Zhi Guo +4 位作者 Yu-Hong Zeng Hai-Feng Tan Hai-Feng Tan Xue-Mei Pu Meng-Long Li 《Journal of Biomedical Science and Engineering》 2009年第1期51-56,共6页
The knowledge of subnuclear localization in eukaryotic cells is indispensable for under-standing the biological function of nucleus, genome regulation and drug discovery. In this study, a new feature representation wa... The knowledge of subnuclear localization in eukaryotic cells is indispensable for under-standing the biological function of nucleus, genome regulation and drug discovery. In this study, a new feature representation was pro-posed by combining position specific scoring matrix (PSSM) and auto covariance (AC). The AC variables describe the neighboring effect between two amino acids, so that they incorpo-rate the sequence-order information;PSSM de-scribes the information of biological evolution of proteins. Based on this new descriptor, a support vector machine (SVM) classifier was built to predict subnuclear localization. To evaluate the power of our predictor, the benchmark dataset that contains 714 proteins localized in nine subnuclear compartments was utilized. The total jackknife cross validation ac-curacy of our method is 76.5%, that is higher than those of the Nuc-PLoc (67.4%), the OET- KNN (55.6%), AAC based SVM (48.9%) and ProtLoc (36.6%). The prediction software used in this article and the details of the SVM parameters are freely available at http://chemlab.scu.edu.cn/ predict_SubNL/index.htm and the dataset used in our study is from Shen and Chou’s work by downloading at http://chou.med.harvard.edu/ bioinf/Nuc-PLoc/Data.htm. 展开更多
关键词 POSITION Specific SCORING matrix AUTO COVARIANCE support Vector Machine Protein SUBNUCLEAR Localization Prediction
暂未订购
Using the improved position specific scoring matrix and ensemble learning method to predict drug-binding residues from protein sequences
8
作者 Juan Li Yongqing Zhang +5 位作者 Wenli Qin Yanzhi Guo Lezheng Yu Xuemei Pu Menglong Li Jing Sun 《Natural Science》 2012年第5期304-312,共9页
