Low–angle submarine landslides pose a greater threat to offshore infrastructure compared to those with steep sliding angles.Understanding the preparation and triggering mechanism of these low–angle submarine landsli...Low–angle submarine landslides pose a greater threat to offshore infrastructure compared to those with steep sliding angles.Understanding the preparation and triggering mechanism of these low–angle submarine landslides remains a significant challenge.This study focuses on a deformed low–angle submarine landslide in the shelf–slope break of the Pearl River Mouth Basin,South China Sea,integrating sedimentology,geophysics,and geotechnology to investigate potential failure mechanisms.The architecture and deformation characteristics of the submarine landslide were elucidated by analyzing multibeam and seismic data.Within the context of the regional geological history and tectonic framework,this study focuses on the factors(e.g.,rapid sedimentation,fluid activity,and earthquakes)that potentially contributed to the submarine slope failure.Furthermore,a series of stability evaluations considering the effects of rapid sedimentation and earthquakes was conducted.Our findings indicate that the most probable triggering mechanism involves the combined effects of sedimentation controlled by sea–level fluctuations,high–pressure gas activity,and seismic events.The high–pressure gas,which acts as a long–term preconditioning factor by elevating pore pressures and reducing shear resistance within the sediment,accumulated beneath the upper and middle sections of the low–permeability stratum that was formed during sea–level rise and ultimately evolved into the sliding mass.The overpressure generated by gas accumulation predisposed the submarine slope to instability,and a frequent or moderate earthquake ultimately initiated local failure.This study enhances the mechanistic understanding of low–angle slope failures in the shelf–slope break zone and provides critical insights for assessing marine hazard risks.展开更多
0 INTRODUCTION Submarine slope slides refer to a geological process occurring on submarine slopes or continental margin slopes,where a large amount of sediment or rock layers on the slope lose stability and slide down...0 INTRODUCTION Submarine slope slides refer to a geological process occurring on submarine slopes or continental margin slopes,where a large amount of sediment or rock layers on the slope lose stability and slide downward along the sliding surface(Kamran et al.,2023;Tong et al.,2023;Hampton et al.,1996).展开更多
0 INTRODUCTION Microplastics are defined as small plastic debris(1μm-5 mm),which have complex properties of widerange densities(0.05-2.3 g/cm^3),diverse shapes(e.g.,beads,fibers,foam and pellets)and low degradability...0 INTRODUCTION Microplastics are defined as small plastic debris(1μm-5 mm),which have complex properties of widerange densities(0.05-2.3 g/cm^3),diverse shapes(e.g.,beads,fibers,foam and pellets)and low degradability(Harris,2020;Chubarenko et al.,2016).展开更多
The seepage of groundwater and the strain-softening of rock mass in a submarine tunnel expand the plastic region of rock,thereby affecting its overall stability.It is therefore essential to study the stress and strain...The seepage of groundwater and the strain-softening of rock mass in a submarine tunnel expand the plastic region of rock,thereby affecting its overall stability.It is therefore essential to study the stress and strain fields in the rocks surrounding the submarine tunnel by considering the coupled effect of strainsoftening and seepage.However,the evolution equation for the hydro-mechanical parameters in the existing fully coupled solution is a uniform equation that is unable to reproduce the characteristics of rock mass in practice.In this study,an updated numerical procedure for the submarine tunnel is derived by coupling strain-softening and seepage effect based on the experimental results.According to the hydro-mechanical coupling theory,the hydro-mechanical parameters such as elastic modulus,Poisson's ratio,Biot's coefficient and permeability coefficient of rocks are characterized by the fitting equations derived from the experimental data.Then,the updated numerical procedure is deduced with the governing equations,boundary conditions,seepage equations and fitting equations.The updated numerical procedure is verified accurately compared with the previous analytical solution.By utilizing the updated numerical procedure,the characteristics of stress field and the influences of initial pore water pressure,Biot's coefficient,and permeability coefficient on the stress,displacement and water-inflow of the surrounding rocks are discussed.Regardless of the variations in hydro-mechanical parameters,the stress distribution has a similar trend.The initial permeability coefficient exerts the most significant influence on the stress field.With the increases in initial pore water pressure and Biot's coefficient,the plastic region expands,and the water-inflow and displacement increase accordingly.Given the fact that the stability of the tunnel is more sensitive to the seepage force controlled by the hydraulic parameters,it is suggested to dewater the ground above the submarine tunnel to control the initial pore water pressure.展开更多
