A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of ...A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.展开更多
The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.Howeve...The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.展开更多
This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃...This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃nian in conjunction with a scattering matrix method,the model effectively incorporates quantum confinement,strain effects,and interface states.This robust and numerically stable approach achieves exceptional agreement with experimental data,offering a reliable tool for analyzing and engineering the band structure of complex multi⁃layer systems.展开更多
Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implemen...Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implementation,or configuration.To guarantee the durability&robustness of the software,vulnerability identification and fixation have become crucial areas of focus for developers,cybersecurity experts and industries.This paper presents a thorough multi-phase mathematical model for efficient patch management and vulnerability detection.To uniquely model these processes,the model incorporated the notion of the learning phenomenon in describing vulnerability fixation using a logistic learning function.Furthermore,the authors have used numerical methods to approximate the solution of the proposed framework where an analytical solution is difficult to attain.The suggested systematic architecture has been demonstrated through statistical analysis using patch datasets,which offers a solid basis for the research conclusions.According to computational research,learning dynamics improves security response and results in more effective vulnerability management.The suggested model offers a systematic approach to proactive vulnerability mitigation and has important uses in risk assessment,software maintenance,and cybersecurity.This study helps create more robust software systems by increasing patch management effectiveness,which benefits developers,cybersecurity experts,and sectors looking to reduce security threats in a growing digital world.展开更多
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to...We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation.展开更多
In this study,a powerful thermo-hydro-mechanical(THM)coupling solution scheme for saturated poroelastic media involving brittle fracturing is developed.Under the local thermal non-equilibrium(LTNE)assumption,this sche...In this study,a powerful thermo-hydro-mechanical(THM)coupling solution scheme for saturated poroelastic media involving brittle fracturing is developed.Under the local thermal non-equilibrium(LTNE)assumption,this scheme seamlessly combines the material point method(MPM)for accurately tracking solid-phase deformation and heat transport,and the Eulerian finite element method(FEM)for effectively capturing fluid flow and heat advection-diffusion behavior.The proposed approach circumvents the substantial challenges posed by large nonlinear equation systems with the monolithic solution scheme.The staggered solution process strategically separates each physical field through explicit or implicit integration.The characteristic-based method is used to stabilize advection-dominated heat flows for efficient numerical implementation.Furthermore,a fractional step approach is employed to decompose fluid velocity and pressure,thereby suppressing pore pressure oscillation on the linear background grid.The fracturing initiation and propagation are simulated by a rate-dependent phase field model.Through a series of quasi-static and transient simulations,the exceptional performance and promising potential of the proposed model in addressing THM fracturing problems in poro-elastic media is demonstrated.展开更多
Rock is geometrically and mechanically multiscale in nature,and the traditional phenomenological laws at the macroscale cannot render a quantitative relationship between microscopic damage of rocks and overall rock st...Rock is geometrically and mechanically multiscale in nature,and the traditional phenomenological laws at the macroscale cannot render a quantitative relationship between microscopic damage of rocks and overall rock structural degradation.This may lead to problems in the evaluation of rock structure stability and safe life.Multiscale numerical modeling is regarded as an effective way to gain insight into factors affecting rock properties from a cross-scale view.This study compiles the history of theoretical developments and numerical techniques related to rock multiscale issues according to different modeling architectures,that is,the homogenization theory,the hierarchical approach,and the concurrent approach.For these approaches,their benefits,drawbacks,and application scope are underlined.Despite the considerable attempts that have been made,some key issues still result in multiple challenges.Therefore,this study points out the perspectives of rock multiscale issues so as to provide a research direction for the future.The review results show that,in addition to numerical techniques,for example,high-performance computing,more attention should be paid to the development of an advanced constitutive model with consideration of fine geometrical descriptions of rock to facilitate solutions to multiscale problems in rock mechanics and rock engineering.展开更多
Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie conditio...Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie condition.Hanging crossties usually yield unfavorable dynamic effects such as higher wheel loads,which negatively impact the serviceability and safety of railway operations.Hence,a better understanding of the mechanisms that cause hanging crossties and their effects on the ballast layer load-deformation characteristics is necessary.Since the ballast layer is a particulate medium,the discrete element method(DEM),which simulates ballast particle interactions individually,is ideal to explore the interparticle contact forces and ballast movements under dynamic wheel loading.Accurate representations of the dynamic loads from the train and track superstructure are needed for high-fidelity DEM modeling.This paper introduces an integrated modeling approach,which couples a single-crosstie DEM ballast model with a train–track–bridge(TTB)model using a proportional–integral–derivative control loop.The TTB–DEM model was validated with field measurements,and the coupled model calculates similar crosstie displacements as the TTB model.The TTB–DEM provided new insights into the ballast particle-scale behavior,which the TTB model alone cannot explore.The TTB–DEM coupling approach identified detrimental effects of hanging crossties on adjacent crossties,which were found to experience drastic vibrations and large ballast contact force concentrations.展开更多
In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a ge...In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a generalized nonlinear Stokes problem of displacement vector field related to pseudo pressure and a diffusion problem of other pseudo pressure fields.Secondly,a fully discrete multiphysics finite element method is performed to solve the reformulated system numerically.Thirdly,existence and uniqueness of the weak solution of the reformulated model and stability analysis and optimal convergence order for the multiphysics finite element method are proven theoretically.Lastly,numerical tests are given to verify the theoretical results.展开更多
The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system...The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.展开更多
Objective:To analyze the risk factors of anxiety in young hypertensive patients and build a prediction model to provide a scientific basis for clinical diagnosis and treatment.Methods:According to the research content...Objective:To analyze the risk factors of anxiety in young hypertensive patients and build a prediction model to provide a scientific basis for clinical diagnosis and treatment.Methods:According to the research content,young hypertensive patients admitted to the hospital from January 2022 to December 2024 were selected as the research object and at least 950 patients were included according to the sample size calculation.According to the existence of anxiety,950 patients were divided into control group(n=650)and observation group(n=300),and the clinical data of all patients were collected for univariate analysis and multivariate Logistic regression analysis to get the risk factors of hypertension patients complicated with anxiety in.All patients were randomly divided into a training set(n=665)and a test set(n=285)according to the ratio of 7:3,and the evaluation efficiency of different prediction models was obtained by using machine learning algorithm.To evaluate the clinical application effect of the prediction model.Results:(1)Univariate analysis showed that age,BMI,education background,marital status,smoking,drinking,sleep disorder,family history of hypertension,history of diabetes,history of hyperlipidemia,history of cerebral infarction,and TC were important risk factors for young hypertensive patients complicated with anxiety.(2)Multivariate Logistic regression analysis showed that hypertension history,drinking history,coronary heart disease history,diabetes history,BMI,TC,and TG are important independent risk factors for young hypertensive patients complicated with anxiety.(3)Extra Trees has the highest predictive power for young people with hypertension complicated with anxiety,while Decision-Tree has the lowest predictive power.Conclusion:Hypertension history,drinking history,coronary heart disease history,diabetes history,BMI,TC,and TG are important independent risk factors that affect the anxiety of young hypertensive patients.Extra Trees model has the best prediction efficiency among different groups of models.展开更多
WITHDRAWAL:Zhang,J.J.,Guo,Y.Q.,Qin,Z.Y.,Wei,C.T.,Hu,Q.H.,Vandeginste,V.,Miao,H.Y.,Yao,P.,and Zhang,P.F.,“Predicting Irreducible Water Saturation of Unconventional Reservoirs by Using NMR T2 Spectra:Methods of Morphol...WITHDRAWAL:Zhang,J.J.,Guo,Y.Q.,Qin,Z.Y.,Wei,C.T.,Hu,Q.H.,Vandeginste,V.,Miao,H.Y.,Yao,P.,and Zhang,P.F.,“Predicting Irreducible Water Saturation of Unconventional Reservoirs by Using NMR T2 Spectra:Methods of Morphological Division and Fractal Models”,Acta Geologica Sinica-English Edition(Accepted Article):https://doi.org/10.1111/1755-6724.15094.展开更多