Identification of the drug-binding residues on the surface of proteins is a vital step in drug discovery and it is important for understanding protein function. Most previous researches are based on the structural inf... Identification of the drug-binding residues on the surface of proteins is a vital step in drug discovery and it is important for understanding protein function. Most previous researches are based on the structural information of proteins, but the structures of most proteins are not available. So in this article, a sequence-based method was proposed by combining the support vector machine (SVM)-based ensemble learning and the improved position specific scoring matrix (PSSM). In order to take the local environment information of a drug-binding site into account, an improved PSSM profile scaled by the sliding window and smoothing window was used to improve the prediction result. In addition, a new SVM-based ensemble learning method was developed to deal with the imbalanced data classification problem that commonly exists in the binding site predictions. When performed on the dataset of 985 drug-binding residues, the method achieved a very promising prediction result with the area under the curve (AUC) of 0.9264. Furthermore, an independent dataset of 349 drug- binding residues was used to evaluate the pre- diction model and the prediction accuracy is 84.68%. These results suggest that our method is effective for predicting the drug-binding sites in proteins. The code and all datasets used in this article are freely available at http://cic.scu.edu.cn/bioinformatics/Ensem_DBS.zip. 展开更多
关键词 DRUG-BINDING SITE Prediction Position Specific SCORING matrix ENSEMBLE Learning support Vector Machine
暂未订购
On Eigen-Matrix Translation Method for Classification of Biological Data
9
作者 JIANG Hao QIU Yushan +1 位作者 CHENG Xiaoqing CHING Waiki 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第5期1212-1230,共19页
Driven by the challenge of integrating large amount of experimental data, classification technique emerges as one of the major and popular tools in computational biology and bioinformatics research. Machine learning m... Driven by the challenge of integrating large amount of experimental data, classification technique emerges as one of the major and popular tools in computational biology and bioinformatics