As the most important large-scale communication infrastructure in the world today,submarine cable can profoundly reflect the global Internet communication pattern,and is of great significance for understanding the glo...As the most important large-scale communication infrastructure in the world today,submarine cable can profoundly reflect the global Internet communication pattern,and is of great significance for understanding the global digital divide.We used multi-scale and network analysis methods to depict the distribution pattern,network structure and spatio-temporal evolution of global submarine cables at the national and landing point scales,in order to analyze the current situation,challenges and main directions of global digital divide governance.Results show that:(1)spatial distribution of global submarine cables is unbalanced,the United States and Europe are the concentrated distribution areas of submarine cables and global information flow centers;(2)core connections of the global submarine cable network are only composed of a tiny minority of countries or regions or landing points,and have strong geographical proximity and clustered-type characteristic,noting that multitudinous landing points of developed countries are at the semi-periphery or even periphery of the network;(3)submarine cables can alleviate the global digital divide through the three paths of infrastructure universalization,digital ecosystem reconstruction and economic empowerment,and the global digital divide governance still faces the dilemma of the differences in digital strategy development and the lack of a governance system.However,due to the increasingly important position of cities in developing countries in the international communication pattern,the global digital divide problem is being alleviated.展开更多
Submarine pipelines are critical infrastructures for offshore energy transport and communications. Understanding their structural response to near-field explosions is crucial for enhancing their blast resistance and o...Submarine pipelines are critical infrastructures for offshore energy transport and communications. Understanding their structural response to near-field explosions is crucial for enhancing their blast resistance and operational safety. This study presents a computational study on the interaction between explosion-induced bubbles and a seabed-mounted pipeline. A recently developed computational framework is employed, which couples a compressible fluid solver with a finite element structural solver via a partitioned procedure. An embedded boundary method and a level-set method are employed to handle the fluid-structure and gas-liquid interfaces. Using this framework, we analyze the flow field evolution, bubble dynamics, and transient pipe deformation. Two distinct response modes are identified: periodic oscillation under low-pressure loading and downward collapse triggered by high-pressure loading and bubble jet impact. Specifically, under high-pressure conditions, the pipe initially deforms inward, generating a localized high-pressure zone within the concave region. During structural rebound, the trapped fluid is expelled upward, giving rise to a bubble jet. Further parametric studies on the pipe's internal pressure, wall thickness, and support angle reveal several key insights. A higher internal pressure delays structural collapse, and a greater pipe thickness results in more uniform implosion morphologies. The support angle strongly influences the collapse dynamics, with the shortest collapse time occurring at 60 °. These findings offer new insights for the protective design of submarine pipelines.展开更多
Submarine landslides frequently occur on continental margins and slopes,thereby causing serious damage to offshore structures.Therefore,analyzing their motion behavior and predicting their impact forces are crucial.In...Submarine landslides frequently occur on continental margins and slopes,thereby causing serious damage to offshore structures.Therefore,analyzing their motion behavior and predicting their impact forces are crucial.In this work,the smooth particle hydrodynamics(SPH)algorithm is used in the development of a multiphase flow model for submarine landslides.The underwater landslide and the ambient water are simulated using the non-Newtonian and Newtonian fluid models,respectively.An artificial diffusion term of density is incorporated in the governing equation,and the equation of state is modified to improve the stability and accuracy of the SPH model.Three benchmark problems are simulated using the SPH model.The effect of SPH particle size on the simulated results is also explored.The effects of the rheological parameters on the landslide motion behavior are investigated by conducting a sensitivity analysis.Numerical results fit the experimental data well,indicating the good stability of the SPH model and its accuracy in simulating the motion and impact behavior of submarine landslides.展开更多
Medical ultrasound,developed after World War II,emerged from the application of sonar technology originally used for submarine detection during the 1950s.In the early stages of this development,the concept of transrec...Medical ultrasound,developed after World War II,emerged from the application of sonar technology originally used for submarine detection during the 1950s.In the early stages of this development,the concept of transrectal ultrasound(TRUS)was proposed.In 1955,Wild and Reid in the United States developed a basic transrectal scanner,but it could only display the rectal mucosa which lacked diagnostic value.展开更多