In the early stages of oil exploration,oil is produced through processes such as well drilling.Later,hot water may be injected into the well to improve production.A key challenge is understanding how the temperature a...In the early stages of oil exploration,oil is produced through processes such as well drilling.Later,hot water may be injected into the well to improve production.A key challenge is understanding how the temperature and velocity of the injected hot water affect the production rate.This is the focus of the current study.It proposes variableviscosity mathematical models for heat and water saturation in a reservoir containing Bonny-light crude oil,with the aim of investigating the effects of water temperature and velocity on the recovery rate.First,two sets of experimental data are used to construct explicit temperature-dependent viscosity models for Bonny-light crude oil and water.These viscosity models are incorporated into the Buckley-Leverette equation for the dynamics of water saturation.A convex combination of the thermal conductivities of oil and water is used to formulate a heat propagation model.A finite volume scheme with temperature-dependent HLL numerical flux is proposed for saturation,while a finite difference approximation is derived for the heat model,both on a staggered grid.The convergence of the method is verified numerically.Simulations are conducted with different parameter values.The results show that at a wall temperature of 10℃,an increase in the injection velocity from 0.1 to 0.25 increases the production rate from 8.33%to 20.8%.Meanwhile,with an injection velocity of v=1,an increase in the temperature of the injected water from 25℃ to 55℃ increases production rate from 59.48%to 61.95%.Therefore,it is concluded that an increase in either or both the temperature and velocity of the injected water leads to increased oil production,which is physically realistic.This indicates that the developed model is able to give useful insights into hot water flooding.展开更多
Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with C...Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with CGO incidents under low gas pressure conditions.In pursuit of this objective,we have studied and established a mechanical model of the working face under abnormal stress and the excitation energy conditions of CGO,and proposed a method for predicting the risk of CGO under abnormal stress.On site application verification shows that when a strong outburst hazard level prediction is issued,there is a high possibility of outburst disasters occurring.In one of the three locations where we predicted strong outburst hazards,a small outburst occurred,and the accuracy of the prediction was higher than the traditional drilling cuttings index S and drilling cuttings gas desorption index q.Finally,we discuss the mechanism of CGO under the action of stress anomalies.Based on the analysis of stress distribution changes and energy accumulation characteristics of coal under abnormal stress,this article believes that the increase in outburst risk caused by high stress abnormal gradient is mainly due to two reasons:(1)The high stress abnormal gradient leads to an increase in the plastic zone of the coal seam.After the working face advances,it indirectly leads to an increase in the gas expansion energy that can be released from the coal seam before reaching a new stress equilibrium.(2)Abnormal stress leads to increased peak stress of coal body in front of working face.When coal body in elastic area transforms to plastic area,its failure speed is accelerated,which induces accelerated gas desorption and aggravates the risk of outburst.展开更多
Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en...Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.展开更多
Semi-crystalline polymer laser powder bed fusion(L-PBF)has recently attracted increasing interest due to its potential for fabricating complex geometry.However,a more comprehensive understanding of the underlying phys...Semi-crystalline polymer laser powder bed fusion(L-PBF)has recently attracted increasing interest due to its potential for fabricating complex geometry.However,a more comprehensive understanding of the underlying physics during L-PBF is required to better control the properties of the final part.This work proposed a multi-layer numerical model to study the temperature and phase evolution during the polyamide-12(PA12)L-PBF process.The Descend and Parallel Chord methods were introduced to improve the convergence of the non-linear thermal solver.The level-set-based mesh adaptation strategy,governed by multi-physical fields,was applied to alleviate the calculation and accurately track the phase evolution.The processing simulation on the dog-bone model revealed that preheating temperature significantly influences the crystallization behavior.Finally,the multi-layer simulation demonstrated that such a developed numerical model can be used to study the phase transformation during powder layer updating and the cyclic laser sintering phenomena.Moreover,the numerical study suggested that crystallization occurs slowly during the L-PBF process.展开更多
Objective:To explore the application value of a new empowerment teaching method based on Kirkpatrick’s evaluation model in teaching Chinese medicine nursing in otorhinolaryngology.Methods:60 nurses who practiced in t...Objective:To explore the application value of a new empowerment teaching method based on Kirkpatrick’s evaluation model in teaching Chinese medicine nursing in otorhinolaryngology.Methods:60 nurses who practiced in the otolaryngology department of our hospital from June 2022 to October 2024 were included in the study and equally divided into two groups using a convenient sampling method.30 nurses who chose traditional Chinese medicine skill teaching management were included in the control group,and 30 nurses who chose the new empowerment teaching method based on Kirkpatrick’s evaluation model were included in the observation group.Relevant indicators such as clinical teaching environment perception,theoretical knowledge scores of Chinese medicine nursing,and excellent rate of practical operation assessment were compared.Results:The nurses in the observation group had higher scores for clinical teaching environment perception than the control group(P<0.05).However,the midterm and final exam scores for theoretical knowledge of Chinese medicine nursing were higher in the observation group than in the control group(P<0.05).Compared with the control group,the observation group had a higher excellent rate of practical operation assessment(93.33%>73.33%)and a higher Chinese medicine nursing ability score[(215.69±19.73)points>(184.87±15.66)points](P<0.05).Conclusion:Applying the new empowerment teaching method based on Kirkpatrick’s evaluation model to Chinese medicine nursing teaching in otolaryngology can help nurses understand the theoretical knowledge of Chinese medicine nursing and optimize the clinical teaching environment,thereby promoting their practical skills and Chinese medicine nursing abilities.展开更多
