Swing nose crossings(SNXs)have been widely used in heavy haul railways to create a smoother load transfer and hence reduced impact load.However,the current design of SNXs hasn’t been fully examined under heavy haul o...Swing nose crossings(SNXs)have been widely used in heavy haul railways to create a smoother load transfer and hence reduced impact load.However,the current design of SNXs hasn’t been fully examined under heavy haul operating conditions.Additionally,maintenance guidelines for SNX wear-related issues in Australian heavy haul railways are relatively lacking.As such,this study aims to investigate the dynamic response of the wheel-rail contact and analyse the wear performance of an SNX currently used in Australian heavy haul railways.Dynamic implicit-explicit finite element analysis was conducted to simulate the wheel-rail contact along the SNX.The distribution of the wear intensity over the SNX was identified by using a local contact-based wear model.The influence of various scenarios on wear was also explored.The results verify the improved dynamic performance of the SNX,as the increased contact force after load transfer remains below 1.2 times the static load.The findings also indicate that the decrease in relative height and increase in nose rail inclination result in greater wear on the nose rail.Notably,the SNX considered in the current study exhibits better wear performance when used with moderately worn wheels.展开更多
In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of mul...In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of multiple energy sources can be realized,while the swing braking energy can be recovered and used by means of hydraulic energy.Additionally,considering the system constraints and comprehensive optimization conditions of energy efficiency and dynamic characteristics,an improved multi-objective particle swarm optimization(IMOPSO)combined with an adaptive grid is proposed for parameter optimization of the SSEHS.Meanwhile,a parameter rule-based control strategy is designed,which can switch to a reasonable working mode according to the real-time state.Finally,a physical prototype of a 50-t excavator and its AMESim model is established.The semi-simulation and semi-experiment results demonstrate that compared with a conventional swing system,energy consumption under the 90°rotation condition could be reduced by about 51.4%in the SSEHS before parameter optimization,while the energy-saving efficiency is improved by another 13.2%after parameter optimization.This confirms the effectiveness of the SSEHS and the IMOPSO parameter optimization method proposed in this paper.The IMOPSO algorithm is universal and can be used for parameter matching and optimization of hybrid power systems.展开更多
This paper sets up a robotic manipulator model on slewing crane. The model can synthetically describe the dynamic behavior of the load of slewing crane in rotating, elevating and hoisting motions. The dynamic equation...This paper sets up a robotic manipulator model on slewing crane. The model can synthetically describe the dynamic behavior of the load of slewing crane in rotating, elevating and hoisting motions. The dynamic equations of the system are recursively derived by a Newton Euler method. The dynamic behavior of the load of slewing crane in rotating motion is simulated on a computer. The method of robotic dynamics to derive the dynamic equations of the swing of load is accurate and convenient and it has good regularity. The result of the study provides a base in theory on design of crane and an accurate mathematical model for controlling the swing of load.展开更多
基金supported by Australia Research Council through the Linkage Project(Grant No.LP200100110).
文摘Swing nose crossings(SNXs)have been widely used in heavy haul railways to create a smoother load transfer and hence reduced impact load.However,the current design of SNXs hasn’t been fully examined under heavy haul operating conditions.Additionally,maintenance guidelines for SNX wear-related issues in Australian heavy haul railways are relatively lacking.As such,this study aims to investigate the dynamic response of the wheel-rail contact and analyse the wear performance of an SNX currently used in Australian heavy haul railways.Dynamic implicit-explicit finite element analysis was conducted to simulate the wheel-rail contact along the SNX.The distribution of the wear intensity over the SNX was identified by using a local contact-based wear model.The influence of various scenarios on wear was also explored.The results verify the improved dynamic performance of the SNX,as the increased contact force after load transfer remains below 1.2 times the static load.The findings also indicate that the decrease in relative height and increase in nose rail inclination result in greater wear on the nose rail.Notably,the SNX considered in the current study exhibits better wear performance when used with moderately worn wheels.
基金supported by the Changsha Major Science and Technology Plan Project,China(No.kq2207002)the Natural Science Foundation of Hunan Province(No.2023JJ40720)the Postgraduate Innovative Project of Central South University,China(No.2022XQLH058)。
文摘In this study,a novel synergistic swing energy-regenerative hybrid system(SSEHS)for excavators with a large inertia slewing platform is constructed.With the SSEHS,the pressure boosting and output energy synergy of multiple energy sources can be realized,while the swing braking energy can be recovered and used by means of hydraulic energy.Additionally,considering the system constraints and comprehensive optimization conditions of energy efficiency and dynamic characteristics,an improved multi-objective particle swarm optimization(IMOPSO)combined with an adaptive grid is proposed for parameter optimization of the SSEHS.Meanwhile,a parameter rule-based control strategy is designed,which can switch to a reasonable working mode according to the real-time state.Finally,a physical prototype of a 50-t excavator and its AMESim model is established.The semi-simulation and semi-experiment results demonstrate that compared with a conventional swing system,energy consumption under the 90°rotation condition could be reduced by about 51.4%in the SSEHS before parameter optimization,while the energy-saving efficiency is improved by another 13.2%after parameter optimization.This confirms the effectiveness of the SSEHS and the IMOPSO parameter optimization method proposed in this paper.The IMOPSO algorithm is universal and can be used for parameter matching and optimization of hybrid power systems.
文摘This paper sets up a robotic manipulator model on slewing crane. The model can synthetically describe the dynamic behavior of the load of slewing crane in rotating, elevating and hoisting motions. The dynamic equations of the system are recursively derived by a Newton Euler method. The dynamic behavior of the load of slewing crane in rotating motion is simulated on a computer. The method of robotic dynamics to derive the dynamic equations of the swing of load is accurate and convenient and it has good regularity. The result of the study provides a base in theory on design of crane and an accurate mathematical model for controlling the swing of load.