Captive model tests are one of the most common methods to calculate the maneuvering hydrodynamic coefficients and characteristics of surface and underwater vehicles.Considerable attention must be paid to selecting and...Captive model tests are one of the most common methods to calculate the maneuvering hydrodynamic coefficients and characteristics of surface and underwater vehicles.Considerable attention must be paid to selecting and designing the most suitable laboratory equipment for towing tanks.A computational fluid dynamics(CFD)-based method is implemented to determine the loads acting on the towing facility of the submarine model.A reversed topology is also used to ensure the appropriateness of the load cells in the developed method.In this study,the numerical simulations were evaluated using the experimental results of the SUBOFF benchmark submarine model of the Defence Advanced Research Projects Agency.The maximum and minimum loads acting on the 2.5-meter submarine model were measured by determining the body’s lightest and heaviest maneuvering test scenarios.In addition to having sufficient endurance against high loads,the precision in measuring the light load was also investigated.The horizontal planar motion mechanism(HPMM)facilities in the National Iranian Marine Laboratory were developed by locating the load cells inside the submarine model.The results were presented as a case study.A numerical-based method was developed to obtain the appropriate load measurement facilities.Load cells of HPMM test basins can be selected by following the two-way procedure presented in this study.展开更多
Based on petroleum exploration and new progress of oil and gas geology study in the Qiongdongnan Basin,combined with seismic,logging,drilling,core,sidewall coring,geochemistry data,a systematic study is conducted on t...Based on petroleum exploration and new progress of oil and gas geology study in the Qiongdongnan Basin,combined with seismic,logging,drilling,core,sidewall coring,geochemistry data,a systematic study is conducted on the source,reservoir-cap conditions,trap types,migration and accumulation characteristics,enrichment mechanisms,and reservoir formation models of ultra-deep water and ultra-shallow natural gas,taking the Lingshui 36-1 gas field as an example.(1)The genetic types of the ultra-deep water and ultra-shallow natural gas in the Qiongdongnan Basin include thermogenic gas and biogenic gas,and dominated by thermogenic gas.(2)The reservoirs are mainly composed of the Quaternary deep-water submarine fan sandstone.(3)The types of cap rocks include deep-sea mudstone,mass transport deposits mudstone,and hydrate-bearing formations.(4)The types of traps are mainly lithological,and also include structural-lithological traps.(5)The migration channels include vertical transport channels such as faults,gas chimneys,fracture zones,and lateral transport layers such as large sand bodies and unconformity surfaces,forming a single or composite transport framework.A new natural gas accumulation model is proposed for ultra-deep water and ultra-shallow layers,that is,dual source hydrocarbon supply,gas chimney and submarine fan composite migration,deep-sea mudstone-mass transport deposits mudstone-hydrate-bearing strata ternary sealing,late dynamic accumulation,and large-scale enrichment at ridges.The new understanding obtained from the research has reference and enlightening significance for the next step of deepwater and ultra-shallow layers,as well as oil and gas exploration in related fields or regions.展开更多
System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose sign...System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose significant challenges for efficient decision-making,necessitating a modular multiagent control system.Deep Reinforcement Learning(DRL)and Decision Tree(DT)have been utilized for these complex decision-making tasks,but each has its limitations:DRL is highly adaptive but lacks interpretability,while DT is inherently interpretable but has limited adaptability.To overcome these challenges,we propose the Adaptive Interpretable Decision Tree(AIDT),an evolutionary-based algorithm that is both adaptable to diverse environmental settings and highly interpretable in its decision-making processes.We first construct a Markov decision process(MDP)-based simulation environment using the Cooperative Submarine Search task as a representative scenario for training and testing the proposed method.Specifically,we use the heat map as a state variable to address the issue of multi-agent input state proliferation.Next,we introduce the curiosity-guiding intrinsic reward to encourage comprehensive exploration and enhance algorithm performance.Additionally,we incorporate decision tree size as an influence factor in the adaptation process to balance task completion with computational efficiency.To further improve the generalization capability of the decision tree,we apply a normalization method to ensure consistent processing of input states.Finally,we validate the proposed algorithm in different environmental settings,and the results demonstrate both its adaptability and interpretability.展开更多
Currently, the deghosting of towed streamer seismic data assumes a flat sea level and a sea-surface reflection coefficient of-1; this decreases the precision of deghosting. A new method that considers the rough sea su...Currently, the deghosting of towed streamer seismic data assumes a flat sea level and a sea-surface reflection coefficient of-1; this decreases the precision of deghosting. A new method that considers the rough sea surface is proposed to suppress ghost reflections. The proposed deghosting method obtains the rough sea surface reflection coefficient using Gaussian statistics, and calculates the optimized deghosting operator in the r/p domain. The proposed method is closer to the actual sea conditions, offers an improved deghosting operator, removes the ghost reflections from marine towed seismic data, widens the bandwidth and restores the low-frequency information, and finally improves the signal-to- noise ratio and resolution of the seismic data.展开更多
Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea(SCS). In...Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea(SCS). In this paper, high-resolution 3D seismic data and multibeam data based on seismic sedimentology and geomorphology are employed to assist in identifying submarine landslides. In addition, deposition models are proposed that are based on specific geological structures and features, and which illustrate the local stress field over entire submarine landslides in deep-water areas of the SCS. The SCS is one of the largest fluvial sediment sinks in enclosed or semi-enclosed marginal seas worldwide. It therefore provides a set of preconditions for the formation of submarine landslides, including rapid sediment accumulation, formation of gas hydrates, and fluid overpressure. A new concept involving temporal and spatial analyses is tested to construct a relationship between submarine landslides and different time scale trigger mechanisms, and three mechanisms are discussed in the context of spatial scale and temporal frequency: evolution of slope gradient and overpressure, global environmental changes, and tectonic events. Submarine landslides that are triggered by tectonic events are the largest but occur less frequently, while submarine landslides triggered by the combination of slope gradient and overpressure evolution are the smallest but most frequently occurring events. In summary, analysis shows that the formation of submarine landslides is a complex process involving the operation of different factors on various time scales.展开更多
With offshore resource exploration moving to the deep water, marine geohazards have been attracting attention from the academic and industry. Research achievements of marine geohazards were reviewed in this paper. We ...With offshore resource exploration moving to the deep water, marine geohazards have been attracting attention from the academic and industry. Research achievements of marine geohazards were reviewed in this paper. We analyzed and discussed typical issues among marine geohazards, including coastal erosion, submarine slope failure, turbidity current and special hazards induced by gas hydrate dissociation, in terms of their definition, distribution, characteristics and case studies. Major international projects on marine geohazards headed by the United States, Europe, Japan and other international organizations are introduced as well. Three marine geohazard survey methods, including geophysical survey, geotechnical exploration and in-situ observation, were summarized with a brief description of each approach, respectively. Especially, the history of marine geohazard researches in China is briefly reviewed, showing the disparity between China and developed countries in the study of marine geohazards narrows gradually. The potential research tendency in future was suggested.展开更多
Unlike most previous studies on vortex-induced vibrations of a cylinder far from a boundary, this paper focuses on the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic ...Unlike most previous studies on vortex-induced vibrations of a cylinder far from a boundary, this paper focuses on the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic responses of the pipeline in ocean currents. The effects of gap-to-diameter ratio and those of the stability parameter on the amplitude and frequency responses of a pipeline are investigated experimentally with a novel hydro-elastic facility. A comparison is made between the present experimental results of the amplitude and frequency responses for the pipes with seabed boundary effects and those for wall-free cylinders given by Govardhan and Williamson (2000) and Anand (1985). The comparison shows that the close proximity of a pipeline to seabed has much influence on the vortex-induced vibrations of the pipeline. Both the width of the lock-in ranges in terms of Vr and the dimensionless amplitude ratio Amax/D become larger with the decrease of the gap-to-diameter ratio e/D, Moreover, the vibration of the pipeline becomes easier to occur and its amplitude response becomes more intensive with the decrease of the stability parameter, while tire pipeline frequency responses are affected slightly by the stability parameter.展开更多
Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation...Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formulas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear response of elliptical collapse of steel circular tubes for different ratios of diameter to thickness(D/t)under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice.展开更多
基金supported by NSFC Shiptime Sharing Project(Nos.42349302,and 42149905)the Hubei Provincial Natural Science Foundation of China(No.2024AFB515)+4 种基金the National Natural Science Foundation of China(Nos.42207173,41831280,and 42176071)the National Key R&D Program of China(No.2024YFC3082500)the Shandong Provincial Natural Science Foundation of China(No.ZR2022QD002)the Shandong Provincial Taishan Scholar Construction Project(No.tsqn202507091)the Shandong Provincial Young Innovators Team(No.2024KJH183).
