Repetitious simulation after modifying parameters of multi-domain physical system based on Modelica often appears in model experiment and optimization design. At present, the solvers based on Modelica need calculate a...Repetitious simulation after modifying parameters of multi-domain physical system based on Modelica often appears in model experiment and optimization design. At present, the solvers based on Modelica need calculate all the coupled blocks during every simulation run after updating parameters. Based on discussing scale decomposition methods of simulation model, subdivision solving strategy and minimum solving strategy are put forward to improve the efficiency of repetitious simulation, by which the numerical solution of the simulation model can be achieved by only calculating the solving sequence influenced by altered parameters. A simplified model of aircraft is used to demonstrate the efficiency of the strategies presented.展开更多
基金Supported by the National High Technology Research and Development Program (863 Program) of China (2006AA04Z121)the National Natural Science Foundation of China (50775084)
文摘Repetitious simulation after modifying parameters of multi-domain physical system based on Modelica often appears in model experiment and optimization design. At present, the solvers based on Modelica need calculate all the coupled blocks during every simulation run after updating parameters. Based on discussing scale decomposition methods of simulation model, subdivision solving strategy and minimum solving strategy are put forward to improve the efficiency of repetitious simulation, by which the numerical solution of the simulation model can be achieved by only calculating the solving sequence influenced by altered parameters. A simplified model of aircraft is used to demonstrate the efficiency of the strategies presented.