During fully mechanized caving mining of thick coal seams,a large amount of strain energy accumulates in the roof,especially when the roof is thick and hard,making it difficultfor the roof to collapse naturally.When t...During fully mechanized caving mining of thick coal seams,a large amount of strain energy accumulates in the roof,especially when the roof is thick and hard,making it difficultfor the roof to collapse naturally.When the roof eventually collapses,the accumulated energy is released instantaneously,exerting a strong impact on the roadway.To address this issue,we proposed the synergistic control method of directional comprehensive pressure relief and energy-absorbing support(PREA)for roadways with hard roofs.In this study,we developed a three-dimensional physical model test apparatus for roof cutting and pressure relief.The 122108 ventilation roadway at the Caojiatan Coal Mine,which has a thick and hard roof,was taken as the engineering example.We analyzed the evolution patterns of stress and displacement in both the stope and the roadway surrounding rocks under different schemes.The PREA reinforcement mechanism for the roadway was investigated through comparative model tests between the new and original methods.The results showed that,compared to the original method,the new method reduced surrounding rock stress by up to 60.4%,and the roadway convergence decreased by up to 52.1%.Based on these results,we proposed corresponding engineering recommendations,which can guide fieldreinforcement design and application.The results demonstrate that the PREA method effectively reduces stress and ensures the safety and stability of the roadway.展开更多
With the development of the Semantic Web,the number of ontologies grows exponentially and the semantic relationships between ontologies become more and more complex,understanding the true semantics of specific terms o...With the development of the Semantic Web,the number of ontologies grows exponentially and the semantic relationships between ontologies become more and more complex,understanding the true semantics of specific terms or concepts in an ontology is crucial for the matching task.At present,the main challenges facing ontology matching tasks based on representation learning methods are how to improve the embedding quality of ontology knowledge and how to integrate multiple features of ontology efficiently.Therefore,we propose an Ontology Matching Method Based on the Gated Graph Attention Model(OM-GGAT).Firstly,the semantic knowledge related to concepts in the ontology is encoded into vectors using the OWL2Vec^(*)method,and the relevant path information from the root node to the concept is embedded to understand better the true meaning of the concept itself and the relationship between concepts.Secondly,the ontology is transformed into the corresponding graph structure according to the semantic relation.Then,when extracting the features of the ontology graph nodes,different attention weights are assigned to each adjacent node of the central concept with the help of the attention mechanism idea.Finally,gated networks are designed to further fuse semantic and structural embedding representations efficiently.To verify the effectiveness of the proposed method,comparative experiments on matching tasks were carried out on public datasets.The results show that the OM-GGAT model can effectively improve the efficiency of ontology matching.展开更多
We present the approaches to implementing the k-√k L turbulence model within the framework of the high-order discontinuous Galerkin(DG)method.We use the DG discretization to solve the full Reynolds-averaged Navier-St...We present the approaches to implementing the k-√k L turbulence model within the framework of the high-order discontinuous Galerkin(DG)method.We use the DG discretization to solve the full Reynolds-averaged Navier-Stokes equations.In order to enhance the robustness of approaches,some effective techniques are designed.The HWENO(Hermite weighted essentially non-oscillatory)limiting strategy is adopted for stabilizing the turbulence model variable k.Modifications have been made to the model equation itself by using the auxiliary variable that is always positive.The 2nd-order derivatives of velocities required in computing the von Karman length scale are evaluated in a way to maintain the compactness of DG methods.Numerical results demonstrate that the approaches have achieved the desirable accuracy for both steady and unsteady turbulent simulations.展开更多
基金Supported by the Project of Ministry of Education and Finance(No.200512)the Project of the State Key Laboratory of ocean engineering(GKZD010053-10)
文摘A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103 and 42174090)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4).