文摘Low–angle submarine landslides pose a greater threat to offshore infrastructure compared to those with steep sliding angles.Understanding the preparation and triggering mechanism of these low–angle submarine landslides remains a significant challenge.This study focuses on a deformed low–angle submarine landslide in the shelf–slope break of the Pearl River Mouth Basin,South China Sea,integrating sedimentology,geophysics,and geotechnology to investigate potential failure mechanisms.The architecture and deformation characteristics of the submarine landslide were elucidated by analyzing multibeam and seismic data.Within the context of the regional geological history and tectonic framework,this study focuses on the factors(e.g.,rapid sedimentation,fluid activity,and earthquakes)that potentially contributed to the submarine slope failure.Furthermore,a series of stability evaluations considering the effects of rapid sedimentation and earthquakes was conducted.Our findings indicate that the most probable triggering mechanism involves the combined effects of sedimentation controlled by sea–level fluctuations,high–pressure gas activity,and seismic events.The high–pressure gas,which acts as a long–term preconditioning factor by elevating pore pressures and reducing shear resistance within the sediment,accumulated beneath the upper and middle sections of the low–permeability stratum that was formed during sea–level rise and ultimately evolved into the sliding mass.The overpressure generated by gas accumulation predisposed the submarine slope to instability,and a frequent or moderate earthquake ultimately initiated local failure.This study enhances the mechanistic understanding of low–angle slope failures in the shelf–slope break zone and provides critical insights for assessing marine hazard risks.
基金supported by the National Natural Science Foundation of China(Nos.42090054,42377192)the Scientific Research Project of Power China Huadong Engineering Corporation Limited(No.KY2022-KC-02-02)the Natural Science Foundation of Hubei Province,China(No.2022CFA002)。
文摘0 INTRODUCTION Submarine slope slides refer to a geological process occurring on submarine slopes or continental margin slopes,where a large amount of sediment or rock layers on the slope lose stability and slide downward along the sliding surface(Kamran et al.,2023;Tong et al.,2023;Hampton et al.,1996).
基金the National Natural Science Foundation of China(No.42277138)the National Key Research and Development Program of China(Nos.2024YFF0506803 and 2024YFC2815400)+2 种基金the Fundamental Research Funds for the Central Universities(Nos.202441003 and 202513032)the Shandong Province National-Level Leading Talent Supporting Project(No.2022GJJLJRC-15)the European Commission(Nos.HORIZON MSCA-2024-PF-01,101200637)。
文摘0 INTRODUCTION Microplastics are defined as small plastic debris(1μm-5 mm),which have complex properties of widerange densities(0.05-2.3 g/cm^3),diverse shapes(e.g.,beads,fibers,foam and pellets)and low degradability(Harris,2020;Chubarenko et al.,2016).
基金supported by the National Natural Science Foundation of China(Grant Nos.52279118 and U21A20159)Sub-project of National Key Research and Development(Grant No.2023YFC3007403).
文摘The seepage of groundwater and the strain-softening of rock mass in a submarine tunnel expand the plastic region of rock,thereby affecting its overall stability.It is therefore essential to study the stress and strain fields in the rocks surrounding the submarine tunnel by considering the coupled effect of strainsoftening and seepage.However,the evolution equation for the hydro-mechanical parameters in the existing fully coupled solution is a uniform equation that is unable to reproduce the characteristics of rock mass in practice.In this study,an updated numerical procedure for the submarine tunnel is derived by coupling strain-softening and seepage effect based on the experimental results.According to the hydro-mechanical coupling theory,the hydro-mechanical parameters such as elastic modulus,Poisson's ratio,Biot's coefficient and permeability coefficient of rocks are characterized by the fitting equations derived from the experimental data.Then,the updated numerical procedure is deduced with the governing equations,boundary conditions,seepage equations and fitting equations.The updated numerical procedure is verified accurately compared with the previous analytical solution.By utilizing the updated numerical procedure,the characteristics of stress field and the influences of initial pore water pressure,Biot's coefficient,and permeability coefficient on the stress,displacement and water-inflow of the surrounding rocks are discussed.Regardless of the variations in hydro-mechanical parameters,the stress distribution has a similar trend.The initial permeability coefficient exerts the most significant influence on the stress field.With the increases in initial pore water pressure and Biot's coefficient,the plastic region expands,and the water-inflow and displacement increase accordingly.Given the fact that the stability of the tunnel is more sensitive to the seepage force controlled by the hydraulic parameters,it is suggested to dewater the ground above the submarine tunnel to control the initial pore water pressure.
