期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
简单约束上模函数最小值的局部搜索法
1
作者 柘晓莉 王武民 +1 位作者 张防防 何尚录 《兰州交通大学学报》 CAS 2008年第1期157-159,共3页
给出了求解一类具有简单约束的上模集函数最小值问题的一种局部搜索法,并讨论了所给算法的性能保证.
关键词 组合优化问题 上模集函数 近似算法 性能保证.
在线阅读 下载PDF
求解非减上模集函数最小值问题的近似算法及其性能保证
2
作者 郝自军 高岳林 何尚录 《数学的实践与认识》 CSCD 北大核心 2012年第24期142-148,共7页
上模集函数的优化问题在组合优化问题中有广泛应用,许多组合优化问题,如设备选址问题、p-中心问题等都可化为上模集函数的优化问题.本文给出了求解非减上模集函数最小值问题的一种近似算法,并讨论了所给算法的性能保证.
关键词 组合优化问题 上模集函数 近似算法 性能保证
原文传递
Approximation Algorithms for Vertex Happiness
3
作者 Yao Xu Yong Chen +1 位作者 Peng Zhang Randy Goebel 《Journal of the Operations Research Society of China》 EI CSCD 2019年第3期429-448,共20页
We investigate the maximum happy vertices(MHV)problem and its complement,the minimum unhappy vertices(MUHV)problem.In order to design better approximation algorithms,we introduce the supermodular and submodular multi-... We investigate the maximum happy vertices(MHV)problem and its complement,the minimum unhappy vertices(MUHV)problem.In order to design better approximation algorithms,we introduce the supermodular and submodular multi-labeling(SUP-ML and SUB-ML)problems and show that MHV and MUHV are special cases of SUP-ML and SUB-ML,respectively,by rewriting the objective functions as set functions.The convex relaxation on the I ovasz extension,originally presented for the submodular multi-partitioning problem,can be extended for the SUB-ML problem,thereby proving that SUB-ML(SUP-ML,respectively)can be approximated within a factorof2-2/k(2/k,respectively),where k is the number of labels.These general results imply that MHV and MUHV can also be approximated within factors of 2/k and 2-2/k,respectively,using the same approximation algorithms.For the MUHV problem,we also show that it is approximation-equivalent to the hypergraph multiway cut problem;thus,MUHV is Unique Games-hard to achieve a(2-2/k-e)-approximation,for anyε>0.For the MHV problem,the 2/k-approximation improves the previous best approximation ratio max{1/k,1/(△+1/g(△)},where△is the maximum vertex degree of the input graph and g(△)=(√△+√△+1)2△>4△2.We also show that an existing LP relaxation for MHV is the same as the concave relaxation on the Lovasz extension for SUP-ML;we then prove an upper bound of 2/k on the integrality gap of this LP relaxation,which suggests that the 2/k-approximation is the best possible based on this LP relaxation.Lastly,we prove that it is Unique Games-hard to approximate the MHV problem within a factor of S2(log2 k/k). 展开更多
关键词 Vertex happiness Multi-labeling Submodular/supermodular set function Approximation algorithm Polynomial-time reduction Integrality gap
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部