文摘The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.
文摘This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃nian in conjunction with a scattering matrix method,the model effectively incorporates quantum confinement,strain effects,and interface states.This robust and numerically stable approach achieves exceptional agreement with experimental data,offering a reliable tool for analyzing and engineering the band structure of complex multi⁃layer systems.
基金supported by grants received by the first author and third author from the Institute of Eminence,Delhi University,Delhi,India,as part of the Faculty Research Program via Ref.No./IoE/2024-25/12/FRP.
文摘Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implementation,or configuration.To guarantee the durability&robustness of the software,vulnerability identification and fixation have become crucial areas of focus for developers,cybersecurity experts and industries.This paper presents a thorough multi-phase mathematical model for efficient patch management and vulnerability detection.To uniquely model these processes,the model incorporated the notion of the learning phenomenon in describing vulnerability fixation using a logistic learning function.Furthermore,the authors have used numerical methods to approximate the solution of the proposed framework where an analytical solution is difficult to attain.The suggested systematic architecture has been demonstrated through statistical analysis using patch datasets,which offers a solid basis for the research conclusions.According to computational research,learning dynamics improves security response and results in more effective vulnerability management.The suggested model offers a systematic approach to proactive vulnerability mitigation and has important uses in risk assessment,software maintenance,and cybersecurity.This study helps create more robust software systems by increasing patch management effectiveness,which benefits developers,cybersecurity experts,and sectors looking to reduce security threats in a growing digital world.
基金financially supported by the Russian federal research project No.FWZZ-2022-0026“Innovative aspects of electro-dynamics in problems of exploration and oilfield geophysics”.
文摘We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation.
基金supported by National Natural Science Foundation of China(Grant No.42377149)the Research Grants Council of Hong Kong(General Research Fund Project No.17202423).
文摘In this study,a powerful thermo-hydro-mechanical(THM)coupling solution scheme for saturated poroelastic media involving brittle fracturing is developed.Under the local thermal non-equilibrium(LTNE)assumption,this scheme seamlessly combines the material point method(MPM)for accurately tracking solid-phase deformation and heat transport,and the Eulerian finite element method(FEM)for effectively capturing fluid flow and heat advection-diffusion behavior.The proposed approach circumvents the substantial challenges posed by large nonlinear equation systems with the monolithic solution scheme.The staggered solution process strategically separates each physical field through explicit or implicit integration.The characteristic-based method is used to stabilize advection-dominated heat flows for efficient numerical implementation.Furthermore,a fractional step approach is employed to decompose fluid velocity and pressure,thereby suppressing pore pressure oscillation on the linear background grid.The fracturing initiation and propagation are simulated by a rate-dependent phase field model.Through a series of quasi-static and transient simulations,the exceptional performance and promising potential of the proposed model in addressing THM fracturing problems in poro-elastic media is demonstrated.
基金National Natural Science Foundation of China,Grant/Award Numbers:52192691,52192690。
文摘Rock is geometrically and mechanically multiscale in nature,and the traditional phenomenological laws at the macroscale cannot render a quantitative relationship between microscopic damage of rocks and overall rock structural degradation.This may lead to problems in the evaluation of rock structure stability and safe life.Multiscale numerical modeling is regarded as an effective way to gain insight into factors affecting rock properties from a cross-scale view.This study compiles the history of theoretical developments and numerical techniques related to rock multiscale issues according to different modeling architectures,that is,the homogenization theory,the hierarchical approach,and the concurrent approach.For these approaches,their benefits,drawbacks,and application scope are underlined.Despite the considerable attempts that have been made,some key issues still result in multiple challenges.Therefore,this study points out the perspectives of rock multiscale issues so as to provide a research direction for the future.The review results show that,in addition to numerical techniques,for example,high-performance computing,more attention should be paid to the development of an advanced constitutive model with consideration of fine geometrical descriptions of rock to facilitate solutions to multiscale problems in rock mechanics and rock engineering.
