Analytical solutions for contaminant transport are widely used for both theoretical and practical purposes.However,many existing solutions are obtained subject to an initial condition of zero concentration,which is of...Analytical solutions for contaminant transport are widely used for both theoretical and practical purposes.However,many existing solutions are obtained subject to an initial condition of zero concentration,which is often unrealistic in many practical cases.This article proposed a stepwise superposition approximation approach to solve the non-zero initial concentration problem for first-type and third-type boundary conditions by using the existing zero initial concentration solution.Theoretical examples showed that the approach was highly efficient if a proper superposition scheme with relative concentration increments was constructed.The key parameter that controlled the convergence speed was the time increment(△t) multiplied by the rate constant(λ).The approach served also as an alternative way to make a convenient concentration calculation even if the non-zero initial concentration solution of a problem was known.展开更多
An industrial building is a non-classically damped system due to the different damping properties of the primary structure and equipment.The objective of this paper is to quantify the range of applicability of the rea...An industrial building is a non-classically damped system due to the different damping properties of the primary structure and equipment.The objective of this paper is to quantify the range of applicability of the real model superposition approximation method to the seismic response calculation of industrial buildings.The analysis using lumped mass-and-shear spring models indicates that for the equipment-to-structure frequency ratiosγf>1.1 orγf<0.9,the non-classical damping effect is limited,and the real mode superposition approximation method provides accurate estimates.For 0.9<γf<1.1,the system may have a pair of closely spaced frequency modes,and the non-zero off-diagonal damping terms have a non-negligible effect on the damping ratios and mode shape vectors of these modes.For 0.9<γf<1.1 and the equipment-to-structure mass ratiosγm<0.07,the real mode superposition approximation method results in large errors,while the approximation method can provide an accurate estimation for 0.9<γf<1.1 andγm>0.07.Furthermore,extensive parametric analyses are conducted,where both steel structures and reinforced concrete structures with equipment with various damping ratios are considered.Finally,the finite element analysis of a five-story industrial building is adopted to validate the proposed range of applicability.展开更多
In this paper we study the degree of approximation by superpositions of a sigmoidal function.We mainly consider the univariate case.If f is a continuous function,we prove that for any bounded sigmoidal function σ,d_...In this paper we study the degree of approximation by superpositions of a sigmoidal function.We mainly consider the univariate case.If f is a continuous function,we prove that for any bounded sigmoidal function σ,d_(n,σ)(f)≤‖σ‖ω(f,1/(n+1)).For the Heaviside function H(x),we prove that d_(n,H)(f)≤ω(f,1/(2(n+1))). If f is a continuous funnction of bounded variation,we prove that d_(n,σ)(f)≤‖σ‖/(n+1)V(f)and d_(n,H)(f)≤ 1/(2(n+1))V(f).For he Heaviside function,the coefficient 1 and the approximation orders are the best possible.We compare these results with the classical Jackson and Bernstein theorems,and make some conjec- tures for further study.展开更多
In this paper a new flow field prediction method which is independent of the governing equations, is developed to predict stationary flow fields of variable physical domain. Predicted flow fields come from linear supe...In this paper a new flow field prediction method which is independent of the governing equations, is developed to predict stationary flow fields of variable physical domain. Predicted flow fields come from linear superposition of selected basis modes generated by proper orthogonal decomposition(POD). Instead of traditional projection methods, kriging surrogate model is used to calculate the superposition coefficients through building approximate function relationships between profile geometry parameters of physical domain and these coefficients. In this context,the problem which troubles the traditional POD-projection method due to viscosity and compressibility has been avoided in the whole process. Moreover, there are no constraints for the inner product form, so two forms of simple ones are applied to improving computational efficiency and cope with variable physical domain problem. An iterative algorithm is developed to determine how many basis modes ranking front should be used in the prediction. Testing results prove the feasibility of this new method for subsonic flow field, but also prove that it is not proper for transonic flow field because of the poor predicted shock waves.展开更多
基金supported by the National Natural Science Foundation of China (No. 40872151)the Key Project in the National Science and Technology Pillar Program of China (No. 2006BAC06B05)
文摘Analytical solutions for contaminant transport are widely used for both theoretical and practical purposes.However,many existing solutions are obtained subject to an initial condition of zero concentration,which is often unrealistic in many practical cases.This article proposed a stepwise superposition approximation approach to solve the non-zero initial concentration problem for first-type and third-type boundary conditions by using the existing zero initial concentration solution.Theoretical examples showed that the approach was highly efficient if a proper superposition scheme with relative concentration increments was constructed.The key parameter that controlled the convergence speed was the time increment(△t) multiplied by the rate constant(λ).The approach served also as an alternative way to make a convenient concentration calculation even if the non-zero initial concentration solution of a problem was known.