基金National Natural Science Foundation of China,No.42371175。
文摘As the most important large-scale communication infrastructure in the world today,submarine cable can profoundly reflect the global Internet communication pattern,and is of great significance for understanding the global digital divide.We used multi-scale and network analysis methods to depict the distribution pattern,network structure and spatio-temporal evolution of global submarine cables at the national and landing point scales,in order to analyze the current situation,challenges and main directions of global digital divide governance.Results show that:(1)spatial distribution of global submarine cables is unbalanced,the United States and Europe are the concentrated distribution areas of submarine cables and global information flow centers;(2)core connections of the global submarine cable network are only composed of a tiny minority of countries or regions or landing points,and have strong geographical proximity and clustered-type characteristic,noting that multitudinous landing points of developed countries are at the semi-periphery or even periphery of the network;(3)submarine cables can alleviate the global digital divide through the three paths of infrastructure universalization,digital ecosystem reconstruction and economic empowerment,and the global digital divide governance still faces the dilemma of the differences in digital strategy development and the lack of a governance system.However,due to the increasingly important position of cities in developing countries in the international communication pattern,the global digital divide problem is being alleviated.
基金supported by the National Key R&D Program of China(Grant No.2024YFC3013200)the Shenzhen Peacock Plan(Grant No.QD2023006C).
文摘Submarine pipelines are critical infrastructures for offshore energy transport and communications. Understanding their structural response to near-field explosions is crucial for enhancing their blast resistance and operational safety. This study presents a computational study on the interaction between explosion-induced bubbles and a seabed-mounted pipeline. A recently developed computational framework is employed, which couples a compressible fluid solver with a finite element structural solver via a partitioned procedure. An embedded boundary method and a level-set method are employed to handle the fluid-structure and gas-liquid interfaces. Using this framework, we analyze the flow field evolution, bubble dynamics, and transient pipe deformation. Two distinct response modes are identified: periodic oscillation under low-pressure loading and downward collapse triggered by high-pressure loading and bubble jet impact. Specifically, under high-pressure conditions, the pipe initially deforms inward, generating a localized high-pressure zone within the concave region. During structural rebound, the trapped fluid is expelled upward, giving rise to a bubble jet. Further parametric studies on the pipe's internal pressure, wall thickness, and support angle reveal several key insights. A higher internal pressure delays structural collapse, and a greater pipe thickness results in more uniform implosion morphologies. The support angle strongly influences the collapse dynamics, with the shortest collapse time occurring at 60 °. These findings offer new insights for the protective design of submarine pipelines.
基金supported by the National Natural Science Foundation of China(Nos.42472332,42102318 and 42006143)the Open Research Fund Program of Zhoushan Field Scientific Observation and Research Station for Marine Geo-Hazards,China Geological Survey(No.ZSORS22-07)+1 种基金the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(No.TP2019037)the Open Research Fund Program of Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province(No.HB MESO2312)。
文摘Submarine landslides frequently occur on continental margins and slopes,thereby causing serious damage to offshore structures.Therefore,analyzing their motion behavior and predicting their impact forces are crucial.In this work,the smooth particle hydrodynamics(SPH)algorithm is used in the development of a multiphase flow model for submarine landslides.The underwater landslide and the ambient water are simulated using the non-Newtonian and Newtonian fluid models,respectively.An artificial diffusion term of density is incorporated in the governing equation,and the equation of state is modified to improve the stability and accuracy of the SPH model.Three benchmark problems are simulated using the SPH model.The effect of SPH particle size on the simulated results is also explored.The effects of the rheological parameters on the landslide motion behavior are investigated by conducting a sensitivity analysis.Numerical results fit the experimental data well,indicating the good stability of the SPH model and its accuracy in simulating the motion and impact behavior of submarine landslides.