基金a U.S. Federal Railroad Administration (FRA)BAA project,titled “Mitigation of Differential Movement at Railway Transitions for High-Speed Passenger Rail and Joint Passenger/Freight Corridors”the financial support provided by the China Scholarship Council (CSC),which funded Zhongyi Liu’s and Wenjing Li’s time and research efforts for this study
文摘Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie condition.Hanging crossties usually yield unfavorable dynamic effects such as higher wheel loads,which negatively impact the serviceability and safety of railway operations.Hence,a better understanding of the mechanisms that cause hanging crossties and their effects on the ballast layer load-deformation characteristics is necessary.Since the ballast layer is a particulate medium,the discrete element method(DEM),which simulates ballast particle interactions individually,is ideal to explore the interparticle contact forces and ballast movements under dynamic wheel loading.Accurate representations of the dynamic loads from the train and track superstructure are needed for high-fidelity DEM modeling.This paper introduces an integrated modeling approach,which couples a single-crosstie DEM ballast model with a train–track–bridge(TTB)model using a proportional–integral–derivative control loop.The TTB–DEM model was validated with field measurements,and the coupled model calculates similar crosstie displacements as the TTB model.The TTB–DEM provided new insights into the ballast particle-scale behavior,which the TTB model alone cannot explore.The TTB–DEM coupling approach identified detrimental effects of hanging crossties on adjacent crossties,which were found to experience drastic vibrations and large ballast contact force concentrations.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12371393,11971150 and 11801143)Natural Science Foundation of Henan Province(Grant No.242300421047).
文摘In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a generalized nonlinear Stokes problem of displacement vector field related to pseudo pressure and a diffusion problem of other pseudo pressure fields.Secondly,a fully discrete multiphysics finite element method is performed to solve the reformulated system numerically.Thirdly,existence and uniqueness of the weak solution of the reformulated model and stability analysis and optimal convergence order for the multiphysics finite element method are proven theoretically.Lastly,numerical tests are given to verify the theoretical results.
文摘The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.
文摘Objective:To analyze the risk factors of anxiety in young hypertensive patients and build a prediction model to provide a scientific basis for clinical diagnosis and treatment.Methods:According to the research content,young hypertensive patients admitted to the hospital from January 2022 to December 2024 were selected as the research object and at least 950 patients were included according to the sample size calculation.According to the existence of anxiety,950 patients were divided into control group(n=650)and observation group(n=300),and the clinical data of all patients were collected for univariate analysis and multivariate Logistic regression analysis to get the risk factors of hypertension patients complicated with anxiety in.All patients were randomly divided into a training set(n=665)and a test set(n=285)according to the ratio of 7:3,and the evaluation efficiency of different prediction models was obtained by using machine learning algorithm.To evaluate the clinical application effect of the prediction model.Results:(1)Univariate analysis showed that age,BMI,education background,marital status,smoking,drinking,sleep disorder,family history of hypertension,history of diabetes,history of hyperlipidemia,history of cerebral infarction,and TC were important risk factors for young hypertensive patients complicated with anxiety.(2)Multivariate Logistic regression analysis showed that hypertension history,drinking history,coronary heart disease history,diabetes history,BMI,TC,and TG are important independent risk factors for young hypertensive patients complicated with anxiety.(3)Extra Trees has the highest predictive power for young people with hypertension complicated with anxiety,while Decision-Tree has the lowest predictive power.Conclusion:Hypertension history,drinking history,coronary heart disease history,diabetes history,BMI,TC,and TG are important independent risk factors that affect the anxiety of young hypertensive patients.Extra Trees model has the best prediction efficiency among different groups of models.
文摘WITHDRAWAL:Zhang,J.J.,Guo,Y.Q.,Qin,Z.Y.,Wei,C.T.,Hu,Q.H.,Vandeginste,V.,Miao,H.Y.,Yao,P.,and Zhang,P.F.,“Predicting Irreducible Water Saturation of Unconventional Reservoirs by Using NMR T2 Spectra:Methods of Morphological Division and Fractal Models”,Acta Geologica Sinica-English Edition(Accepted Article):https://doi.org/10.1111/1755-6724.15094.