research. Machine learning methods, especially kernel methods with Support Vector Machines (SVMs) are very popular and effective tools. In the perspective of kernel matrix, a technique namely Eigen- matrix translation has been introduced for protein data classification. The Eigen-matrix translation strategy has a lot of nice properties which deserve more exploration. This paper investigates the major role of Eigen-matrix translation in classification. The authors propose that its importance lies in the dimension reduction of predictor attributes within the data set. This is very important when the dimension of features is huge. The authors show by numerical experiments on real biological data sets that the proposed framework is crucial and effective in improving classification accuracy. This can therefore serve as a novel perspective for future research in dimension reduction problems. 展开更多
关键词 CLASSIFICATION dimension reduction eigen-matrix translation glycan data kernel method(KM) support vector machine (SVM)
在线阅读 下载PDF
批产化应用的新型复合柔性支撑设计与验证
10
作者 王茫茫 李思慧 +3 位作者 陈轩 刘涌 周小华 聂云松 《激光与红外》 北大核心 2025年第6期944-952,共9页
面对遥感相机批产化制造的市场需求下,针对目前反射镜支撑组件装配容差小、生产制造精度要求高和反射镜面型对装配应力和热环境敏感等问题,提出了一种基于胶-金属-胶复合的新型柔性支撑结构,并对其结构参数与柔性进行了研究。采用固化... 面对遥感相机批产化制造的市场需求下,针对目前反射镜支撑组件装配容差小、生产制造精度要求高和反射镜面型对装配应力和热环境敏感等问题,提出了一种基于胶-金属-胶复合的新型柔性支撑结构,并对其结构参数与柔性进行了研究。采用固化后高刚度的结构胶粘接金属件来代替传统螺钉连接,并设计了一种嵌入式圆筒胶粘接头用于提高装配容差,采用固化后低弹性模量的硅橡胶与反射镜侧面进行面胶接,同时引入一种基于板簧单元串联与并联的金属柔性元件,利用金属板簧和硅橡胶的柔性来降低装配应力和环境扰动对反射镜面型的影响。通过柔度分析理论,推导并分析了柔度物理模型以及柔度与结构参数的影响关系,设计了一组参数应用于某批产化相机的反射镜支撑中。对比了柔度分析、有限元仿真和实际测试中重力变形和模态特征频率结果,结果显示基于柔度模型计算重力载荷下刚体位移误差精度优于6.1%,基于柔度矩阵的工程公式计算特征频率误差精度优于10%。最后对反射镜支撑组件温度拉偏4℃后测试面型结果优于0.011λ(λ=632.8nm)。结果表明复合柔性支撑能适用于装配容差大、生产制造精度一般以及复杂力、热变化等恶劣条件下工作,在某批产化遥感相机得到成功应用,在轨表现良好,具有实际工程应用价值。 展开更多
关键词 柔性支撑 柔度矩阵 反射镜支撑 胶粘接头
在线阅读 下载PDF
基于鲁棒代价敏感支持矩阵机的风电齿轮箱故障诊断方法
11
作者 李鑫 魏东 +3 位作者 邹筱瑜 司垒 潘海洋 邵海东 《振动工程学报》 北大核心 2025年第9期2141-2150,共10页
支持矩阵机作为一种先进的矩阵学习模型,可充分利用矩阵数据内蕴的结构信息,但其易受噪声和野值点影响,且在不平衡数据集下泛化性不足。为此,提出一种鲁棒代价敏感支持矩阵机(robust cost-sensitive support matrix machine,RCSSMM)模型... 支持矩阵机作为一种先进的矩阵学习模型,可充分利用矩阵数据内蕴的结构信息,但其易受噪声和野值点影响,且在不平衡数据集下泛化性不足。为此,提出一种鲁棒代价敏感支持矩阵机(robust cost-sensitive support matrix machine,RCSSMM)模型,并将其应用于风电齿轮箱智能故障诊断。RCSSMM采用集成矩阵度量评估矩阵输入的先验分布,为不同的样本分配不同的样本权重,以提高模型对噪声和野值点的鲁棒性。同时,RCSSMM引入代价敏感损失函数,为不同类别的矩阵数据赋予不同的惩罚因子,并通过哈里斯鹰优化(Harris hawks optimization,HHO)算法自适应地确定惩罚因子的最优取值,使模型更加聚焦少数类样本,以提高对不平衡数据的诊断性能。利用风电齿轮箱模拟实验数据和工程实测数据对所提方法进行验证,实验结果表明:在噪声、野值点和数据不平衡干扰下,RCSSMM模型具有更优异的故障诊断性能。 展开更多