基金Fund of China National Industrial Building Diagnosis and Reconstruction Engineering Technology Research Center under Grant No.YZA2017Ky03the Beijing Natural Science Foundation under Grant No.JQ18029the National Natural Science Foundation of China under Grant No.52078277。
文摘An industrial building is a non-classically damped system due to the different damping properties of the primary structure and equipment.The objective of this paper is to quantify the range of applicability of the real model superposition approximation method to the seismic response calculation of industrial buildings.The analysis using lumped mass-and-shear spring models indicates that for the equipment-to-structure frequency ratiosγf>1.1 orγf<0.9,the non-classical damping effect is limited,and the real mode superposition approximation method provides accurate estimates.For 0.9<γf<1.1,the system may have a pair of closely spaced frequency modes,and the non-zero off-diagonal damping terms have a non-negligible effect on the damping ratios and mode shape vectors of these modes.For 0.9<γf<1.1 and the equipment-to-structure mass ratiosγm<0.07,the real mode superposition approximation method results in large errors,while the approximation method can provide an accurate estimation for 0.9<γf<1.1 andγm>0.07.Furthermore,extensive parametric analyses are conducted,where both steel structures and reinforced concrete structures with equipment with various damping ratios are considered.Finally,the finite element analysis of a five-story industrial building is adopted to validate the proposed range of applicability.
文摘In this paper we study the degree of approximation by superpositions of a sigmoidal function.We mainly consider the univariate case.If f is a continuous function,we prove that for any bounded sigmoidal function σ,d_(n,σ)(f)≤‖σ‖ω(f,1/(n+1)).For the Heaviside function H(x),we prove that d_(n,H)(f)≤ω(f,1/(2(n+1))). If f is a continuous funnction of bounded variation,we prove that d_(n,σ)(f)≤‖σ‖/(n+1)V(f)and d_(n,H)(f)≤ 1/(2(n+1))V(f).For he Heaviside function,the coefficient 1 and the approximation orders are the best possible.We compare these results with the classical Jackson and Bernstein theorems,and make some conjec- tures for further study.
基金supported by the National Basic Research Program of China(No.2014CB744804)
文摘In this paper a new flow field prediction method which is independent of the governing equations, is developed to predict stationary flow fields of variable physical domain. Predicted flow fields come from linear superposition of selected basis modes generated by proper orthogonal decomposition(POD). Instead of traditional projection methods, kriging surrogate model is used to calculate the superposition coefficients through building approximate function relationships between profile geometry parameters of physical domain and these coefficients. In this context,the problem which troubles the traditional POD-projection method due to viscosity and compressibility has been avoided in the whole process. Moreover, there are no constraints for the inner product form, so two forms of simple ones are applied to improving computational efficiency and cope with variable physical domain problem. An iterative algorithm is developed to determine how many basis modes ranking front should be used in the prediction. Testing results prove the feasibility of this new method for subsonic flow field, but also prove that it is not proper for transonic flow field because of the poor predicted shock waves.