文摘In the early stages of oil exploration,oil is produced through processes such as well drilling.Later,hot water may be injected into the well to improve production.A key challenge is understanding how the temperature and velocity of the injected hot water affect the production rate.This is the focus of the current study.It proposes variableviscosity mathematical models for heat and water saturation in a reservoir containing Bonny-light crude oil,with the aim of investigating the effects of water temperature and velocity on the recovery rate.First,two sets of experimental data are used to construct explicit temperature-dependent viscosity models for Bonny-light crude oil and water.These viscosity models are incorporated into the Buckley-Leverette equation for the dynamics of water saturation.A convex combination of the thermal conductivities of oil and water is used to formulate a heat propagation model.A finite volume scheme with temperature-dependent HLL numerical flux is proposed for saturation,while a finite difference approximation is derived for the heat model,both on a staggered grid.The convergence of the method is verified numerically.Simulations are conducted with different parameter values.The results show that at a wall temperature of 10℃,an increase in the injection velocity from 0.1 to 0.25 increases the production rate from 8.33%to 20.8%.Meanwhile,with an injection velocity of v=1,an increase in the temperature of the injected water from 25℃ to 55℃ increases production rate from 59.48%to 61.95%.Therefore,it is concluded that an increase in either or both the temperature and velocity of the injected water leads to increased oil production,which is physically realistic.This indicates that the developed model is able to give useful insights into hot water flooding.
基金supported by the National Natural Science Foundation of China(52174162)the Fundamental Research Funds for the Central Universities(FRF-TP-20-002A3).
文摘Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with CGO incidents under low gas pressure conditions.In pursuit of this objective,we have studied and established a mechanical model of the working face under abnormal stress and the excitation energy conditions of CGO,and proposed a method for predicting the risk of CGO under abnormal stress.On site application verification shows that when a strong outburst hazard level prediction is issued,there is a high possibility of outburst disasters occurring.In one of the three locations where we predicted strong outburst hazards,a small outburst occurred,and the accuracy of the prediction was higher than the traditional drilling cuttings index S and drilling cuttings gas desorption index q.Finally,we discuss the mechanism of CGO under the action of stress anomalies.Based on the analysis of stress distribution changes and energy accumulation characteristics of coal under abnormal stress,this article believes that the increase in outburst risk caused by high stress abnormal gradient is mainly due to two reasons:(1)The high stress abnormal gradient leads to an increase in the plastic zone of the coal seam.After the working face advances,it indirectly leads to an increase in the gas expansion energy that can be released from the coal seam before reaching a new stress equilibrium.(2)Abnormal stress leads to increased peak stress of coal body in front of working face.When coal body in elastic area transforms to plastic area,its failure speed is accelerated,which induces accelerated gas desorption and aggravates the risk of outburst.
基金supported by the National Natural Science Foundation of China(No.92371206)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.CX2023063).
文摘Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.
文摘Semi-crystalline polymer laser powder bed fusion(L-PBF)has recently attracted increasing interest due to its potential for fabricating complex geometry.However,a more comprehensive understanding of the underlying physics during L-PBF is required to better control the properties of the final part.This work proposed a multi-layer numerical model to study the temperature and phase evolution during the polyamide-12(PA12)L-PBF process.The Descend and Parallel Chord methods were introduced to improve the convergence of the non-linear thermal solver.The level-set-based mesh adaptation strategy,governed by multi-physical fields,was applied to alleviate the calculation and accurately track the phase evolution.The processing simulation on the dog-bone model revealed that preheating temperature significantly influences the crystallization behavior.Finally,the multi-layer simulation demonstrated that such a developed numerical model can be used to study the phase transformation during powder layer updating and the cyclic laser sintering phenomena.Moreover,the numerical study suggested that crystallization occurs slowly during the L-PBF process.
文摘Objective:To explore the application value of a new empowerment teaching method based on Kirkpatrick’s evaluation model in teaching Chinese medicine nursing in otorhinolaryngology.Methods:60 nurses who practiced in the otolaryngology department of our hospital from June 2022 to October 2024 were included in the study and equally divided into two groups using a convenient sampling method.30 nurses who chose traditional Chinese medicine skill teaching management were included in the control group,and 30 nurses who chose the new empowerment teaching method based on Kirkpatrick’s evaluation model were included in the observation group.Relevant indicators such as clinical teaching environment perception,theoretical knowledge scores of Chinese medicine nursing,and excellent rate of practical operation assessment were compared.Results:The nurses in the observation group had higher scores for clinical teaching environment perception than the control group(P<0.05).However,the midterm and final exam scores for theoretical knowledge of Chinese medicine nursing were higher in the observation group than in the control group(P<0.05).Compared with the control group,the observation group had a higher excellent rate of practical operation assessment(93.33%>73.33%)and a higher Chinese medicine nursing ability score[(215.69±19.73)points>(184.87±15.66)points](P<0.05).Conclusion:Applying the new empowerment teaching method based on Kirkpatrick’s evaluation model to Chinese medicine nursing teaching in otolaryngology can help nurses understand the theoretical knowledge of Chinese medicine nursing and optimize the clinical teaching environment,thereby promoting their practical skills and Chinese medicine nursing abilities.
基金supported by the National Natural Science Foundation of China(Grant Nos.U24A2088 and 42277174)the Fundamental Research Funds for the Central Universities,China(Grant No.2024JCCXSB01).
文摘During fully mechanized caving mining of thick coal seams,a large amount of strain energy accumulates in the roof,especially when the roof is thick and hard,making it difficultfor the roof to collapse naturally.When the roof eventually collapses,the accumulated energy is released instantaneously,exerting a strong impact on the roadway.To address this issue,we proposed the synergistic control method of directional comprehensive pressure relief and energy-absorbing support(PREA)for roadways with hard roofs.In this study,we developed a three-dimensional physical model test apparatus for roof cutting and pressure relief.The 122108 ventilation roadway at the Caojiatan Coal Mine,which has a thick and hard roof,was taken as the engineering example.We analyzed the evolution patterns of stress and displacement in both the stope and the roadway surrounding rocks under different schemes.The PREA reinforcement mechanism for the roadway was investigated through comparative model tests between the new and original methods.The results showed that,compared to the original method,the new method reduced surrounding rock stress by up to 60.4%,and the roadway convergence decreased by up to 52.1%.Based on these results,we proposed corresponding engineering recommendations,which can guide fieldreinforcement design and application.The results demonstrate that the PREA method effectively reduces stress and ensures the safety and stability of the roadway.
基金supported by the National Natural Science Foundation of China(grant numbers 62267005 and 42365008)the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing.
文摘With the development of the Semantic Web,the number of ontologies grows exponentially and the semantic relationships between ontologies become more and more complex,understanding the true semantics of specific terms or concepts in an ontology is crucial for the matching task.At present,the main challenges facing ontology matching tasks based on representation learning methods are how to improve the embedding quality of ontology knowledge and how to integrate multiple features of ontology efficiently.Therefore,we propose an Ontology Matching Method Based on the Gated Graph Attention Model(OM-GGAT).Firstly,the semantic knowledge related to concepts in the ontology is encoded into vectors using the OWL2Vec^(*)method,and the relevant path information from the root node to the concept is embedded to understand better the true meaning of the concept itself and the relationship between concepts.Secondly,the ontology is transformed into the corresponding graph structure according to the semantic relation.Then,when extracting the features of the ontology graph nodes,different attention weights are assigned to each adjacent node of the central concept with the help of the attention mechanism idea.Finally,gated networks are designed to further fuse semantic and structural embedding representations efficiently.To verify the effectiveness of the proposed method,comparative experiments on matching tasks were carried out on public datasets.The results show that the OM-GGAT model can effectively improve the efficiency of ontology matching.
基金supported by the National Natural Science Foundation of China(Grant Nos.92252201 and 11721202)the Fundamental Research Funds for the Central Universities.
文摘We present the approaches to implementing the k-√k L turbulence model within the framework of the high-order discontinuous Galerkin(DG)method.We use the DG discretization to solve the full Reynolds-averaged Navier-Stokes equations.In order to enhance the robustness of approaches,some effective techniques are designed.The HWENO(Hermite weighted essentially non-oscillatory)limiting strategy is adopted for stabilizing the turbulence model variable k.Modifications have been made to the model equation itself by using the auxiliary variable that is always positive.The 2nd-order derivatives of velocities required in computing the von Karman length scale are evaluated in a way to maintain the compactness of DG methods.Numerical results demonstrate that the approaches have achieved the desirable accuracy for both steady and unsteady turbulent simulations.