文摘Medical ultrasound,developed after World War II,emerged from the application of sonar technology originally used for submarine detection during the 1950s.In the early stages of this development,the concept of transrectal ultrasound(TRUS)was proposed.In 1955,Wild and Reid in the United States developed a basic transrectal scanner,but it could only display the rectal mucosa which lacked diagnostic value.
文摘Captive model tests are one of the most common methods to calculate the maneuvering hydrodynamic coefficients and characteristics of surface and underwater vehicles.Considerable attention must be paid to selecting and designing the most suitable laboratory equipment for towing tanks.A computational fluid dynamics(CFD)-based method is implemented to determine the loads acting on the towing facility of the submarine model.A reversed topology is also used to ensure the appropriateness of the load cells in the developed method.In this study,the numerical simulations were evaluated using the experimental results of the SUBOFF benchmark submarine model of the Defence Advanced Research Projects Agency.The maximum and minimum loads acting on the 2.5-meter submarine model were measured by determining the body’s lightest and heaviest maneuvering test scenarios.In addition to having sufficient endurance against high loads,the precision in measuring the light load was also investigated.The horizontal planar motion mechanism(HPMM)facilities in the National Iranian Marine Laboratory were developed by locating the load cells inside the submarine model.The results were presented as a case study.A numerical-based method was developed to obtain the appropriate load measurement facilities.Load cells of HPMM test basins can be selected by following the two-way procedure presented in this study.
基金Supported by the Research Project of CNOOC(KJZH-2021-0003-00).
文摘Based on petroleum exploration and new progress of oil and gas geology study in the Qiongdongnan Basin,combined with seismic,logging,drilling,core,sidewall coring,geochemistry data,a systematic study is conducted on the source,reservoir-cap conditions,trap types,migration and accumulation characteristics,enrichment mechanisms,and reservoir formation models of ultra-deep water and ultra-shallow natural gas,taking the Lingshui 36-1 gas field as an example.(1)The genetic types of the ultra-deep water and ultra-shallow natural gas in the Qiongdongnan Basin include thermogenic gas and biogenic gas,and dominated by thermogenic gas.(2)The reservoirs are mainly composed of the Quaternary deep-water submarine fan sandstone.(3)The types of cap rocks include deep-sea mudstone,mass transport deposits mudstone,and hydrate-bearing formations.(4)The types of traps are mainly lithological,and also include structural-lithological traps.(5)The migration channels include vertical transport channels such as faults,gas chimneys,fracture zones,and lateral transport layers such as large sand bodies and unconformity surfaces,forming a single or composite transport framework.A new natural gas accumulation model is proposed for ultra-deep water and ultra-shallow layers,that is,dual source hydrocarbon supply,gas chimney and submarine fan composite migration,deep-sea mudstone-mass transport deposits mudstone-hydrate-bearing strata ternary sealing,late dynamic accumulation,and large-scale enrichment at ridges.The new understanding obtained from the research has reference and enlightening significance for the next step of deepwater and ultra-shallow layers,as well as oil and gas exploration in related fields or regions.
文摘System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose significant challenges for efficient decision-making,necessitating a modular multiagent control system.Deep Reinforcement Learning(DRL)and Decision Tree(DT)have been utilized for these complex decision-making tasks,but each has its limitations:DRL is highly adaptive but lacks interpretability,while DT is inherently interpretable but has limited adaptability.To overcome these challenges,we propose the Adaptive Interpretable Decision Tree(AIDT),an evolutionary-based algorithm that is both adaptable to diverse environmental settings and highly interpretable in its decision-making processes.We first construct a Markov decision process(MDP)-based simulation environment using the Cooperative Submarine Search task as a representative scenario for training and testing the proposed method.Specifically,we use the heat map as a state variable to address the issue of multi-agent input state proliferation.Next,we introduce the curiosity-guiding intrinsic reward to encourage comprehensive exploration and enhance algorithm performance.Additionally,we incorporate decision tree size as an influence factor in the adaptation process to balance task completion with computational efficiency.To further improve the generalization capability of the decision tree,we apply a normalization method to ensure consistent processing of input states.Finally,we validate the proposed algorithm in different environmental settings,and the results demonstrate both its adaptability and interpretability.