关键词 智能故障诊断 支持矩阵机 鲁棒性 不平衡数据 风电齿轮箱
在线阅读 下载PDF
基于模糊隶属度的最优间隔分布矩阵分类器 被引量:2
12
作者 江山 杨金瑞 +2 位作者 武士裕 张里博 杨帆 《西南大学学报(自然科学版)》 北大核心 2025年第4期230-238,共9页
提出了一种模糊最优间隔分布矩阵分类器(Fuzzy Optimal-margin Distribution Matrix Classifier,FODMC)。该模型通过整合模糊隶属度理论与间隔分布优化机制,实现了矩阵结构信息的有效提取与异常值的鲁棒处理。具体而言,FODMC采用基于间... 提出了一种模糊最优间隔分布矩阵分类器(Fuzzy Optimal-margin Distribution Matrix Classifier,FODMC)。该模型通过整合模糊隶属度理论与间隔分布优化机制,实现了矩阵结构信息的有效提取与异常值的鲁棒处理。具体而言,FODMC采用基于间隔分布的损失函数来优化分类边界,结合核范数正则化策略保持矩阵的低秩特性,并利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)实现模型的高效训练。在多个基准数据集上的实验结果表明:与现有方法相比,FODMC在分类准确率、鲁棒性和泛化能力等方面均展现出显著优势,为矩阵数据分类问题提供了一种有效的解决方案。 展开更多
关键词 机器学习 支持矩阵机 支持向量机 间隔分布 模糊隶属度
原文传递
基于机器学习的鄱阳湖溶解氧波动特征及预测 被引量:2
13
作者 李晓瑛 王华 +2 位作者 吴小毛 吴怡 徐浩森 《湖泊科学》 北大核心 2025年第3期915-927,共13页
溶解氧(DO)作为反映水体自净能力和水环境质量的关键指标,是评估鄱阳湖水体健康状况的重要参数。随机森林(RF)和改进支持向量回归(PSO-SVR) 2种机器学习的高效算法被引入到鄱阳湖DO的预测工作中,时间上选择1988—2023年水质数据进行预测... 溶解氧(DO)作为反映水体自净能力和水环境质量的关键指标,是评估鄱阳湖水体健康状况的重要参数。随机森林(RF)和改进支持向量回归(PSO-SVR) 2种机器学习的高效算法被引入到鄱阳湖DO的预测工作中,时间上选择1988—2023年水质数据进行预测,空间上挑选了位于鄱阳湖和入湖5条河流的共8个关键监测站点:棠荫、信江东支、鄱阳、赣江主支、抚河口、修河口、康山和湖口。对8个监测站点的DO进行曼肯达尔趋势检验,整体上DO浓度上升的站点为抚河口、修河口、康山和湖口,其中康山和湖口的DO浓度在后期表现出显著上升趋势。基于随机森林重要性指数(IMI)探究了DO与其他水质因子间的响应关系,在8个监测站点中水温(T)对DO的重要性指数均较高,其次是高锰酸盐指数(COD_(Mn)),各个因子的平均IMI排序为T>COD_(Mn)>TN>NH_(3)-N>TP>pH,其重要性指数值分别为2.54、0.81、0.65、0.63、0.43和0.37。使用RF和PSO-SVR模型对1988—2023年月均水质数据进行预测对比分析。整体上,RF和PSO-SVR模型在8个监测站点的总体平均误差分别为0.32和0.54。基于混淆矩阵的模型性能评价中,RF和PSO-SVR模型的平均准确率η分别为0.67和0.52。模型在训练集上整体预测性能为:RF(R^(2)=0.953;RMSE=0.397 mg/L)>PSO-SVR(R^(2)=0.822;RMSE=0.764 mg/L)。模型在预测集上整体预测性能为:RF(R^(2)=0.836;RMSE=0.660 mg/L)>PSO-SVR(R^(2)=0.815;RMSE=0.686 mg/L)。两种模型均表现出优秀的预测性能,其中RF的预测能力更好。引入机器学习的高效算法实现对鄱阳湖DO进行精准预测,以期揭示鄱阳湖水质规律以及水质因子之间的内在联系,为环境监测与管理提供科学的决策支持。 展开更多
关键词 鄱阳湖 溶解氧 预测 随机森林 支持向量回归 混淆矩阵
在线阅读 下载PDF
基于相关熵和GMSVM的推进轴系故障诊断方法
14
作者 邓琪 汪承杰 +1 位作者 万海波 吴军 《华中科技大学学报(自然科学版)》 北大核心 2025年第4期1-7,共7页
针对基于深度学习的故障诊断方法聚焦于单一模态且需要大量训练数据的问题,提出一种基于相关熵和格拉姆矩阵支持向量机(GMSVM)的船舶推进轴系故障诊断新方法.首先,计算多模态监测信号片段间的相关熵矩阵,揭示不同监测信号的空间相关关系... 针对基于深度学习的故障诊断方法聚焦于单一模态且需要大量训练数据的问题,提出一种基于相关熵和格拉姆矩阵支持向量机(GMSVM)的船舶推进轴系故障诊断新方法.首先,计算多模态监测信号片段间的相关熵矩阵,揭示不同监测信号的空间相关关系,并削弱监测信号中异常值带来的干扰;然后,通过矩阵对数运算,将相关熵矩阵从黎曼流形空间映射到欧式度量空间,增强信息表征能力,并提取故障关键特征;最后,构建格拉姆矩阵支持向量机,实现小样本下的故障识别.实验结果表明:针对15个不同的工况,提出方法在每类1个和5个训练样本下的平均诊断精度分别达到94.31%和99.68%,显著优于其他基于深度学习的方法. 展开更多
关键词 推进轴系 故障诊断 相关熵 格拉姆矩阵支持向量机 多传感器 小样本
原文传递
基于矩阵位移法的超长工作面顶板挠度分布研究 被引量:1
15
作者 邢有望 李明忠 +2 位作者 张金虎 闫汝瑜 刘江斌 《煤炭科学技术》 北大核心 2025年第5期39-51,共13页
为了探究顶板条件、巷帮条件及支护条件对超长工作面顶板挠度变化的影响,同时将梁模型理论应用于指导液压支架设计,以小保当二号井132202超长工作面为背景,根据实际生产中液压支架、巷帮及顶板关系,建立支持在弹性支座上的二维连续梁模... 为了探究顶板条件、巷帮条件及支护条件对超长工作面顶板挠度变化的影响,同时将梁模型理论应用于指导液压支架设计,以小保当二号井132202超长工作面为背景,根据实际生产中液压支架、巷帮及顶板关系,建立支持在弹性支座上的二维连续梁模型,基于位移法对梁模型单元进行编码并计算杆单元的单元刚度矩阵,利用单元集成法计算含有弹性支座的超长梁模型整体刚度矩阵及节点等效载荷,通过矩阵位移法求解全梁挠度分布及杆端内力计算式,从而得到支架支护反力。在此基础上,分别对支架宽度、数目、等效刚度、工作面长度、巷帮刚度、顶板弹性模量、截面惯性矩及随动岩层产生的载荷大小取不同值,来观察其对全梁挠度分布的影响。使用三次多项式对挠度曲线一侧的起点至最大峰值段进行精确拟合。使用插入了桩结构单元充当支护的3DEC数值模拟结果及现场电液控监测数据进行验证。验证结果做到了理论计算、数值模拟与现场数据三者的统一,表明二维梁模型能够在一定程度上解释超长工作面三峰值来压特征,同时工作面一侧到临近高峰值段的挠度曲线符合三次多项式分布规律。研究深化了梁模型在采场方面的应用,为超长工作面支架工作阻力预测提供了方向,研究结果有助于为超长工作面液压支架设计提供理论指导。 展开更多
关键词 采矿工程 液压支架 超长工作面 矩阵位移法 3DEC数值模拟
在线阅读 下载PDF
基坑开挖对复合地基承载性状影响的简化算法 被引量:1
16
作者 蔺云宏 蔡云鹏 +2 位作者 辛勇慧 郭晓冬 李明宇 《力学与实践》 2025年第3期553-565,共13页
基坑开挖会造成地层损失,改变原有土体的应力场,诱发坑外地层产生变形,对临近复合地基产生不利影响。目前研究缺少基坑开挖与临近刚性桩复合地基相互影响的计算方法。鉴于此,本文基于提出的临近刚性桩复合地基坑外主动土压力计算方法,... 基坑开挖会造成地层损失,改变原有土体的应力场,诱发坑外地层产生变形,对临近复合地基产生不利影响。目前研究缺少基坑开挖与临近刚性桩复合地基相互影响的计算方法。鉴于此,本文基于提出的临近刚性桩复合地基坑外主动土压力计算方法,结合单支点桩锚支护结构沿竖向的受力模式和变形特性,通过桩身离散(分段),利用矩阵传递法,提出了一种考虑临近刚性桩复合地基作用下单支点桩锚支护结构变形的简化计算方法;建立了考虑临近基坑开挖的复合地基理论计算模型,通过将数值模拟与理论计算对比分析,验证了本文计算方法的合理性;根据计算得到桩体内力,进而判断基坑开挖对复合地基桩体承载性能的影响。上述研究可为类似临近复合地基的基坑工程提供一定理论支持。 展开更多
关键词 复合地基 支护结构 基坑 矩阵传递法 有限元法
在线阅读 下载PDF
低秩矩阵引导支持向量机的RC框架IDA曲线预测 被引量:1
17
作者 王尉阔 施文凯 +2 位作者 周宇 欧阳谦 骆欢 《工程力学》 北大核心 2025年第4期87-96,共10页
增量动力分析(IDA)曲线考虑了地震输入的不确定性,能合理反映出结构的抗震性能。但其计算过程需要大量的非线性时程动力分析,因而计算效率不高。机器学习方法已被证明能较好地解决这一问题,但当训练数据规模较大时,由于其训练过程涉及... 增量动力分析(IDA)曲线考虑了地震输入的不确定性,能合理反映出结构的抗震性能。但其计算过程需要大量的非线性时程动力分析,因而计算效率不高。机器学习方法已被证明能较好地解决这一问题,但当训练数据规模较大时,由于其训练过程涉及求逆矩阵导致计算效率依然不高。为此,该文提出一种低秩矩阵引导支持向量机(LRLS-SVMR)的新方法克服此类方法的不足。在大规模训练数据下,LRLS-SVMR能利用Nystrom近似理论建立一个小规模低秩核矩阵,用于近似大规模原核矩阵。这使得其训练过程只需求解小规模系数矩阵的逆,进而能极大地提高计算效率且保持较高的预测性能。为了验证该方法的准确性和高效性,基于22,037个钢筋混凝土(RC)框架在地震作用下的响应数据,分别与支持向量机(LS-SVMR)和传统有限元方法进行对比。结果表明LRLS-SVMR能准确预测RC框架的最大层间位移角和IDA曲线,其计算效率比LS-SVMR快了近140倍,比传统有限元方法快了近66,000倍。 展开更多
关键词 RC框架 IDA曲线 低秩矩阵 支持向量机 机器学习
在线阅读 下载PDF
考虑电压支撑的含SOP柔性配电网故障关联矩阵可靠性计算方法
18
作者 宋关羽 蔺曼 +3 位作者 于浩 熊俊杰 匡德兴 赵伟哲 《天津大学学报(自然科学与工程技术版)》 北大核心 2025年第3期274-284,共11页
配电网柔性化已成为重要发展趋势,智能软开关作为取代传统联络开关的柔性互联装置,其高响应速度及电压支撑作用有助于提升供电可靠性,但现有配电网可靠性计算方法大多忽略了故障后节点电压影响,无法适用于含智能软开关的柔性互联配电网... 配电网柔性化已成为重要发展趋势,智能软开关作为取代传统联络开关的柔性互联装置,其高响应速度及电压支撑作用有助于提升供电可靠性,但现有配电网可靠性计算方法大多忽略了故障后节点电压影响,无法适用于含智能软开关的柔性互联配电网可靠性计算.对此,本文基于故障关联矩阵可靠性计算理论,提出一种考虑电压支撑的柔性互联配电网可靠性计算方法,实现了柔性互联配电网可靠性指标的快速解析计算.首先,构建供电路径矩阵以表征故障影响范围和节点故障后供电恢复能力;然后,形成故障后支路传输功率向量以及节点电压矩阵,求取故障关联矩阵进而得到可靠性指标;最后,基于中压配电网典型算例进行测试验证.结果表明,本文所提柔性配电网可靠性计算方法得到的可靠性指标与枚举法相同,能够保证精度,同时本方法以矩阵代数运算代替故障枚举过程中的重复性网络搜索过程,搜索时间减少了87%,显著提升计算效率. 展开更多
关键词 柔性配电网 智能软开关 可靠性计算 故障关联矩阵 电压支撑
在线阅读 下载PDF
基于多种群人工鱼群算法和模糊孪生支持向量机的频谱感知研究
19
作者 和聪平 鲁进 李丽文 《云南大学学报(自然科学版)》 北大核心 2025年第5期831-838,共8页
针对传统频谱感知算法在复杂信道环境下鲁棒性欠佳的问题,以及深度学习感知算法面临的模型训练复杂度高等局限,提出了一种融合多种群人工鱼群算法与模糊孪生支持向量机(fuzzy twin support vector machine,FTSVM)的频谱感知方法.首先,... 针对传统频谱感知算法在复杂信道环境下鲁棒性欠佳的问题,以及深度学习感知算法面临的模型训练复杂度高等局限,提出了一种融合多种群人工鱼群算法与模糊孪生支持向量机(fuzzy twin support vector machine,FTSVM)的频谱感知方法.首先,通过计算接收信号协方差矩阵的迹及其对角线外元素的均值,构建一个二维特征向量,由FTSVM进行训练识别;然后,使用样本的模糊隶属度调整了FTSVM超平面,从而使训练得到的模型更倾向于识别出初级用户存在的信号;最后,设计了多种群机制的改进人工鱼群算法,对频谱感知模型参数进行优化.仿真实验结果表明,在面临小样本数据集和低信噪比环境时,所提方法相较于其它的特征提取和SVM方法,在模型感知性能上实现了有效提升,−20 dB信噪比下检测概率达0.7以上.同时,优化算法的多种群机制缩短了模型的训练时间,相较于改进人工鱼群算法,训练时间缩短了约81%. 展开更多
关键词 频谱感知 模糊孪生支持向量机 协方差矩阵 改进人工鱼群算法
在线阅读 下载PDF
规模化新能源场站接入弱电网场景的故障暂态电压支撑控制 被引量:4
20
作者 张旸 贾科 +2 位作者 毕天姝 蒋欣颖 刘芸 《中国电机工程学报》 北大核心 2025年第13期4956-4966,I0002,共12页
在规模化新能源场站接入弱电网的场景中,网侧难以在故障期间提供电压支撑,可能导致新能源大面积脱网,并引发系统性安全问题。因此,亟需研究新能源场站的故障暂态电压支撑控制技术。然而,现有的新能源低穿控制策略仅能确保自身的安全穿越... 在规模化新能源场站接入弱电网的场景中,网侧难以在故障期间提供电压支撑,可能导致新能源大面积脱网,并引发系统性安全问题。因此,亟需研究新能源场站的故障暂态电压支撑控制技术。然而,现有的新能源低穿控制策略仅能确保自身的安全穿越,对系统侧的安全性考虑不足。针对该问题,提出一种基于扩展可控边界的新能源场站故障暂态电压支撑控制策略;计及系统故障扰动传播影响,构建新能源场站的扩展可控边界,并提出一种基于分群离散映射矩阵的控制指令计算方法;参考我国南疆“新能源接入极弱电网示范运行基地”的典型场景,在PSCAD搭建相应的仿真算例。验证结果表明,在所提方法下,新能源场站能够为系统提供安全、尽限、快速、灵活的故障暂态电压支撑能力。相比现行国标,在场站并网点电压跌落不低于0.4 pu情况下,新能源场站的故障暂态电压支撑能力至少提高40%以上。 展开更多
关键词 新能源场站 故障可控边界 分群离散映射矩阵 故障暂态电压支撑控制
原文传递
上一页 1 2 30 下一页 到第
使用帮助 返回顶部