基金supported by the 12th Five Year Plan National Science and Technology Major Projects(No.20011ZX05023-003-002)Research projects of CNOOC(No.C/KJF JDCJF 006-2009)
文摘Currently, the deghosting of towed streamer seismic data assumes a flat sea level and a sea-surface reflection coefficient of-1; this decreases the precision of deghosting. A new method that considers the rough sea surface is proposed to suppress ghost reflections. The proposed deghosting method obtains the rough sea surface reflection coefficient using Gaussian statistics, and calculates the optimized deghosting operator in the r/p domain. The proposed method is closer to the actual sea conditions, offers an improved deghosting operator, removes the ghost reflections from marine towed seismic data, widens the bandwidth and restores the low-frequency information, and finally improves the signal-to- noise ratio and resolution of the seismic data.
基金supported by the National Natural Science Foundation of China (Nos. 41576049, 4166 6002)the Key Research Projects of Frontier Science of the Chinese Academy of Sciences (No. QYZDB-SSWSYS025)+1 种基金Qingdao National Laboratory for Marine Science and Technology (No. 2016ASKJ13)Key Science and Technology Foundation of Sanya (Nos. 2017PT 13, 2017PT14)
文摘Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea(SCS). In this paper, high-resolution 3D seismic data and multibeam data based on seismic sedimentology and geomorphology are employed to assist in identifying submarine landslides. In addition, deposition models are proposed that are based on specific geological structures and features, and which illustrate the local stress field over entire submarine landslides in deep-water areas of the SCS. The SCS is one of the largest fluvial sediment sinks in enclosed or semi-enclosed marginal seas worldwide. It therefore provides a set of preconditions for the formation of submarine landslides, including rapid sediment accumulation, formation of gas hydrates, and fluid overpressure. A new concept involving temporal and spatial analyses is tested to construct a relationship between submarine landslides and different time scale trigger mechanisms, and three mechanisms are discussed in the context of spatial scale and temporal frequency: evolution of slope gradient and overpressure, global environmental changes, and tectonic events. Submarine landslides that are triggered by tectonic events are the largest but occur less frequently, while submarine landslides triggered by the combination of slope gradient and overpressure evolution are the smallest but most frequently occurring events. In summary, analysis shows that the formation of submarine landslides is a complex process involving the operation of different factors on various time scales.
基金granted by the National Natural Science Foundation of China(Grant No.41427803)
文摘With offshore resource exploration moving to the deep water, marine geohazards have been attracting attention from the academic and industry. Research achievements of marine geohazards were reviewed in this paper. We analyzed and discussed typical issues among marine geohazards, including coastal erosion, submarine slope failure, turbidity current and special hazards induced by gas hydrate dissociation, in terms of their definition, distribution, characteristics and case studies. Major international projects on marine geohazards headed by the United States, Europe, Japan and other international organizations are introduced as well. Three marine geohazard survey methods, including geophysical survey, geotechnical exploration and in-situ observation, were summarized with a brief description of each approach, respectively. Especially, the history of marine geohazard researches in China is briefly reviewed, showing the disparity between China and developed countries in the study of marine geohazards narrows gradually. The potential research tendency in future was suggested.
基金The project was financially supported bythe Tenth Five-Year Plan of the Chinese Academy of Sciences (Grant No.KJCX2-SW-L03) .
文摘Unlike most previous studies on vortex-induced vibrations of a cylinder far from a boundary, this paper focuses on the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic responses of the pipeline in ocean currents. The effects of gap-to-diameter ratio and those of the stability parameter on the amplitude and frequency responses of a pipeline are investigated experimentally with a novel hydro-elastic facility. A comparison is made between the present experimental results of the amplitude and frequency responses for the pipes with seabed boundary effects and those for wall-free cylinders given by Govardhan and Williamson (2000) and Anand (1985). The comparison shows that the close proximity of a pipeline to seabed has much influence on the vortex-induced vibrations of the pipeline. Both the width of the lock-in ranges in terms of Vr and the dimensionless amplitude ratio Amax/D become larger with the decrease of the gap-to-diameter ratio e/D, Moreover, the vibration of the pipeline becomes easier to occur and its amplitude response becomes more intensive with the decrease of the stability parameter, while tire pipeline frequency responses are affected slightly by the stability parameter.
基金supported by the National High Technology Research and Development Programof China(863 Program,Grant No.2006AA09A105)
文摘Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formulas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear response of elliptical collapse of steel circular tubes for different ratios of diameter to thickness(D/t)under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice.