Characterizing spatial and temporal variability of soil salinity is tremendously important for a variety of agronomic and environmental concerns in arid irrigation areas. This paper reviews the characteristics and spa...Characterizing spatial and temporal variability of soil salinity is tremendously important for a variety of agronomic and environmental concerns in arid irrigation areas. This paper reviews the characteristics and spatial and temporal variations of soil salinization in the Ili River Irrigation Area by applying a geostatistical approach. Results showed that: (1) the soil salinity varied widely, with maximum value of 28.10 g/kg and minimum value of 0.10 g/kg, and was distributed mainly at the surface soil layer. Anions were mainly SO42- and Cl-, while cations were mainly Na+ and Ca2+; (2) the abundance of salinity of the root zone soil layer for different land use types was in the following order: grassland > cropland > forestland. The abundance of salinity of root zone soil layers for different periods was in the following order: March > June > September; (3) the spherical model was the most suitable variogram model to describe the salinity of the 0-3 cm and 3-20 cm soil layers in March and June, and the 3-20 cm soil layer in September, while the exponential model was the most suitable variogram model to describe the salinity of the 0-3 cm soil layer in September. Relatively strong spatial and temporal structure existed for soil salinity due to lower nugget effects; and (4) the maps of kriged soil salinity showed that higher soil salinity was distributed in the central parts of the study area and lower soil salinity was distributed in the marginal parts. Soil salinity tended to increase from the marginal parts to the central parts across the study area. Applying the kriging method is very helpful in detecting the problematic areas and is a good tool for soil resources management. Managing efforts on the appropriate use of soil and water resources in such areas is very important for sustainable agriculture, and more attention should be paid to these areas to prevent future problems.展开更多
Field surveys covering a spring-neap tidal period were conducted to investigate the characteristics of tidal dynamics within a curved channel in the southern Hangzhou Bay, China. The channel has a maximum depth of mor...Field surveys covering a spring-neap tidal period were conducted to investigate the characteristics of tidal dynamics within a curved channel in the southern Hangzhou Bay, China. The channel has a maximum depth of more than 100 m with an average tidal range of 2.5 m, serving as the main tidal passage in the southern part of the Hangzhou Bay. Water salinity, temperature and velocity data were collected from the ship-based transects and mooring measurements. During flood tide, the tidal current intrudes into the Hangzhou Bay through the northern side of the channel with a maximum velocity of about 2 m/s, while retreats through the southern side during ebb tide with a maximum velocity of 1.8 m/s. Due to the pressure, density gradients, the Coriolis force and centrifugal effect, a lateral exchange flow is generated as the tidal current relaxes from flood to ebb. Salinity and temperature data show that the water in the channel is weakly stratified during both spring and neap tides in summer time.However, mixing in the middle region will be enhanced by the lateral circulation. Mooring data indicate that the temperature and salinity are varying at a frequency similar to tidal current but higher than sea level oscillation.Our results support the hypothesis that the high frequency salinity and temperature variations could be generated by combination of the tidal current and the lateral exchanging flow.展开更多
Soil salinity at reclaimed tidal land in Korea is highly variable and depending on soil characteristics and weather conditions. The objective of this study was to evaluate the temporal changes on soil salinity and the...Soil salinity at reclaimed tidal land in Korea is highly variable and depending on soil characteristics and weather conditions. The objective of this study was to evaluate the temporal changes on soil salinity and the relationships between soil salinity and salinity parameters in reclaimed tidal lands. Soil samples were periodically collected at 0 - 20 cm (surface) and 20 - 40 cm (subsurface) layer at Saemangeum (sandy loam) and Yeongsangang (silty loam) reclaimed tidal land. Electrical conductivity (EC) had a wide range from 0.0 to 34.3 dS·m-1 during the experimental period. The average soil EC was 6.4 and 3.4 dS·m-1 at Saemangeum and Yeongsangang reclaimed tidal land, respectively. Soluble sodium concentration had great variations and it was the most important single factor for temporal variations of soil EC regardless of soil textural properties. Calcium concentration was negatively correlated with soil EC and soluble sodium. Soil exchangeable sodium percentage (ESP) was estimated as a function of soil sodium adsorption ratio (SAR) and a linear regression model (ESP = 6.075 (SAR) + 0.677 for Saemangeum and ESP = 3.925 (SAR) + 0.421 for Yeongsangang reclaimed tidal soil) was suggested for predicting soil ESP from soil SAR. The characteristics of reclaimed tidal lands had different shares of saline and sodic properties during the experimental period. Saemangeum reclaimed tidal soil was highly characterized by sodium, but the effect of sodium on Yeongsangang soil was less pronounced. Our results indicate that persistent monitoring and modeling on soil salinity at reclaimed tidal soil is fundamental and the results can provide some useful information for deciding management plans for diverse utilization or to reduce salt damage for stable crop production at reclaimed tidal land.展开更多
Ocean salinity is an essential measurable indicator of water cycle and plays a crucial role in regulating ocean and climate change.Using Simple Ocean Data Assimilation(SODA)reanalysis product,substantial decadal varia...Ocean salinity is an essential measurable indicator of water cycle and plays a crucial role in regulating ocean and climate change.Using Simple Ocean Data Assimilation(SODA)reanalysis product,substantial decadal variability of the salinity in the upper layer of the South China Sea(SCS)from 1960 to 2010 was examined.Results show that a decadal variation of the upper layer salinity is clear.The upper layer(100 m)waters are found to freshen from 1960,become saltier during 1975 to 1995,and freshen again from 1995 to 2010.The strongest anomalies appear in the northeastern,northern,and northwestern regions in the three periods,respectively.The salinity variation trends become weaker below the upper layer,except the salinifi cation trend in the northern SCS extends to at least 300 m during the salinifi cation period.Diagnosis of the salinity budget over the top 100 m shows that during the fi rst freshening period horizontal advection,vertical advection,and surface freshwater forcing all contribute to salinity freshening,and horizontal advection is relatively larger.The contribution of horizontal advection and surface freshwater forcing to the positive salinity anomaly is comparable,while the vertical advection is the secondary factor in the salinifi cation period.Horizontal advection,especially zonal advection,plays a crucial role during the second freshening period.Moreover,horizontal advection is more important than that in the fi rst freshening period.In addition,the contribution of horizontal advection is mainly in zonal direction controlled by Kuroshio intrusion.Further analysis shows the upper-layer salinity variations have a Pacifi c Decadal Oscillation(PDO)-like signal,with freshening during the negative PDO years,and salinifi cation during the positive PDO years.PDO mainly infl uences the upper-layer salinity changes through both atmospheric bridge and oceanic bridge.展开更多
The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series ...The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series at boundaries, river geometry, and adjusted coefficients. Therefore, an artificial neural network (ANN) technique using a back-propagation neural network (BPNN) and a radial basis function neural network (RBFNN) is adopted as an effective alternative in salinity simulation studies. The present study focuses on comparing the performance of BPNN, RBFNN, and three-dimensional hydrodynamic models as applied to a tidal estuarine system. The observed salinity data sets collected from 18 to 22 May, 16 to 22 October, and 26 to 30 October 2002 (totaling 4320 data points) were used for BPNN and RBFNN model training and for hydrodynamic model calibration. The data sets collected from 30 May to 2 June and 11 to 15 November 2002 (totaling 2592 data points) were adopted for BPNN and RBFNN model verification and for hydrodynamic model verification. The results revealed that the ANN (BPNN and RBFNN) models were capable of predicting the nonlinear time series behavior of salinity to the multiple forcing signals of water stages at different stations and freshwater input at upstream boundaries. The salinity predicted by the ANN models was better than that predicted by the physically based hydrodynamic model. This study suggests that BPNN and RBFNN models are easy-to-use modeling tools for simulating the salinity variation in a tidal estuarine system.展开更多
[Objective] The aim was to study the dynamic variation characteristics of phosphorus in paddy field runoff in saline land and its potential environmental effect. [Method] Taking Qianguo irrigation district in soda-sal...[Objective] The aim was to study the dynamic variation characteristics of phosphorus in paddy field runoff in saline land and its potential environmental effect. [Method] Taking Qianguo irrigation district in soda-saline land in Songnen Plain as study object, the dynamic variation law of phosphorus in paddy field runoff under different irrigation conditions and its potential environmental effect were discussed. [Result] Surface water in paddy field was alkaline, and scattered soil had poor fertilizer conservation capacity. Phosphorus accumulated in soil surface, which could increase the risk of phosphorus loss. Phosphorus loss in paddy field mainly occurred in irrigation period and runoff period caused by rainstorm. The concentration of total phosphorus (TP), particulate phosphorus (PP), total dissolved phosphorus (TDP) and dissolved reactive phosphorus (DRP) in paddy field runoff decreased with time, especially PP. Phosphorus concentration exceeded critical value and resulted to eutrophication, which threatened the water quality security of Chagan Lake. Phosphorus concentration in water recession canal increased with time, and eutrophication with different degrees appeared under high temperature. TP concentration in surface water of paddy field was highly negatively correlated with that in water recession canal, and the correlation coefficients R2(α=0.05)in three paddy fields were 0.850 9, 0.896 4 and 0.915 3, respectively. The pollution load of phosphorus in paddy field with the best irrigation condition was higher, and its pollution risk was the highest. Thus, such fields should be monitored and controlled mainly as the critical source area of phosphorus loss. [Conclusion] The study could provide theoretical foundations for developing saline land rationally, establishing optimal management measure of phosphorus in saline land and controlling phosphorus loss from farmland to protect local water resources.展开更多
The lake hydrological and meteorological data of the Tibetan Plateau are not rich. This research reports the observed climatic data and measured water levels of saline lakes from the local meteorological stations in t...The lake hydrological and meteorological data of the Tibetan Plateau are not rich. This research reports the observed climatic data and measured water levels of saline lakes from the local meteorological stations in the Zabuye salt lake, the Dangqiong Co salt lake and the Bankog Co salt lake in recent two decades. Combining with satellite remote sensing maps, we have analyzed the changes of the water level of these three lakes in recent years and discussed the origins of the changes induced by the meteorological factors. The results show that the annual mean temperature and the water level reflect a general ascending trend in these three lakes during the observation period. The rising rates of the annual mean temperature were 0.08°C/yr during 1991-2014 and 0.07°C/yr during 2004-2014, and of the water level, were 0.032 m/yr and 0.24 m/yr, respectively. Analysis of changes of the meteorological factors shows the main cause for the increase of lake water quantity are the reduced lake evaporation and the increased precipitation in the lake basins by the rise of average temperature. Seasonal variation of lake water level is powered largely by the supply of lake water types and the seasonal change of regional climate.展开更多
Salt stress is one of the major abiotic stresses affecting soybean growth. Genetic improvement for salt tolerance is an effective way to protect soybean yield under salt stress conditions. Successful improvement of sa...Salt stress is one of the major abiotic stresses affecting soybean growth. Genetic improvement for salt tolerance is an effective way to protect soybean yield under salt stress conditions. Successful improvement of salt tolerance in soybean relies on identifying genetic variation that confers tolerance in soybean germplasm and subsequently incorporating these genetic resources into cultivars. In this review, we summarize the progress in genetic diversity and genetics of salt tolerance in soybean, which includes identifying genetic diversity for salt tolerant germplasm; mapping QTLs conferring salt tolerance; map-based cloning; and conducting genome-wide association study(GWAS) analysis in soybean. Future research avenues are also discussed, including high throughput phenotyping technology, the CRISPR/Cas9 Genome-Editing System, and genomic selection technology for molecular breeding of salt tolerance.展开更多
Over the past five decades, increased pressure caused by the rapidly growing population has resulted in a reclamation of agricultural and urban buffer zones along China's coastline. However, information about the ...Over the past five decades, increased pressure caused by the rapidly growing population has resulted in a reclamation of agricultural and urban buffer zones along China's coastline. However, information about the spatio–temporal variation of soil salinity in these reclaimed regions is limited. As such, obtaining this information is crucial for mapping the variation in saline areas and to identify suitable salinity management strategies. In this study, we employed EM38 data to conduct digital soil mapping of spatio–temporal variation and map these variations of different site-specific zones. The results indicated that the distribution of soil salinity was heterogeneous in the middle of, and that the leaching of salts was significant at the edges of, the study field. Afterwards, fuzzy-k means algorithm was used to divide the site-specific management zones within the time series apparent soil electrical conductivity(ECa) data and the spatial correlations of variation. We concluded that two management zones are optimal to guide precision management. Zone A had an average salinity level of about 165 mS m–1, in which salt-tolerant crops, such as cotton and barley can grow normally, while crops such as soybean and cowpeas may be planted using leaching and increasing the mulching film methods to reduce the accumulation of salt in surface soil. In Zone B, there was a low salinity level with a mean of 89 mS m–1 for ECa, which allows for rice, wheat, and a wide range of vegetables to be grown normally. In such situations, measures such as an optimized combination of irrigation and drainage, as well as soil amendment can be taken to adjust and control the salt content. Particularly, flattening the land with a large-scale machine was used to improve the ability of micro-topography to influence salt migration; rice and other dry, land crops were planted in rotation in combination with utilizing salt-leaching multiple times to speed up desalinization.展开更多
Located in the inland arid area of central Asia, salt-affected farmlands take up one third of the total irrigated land area in Xinjiang of Northwest China. Spatio-temporal variability of soil salinity and the underlyi...Located in the inland arid area of central Asia, salt-affected farmlands take up one third of the total irrigated land area in Xinjiang of Northwest China. Spatio-temporal variability of soil salinity and the underlying mechanism are fundamental problems challenging the sustainability of oasis agriculture in China. In this study, the data of total dissolved solids(TDS) measured for soil samples collected from 27 representative study areas in the oasis areas of Xinjiang were analyzed and the coefficient of variation(CV) and stratification ratio(SR) of TDS were used to describe the lateral and vertical soil salinity variations, respectively. Weekly, monthly,and annual changes in soil salinity were also summarized. Results showed that the top(0–20 cm) soil salinity was highly variable(CV> 75%) for most studied areas. Lateral variation of soil salinity was significantly correlated with the sampling interval; as a result, a maximum sampling interval of 0.9 m was found for reducing evaluation uncertainty. The top 0–20 cm soil salt accounted for about25.2% of the total salt in the 0–100 cm soil profile. The stratification ratio values(the ratio of TDS at the 20–40 cm depth to that at the 0–20 cm depth) were mostly smaller than 1 and on average 0.92, illustrating that the top 0–20 cm soil contained slightly more salt and a considerable amount of salt still existed in subsurface and deep horizons. Irrigation reduced top soil salinity by 0.52 g kg-1, or14.6%, within the first week. On average, the relative range of soil salinity, calculated to indicate monthly changes in soil salinity, was58.2% from May to September. A 27-year experiment indicated that cultivation increased soil salinity by 44.4% at a rate of 0.14 g kg-1year-1. At small spatio-temporal scales, soil salinity variation was mainly affected by anthropogenic factors, such as irrigation and land use. However, natural factors, including groundwater, topography, and climate conditions, mainly influenced soil salinity variation at large spatio-temporal scales. This study displayed the highly variable nature of soil salinity in space and time. Those driving factors identified in this study could provide guidelines for developing sustainable agriculture in the oasis areas and combating salinization in arid regions of China.展开更多
The okra germplasm was screened for salinity tolerance at the seedling stage and during plant ontogeny. Substantial variation existed in okra for salinity tolerance at the seedling stage. An 80 mmol/L NaCI concentrati...The okra germplasm was screened for salinity tolerance at the seedling stage and during plant ontogeny. Substantial variation existed in okra for salinity tolerance at the seedling stage. An 80 mmol/L NaCI concentration was suitable for discriminating tolerant and non-tolerant okra genotypes. The pooled ranking of the genotypes, based on individual rankings for each trait (root and shoot length, germination percentage, and relative Na^+ and K%+) in individual NaCI concentrations, was effective for selecting tolerant genotypes. Genotypes selected at the seedling stage maintained their tolerance to NaCI during plant ontogeny, suggesting that screening of the germplasm entries and advanced breeding materials for salt tolerance at the seedling stage is effective. Among 39 okra genotypes, five were identified as the most tolerant genotypes and showed potential for use in breeding programs that focus on the development of salt-tolerant, high-yield okra cultivars.展开更多
Bruguiera sexangula(Lour.)Poir is an exclusive evergreen mangrove species to the Sundarbans of Bangladesh.It grows well in moderate saline zones with full sunlight.This study presents leaf morphological plasticity in ...Bruguiera sexangula(Lour.)Poir is an exclusive evergreen mangrove species to the Sundarbans of Bangladesh.It grows well in moderate saline zones with full sunlight.This study presents leaf morphological plasticity in B.sexangula to saline zones.Leaves were sampled from different saline zones and various morphological traits were measured.The results exposed a wide deviations of leaf size parameters:leaf length varied 6.6–17.3 cm;width 2.7–7.8 cm;upper quarter width 2.2–6.5 cm;down quarter width 2.5–7.3 cm;and petiole length 0.17–1.43 cm.Leaf length was significantly larger in fresh water than in other salinity zones,whereas,leaf width,upper and lower leaf quarters were significantly larger in medium saline zone.Leaf shape parameters showed a large variation among saline zones.Leaf base angle was significantly larger in both medium and strong salinity zones.Tip angle was significantly greater in medium salinity zone.Leaf perimeter was significantly larger in fresh water but leaf area was significantly bigger in medium saline zone.Leaf index and specific leaf area were maximum in moderate saline zone.Plasticity index was the highest in moderate saline for almost all the parameters presented.The ordination(PCA)showed clusters of leaf samples although there were some overlap among them which suggested a salt-stress relationship among salinity zones.The results indicate that B.sexangula had a plasticity strategy on leaf morphological parameters to salinity in the Sundarbans.This study will provide basic information of leaf plasticity of this species among saline zones which will help for site selection of coastal planting and will also provide information for policy makers to take necessary steps for its conservation.展开更多
The temporal variations of the hydrology and light transmission at two fixed position observation stations in the East China Sea (ECS) during February to March 1997 were analyzed. The fixed position observations were ...The temporal variations of the hydrology and light transmission at two fixed position observation stations in the East China Sea (ECS) during February to March 1997 were analyzed. The fixed position observations were conducted at 29°28’N, 124°45’E (Station 409), the center of the PN section, and at 32°N, 126°E (Station 111), the center of the ECS Cold Eddy. The results indicate: the semidiurnal tide generated semidiurnal variations of temperature, salinity and light transmission due to horizontal advection, but the re suspension effect of the semidiurnal tide still need to be analyzed; the sea surface diurnal temperature range was as large as 0.2℃ during low wind period; the resuspension due to wind disturbance at the two stations (with water depth of more than 80 m) seemed to be small; from late February to early March, the near bottom water temperature as well as light transmission at Station 111 sharply展开更多
The decadal variations of the North Pacifi c Tropical Water (NPTW) at 137°E in the western North Pacific Ocean are investigated based on the repeated hydrographic observations along with two global gridded ocean ...The decadal variations of the North Pacifi c Tropical Water (NPTW) at 137°E in the western North Pacific Ocean are investigated based on the repeated hydrographic observations along with two global gridded ocean products. The results indicate that the maximum salinity of NPTW experiences signifi cant quasi-decadal variations, having maxima around 1979, 1987, 1995, 2004, and 2012, while minima around 1974, 1983, 1991, 1999, and 2008 during the period of interest. The NPTW area also shows similar quasidecadal variation, expanding/shrinking as its maximum salinity increases/decreases at the 137°E section. These variations are induced mainly by changes in the mixed layer salinity in the source region and largescale circulation in the northwestern tropical Pacific Ocean, both of which are related to the Pacific Decadal Oscillation. The underlying processes at work are further confi rmed through conducting the subsurface salinity budget analysis. Besides, short-term processes are also at work through nonlinear interactions, especially after 2000.展开更多
Using a gridded array for real-time geostrophic oceanography(Argo)program float dataset,the features of upperocean salinity stratification in the tropical Pacific Ocean are studied.The salinity component of the square...Using a gridded array for real-time geostrophic oceanography(Argo)program float dataset,the features of upperocean salinity stratification in the tropical Pacific Ocean are studied.The salinity component of the squared Brunt-V?is?l?frequency N2(NS2)is used to represent salinity stratification.Layer-max NS2(LMN),defined as the NS2 maximum over the upper 300 m depth,and halocline depth(HD),defined as the depth where the NS2 maximum is located,are used to specifically describe the intensity of salinity stratification.Salinity stratification in the Topical Pacific Ocean has both spatial and temporal variability.Over the western and eastern equatorial Pacific,the LMN has a large magnitude with a shallow HD,and both have completely opposite distributions outside of the equatorial region.An obvious seasonal cycle in the LMN occurs in the north side of eastern equatorial Pacific and freshwater flux forcing dominates the seasonal variations,followed by subsurface forcing.At the eastern edge of the western Pacific warm pool around the dateline,significant interannual variation of salinity stratification occurs and is closely related to the El Ni?o Southern Oscillation event.When an El Ni?o event occurs,the precipitation anomaly freshens sea surface and the thermocline shoaling induced by the westerly wind anomaly lifts salty water upward,together contribute to the positive salinity stratification anomaly over the eastern edge of the warm pool.The interannual variations in ocean stratification can slightly affect the propagation of first baroclinic gravity waves.展开更多
The spatial position, seasonal variability and intensity of the main flow and the cyclonic circulation of the Black Sea waters along the axis of the divergence were identified. Corresponding calculations were done wit...The spatial position, seasonal variability and intensity of the main flow and the cyclonic circulation of the Black Sea waters along the axis of the divergence were identified. Corresponding calculations were done with using of the dynamic method and based on the climate data set of temperature and salinity for the surface and intermediate layers of the Black Sea. The important role of spring floods on the rivers of the northern-western Black Sea in the development of the water circulation features was shown because this river's water and main Black Sea current interact with the periphery of the western and eastern cyclonic circulation. This process is dominated at the western part sea surface cyclone: in spring and at eastern, in summer and autumn. The flow rate and nature of seasonal migration cyclonic centers were estimated. The results of research are based on a relatively large scale (40' latitude and 60' longitude) averaging and we have identified the main area of water divergence. Small, localized areas of convergence and divergence of flow that are presented in the Black Sea were not included into the scope of our research.展开更多
基金funded by the National Natural Science Foundation of China (Nos. 41201032, 41561073, and U1138302)
文摘Characterizing spatial and temporal variability of soil salinity is tremendously important for a variety of agronomic and environmental concerns in arid irrigation areas. This paper reviews the characteristics and spatial and temporal variations of soil salinization in the Ili River Irrigation Area by applying a geostatistical approach. Results showed that: (1) the soil salinity varied widely, with maximum value of 28.10 g/kg and minimum value of 0.10 g/kg, and was distributed mainly at the surface soil layer. Anions were mainly SO42- and Cl-, while cations were mainly Na+ and Ca2+; (2) the abundance of salinity of the root zone soil layer for different land use types was in the following order: grassland > cropland > forestland. The abundance of salinity of root zone soil layers for different periods was in the following order: March > June > September; (3) the spherical model was the most suitable variogram model to describe the salinity of the 0-3 cm and 3-20 cm soil layers in March and June, and the 3-20 cm soil layer in September, while the exponential model was the most suitable variogram model to describe the salinity of the 0-3 cm soil layer in September. Relatively strong spatial and temporal structure existed for soil salinity due to lower nugget effects; and (4) the maps of kriged soil salinity showed that higher soil salinity was distributed in the central parts of the study area and lower soil salinity was distributed in the marginal parts. Soil salinity tended to increase from the marginal parts to the central parts across the study area. Applying the kriging method is very helpful in detecting the problematic areas and is a good tool for soil resources management. Managing efforts on the appropriate use of soil and water resources in such areas is very important for sustainable agriculture, and more attention should be paid to these areas to prevent future problems.
基金The National Natural Science Foundation of China under contract Nos 41376095 and 41206006the Zhejiang Provincial Natural Science Foundation under contract Nos LQ14D060005,Y5090084 and LR/6E090001the Zhejiang University Ocean Sciences Seed Grant under contract No.2012HY012B
文摘Field surveys covering a spring-neap tidal period were conducted to investigate the characteristics of tidal dynamics within a curved channel in the southern Hangzhou Bay, China. The channel has a maximum depth of more than 100 m with an average tidal range of 2.5 m, serving as the main tidal passage in the southern part of the Hangzhou Bay. Water salinity, temperature and velocity data were collected from the ship-based transects and mooring measurements. During flood tide, the tidal current intrudes into the Hangzhou Bay through the northern side of the channel with a maximum velocity of about 2 m/s, while retreats through the southern side during ebb tide with a maximum velocity of 1.8 m/s. Due to the pressure, density gradients, the Coriolis force and centrifugal effect, a lateral exchange flow is generated as the tidal current relaxes from flood to ebb. Salinity and temperature data show that the water in the channel is weakly stratified during both spring and neap tides in summer time.However, mixing in the middle region will be enhanced by the lateral circulation. Mooring data indicate that the temperature and salinity are varying at a frequency similar to tidal current but higher than sea level oscillation.Our results support the hypothesis that the high frequency salinity and temperature variations could be generated by combination of the tidal current and the lateral exchanging flow.
文摘Soil salinity at reclaimed tidal land in Korea is highly variable and depending on soil characteristics and weather conditions. The objective of this study was to evaluate the temporal changes on soil salinity and the relationships between soil salinity and salinity parameters in reclaimed tidal lands. Soil samples were periodically collected at 0 - 20 cm (surface) and 20 - 40 cm (subsurface) layer at Saemangeum (sandy loam) and Yeongsangang (silty loam) reclaimed tidal land. Electrical conductivity (EC) had a wide range from 0.0 to 34.3 dS·m-1 during the experimental period. The average soil EC was 6.4 and 3.4 dS·m-1 at Saemangeum and Yeongsangang reclaimed tidal land, respectively. Soluble sodium concentration had great variations and it was the most important single factor for temporal variations of soil EC regardless of soil textural properties. Calcium concentration was negatively correlated with soil EC and soluble sodium. Soil exchangeable sodium percentage (ESP) was estimated as a function of soil sodium adsorption ratio (SAR) and a linear regression model (ESP = 6.075 (SAR) + 0.677 for Saemangeum and ESP = 3.925 (SAR) + 0.421 for Yeongsangang reclaimed tidal soil) was suggested for predicting soil ESP from soil SAR. The characteristics of reclaimed tidal lands had different shares of saline and sodic properties during the experimental period. Saemangeum reclaimed tidal soil was highly characterized by sodium, but the effect of sodium on Yeongsangang soil was less pronounced. Our results indicate that persistent monitoring and modeling on soil salinity at reclaimed tidal soil is fundamental and the results can provide some useful information for deciding management plans for diverse utilization or to reduce salt damage for stable crop production at reclaimed tidal land.
基金Supported by the National Natural Science Foundation of China(Nos.91958202,41731173)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA20060502)+1 种基金the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0306)the Key Research Program of the Chinese Academy of Sciences(No.ZDRWXH-2019-2)。
文摘Ocean salinity is an essential measurable indicator of water cycle and plays a crucial role in regulating ocean and climate change.Using Simple Ocean Data Assimilation(SODA)reanalysis product,substantial decadal variability of the salinity in the upper layer of the South China Sea(SCS)from 1960 to 2010 was examined.Results show that a decadal variation of the upper layer salinity is clear.The upper layer(100 m)waters are found to freshen from 1960,become saltier during 1975 to 1995,and freshen again from 1995 to 2010.The strongest anomalies appear in the northeastern,northern,and northwestern regions in the three periods,respectively.The salinity variation trends become weaker below the upper layer,except the salinifi cation trend in the northern SCS extends to at least 300 m during the salinifi cation period.Diagnosis of the salinity budget over the top 100 m shows that during the fi rst freshening period horizontal advection,vertical advection,and surface freshwater forcing all contribute to salinity freshening,and horizontal advection is relatively larger.The contribution of horizontal advection and surface freshwater forcing to the positive salinity anomaly is comparable,while the vertical advection is the secondary factor in the salinifi cation period.Horizontal advection,especially zonal advection,plays a crucial role during the second freshening period.Moreover,horizontal advection is more important than that in the fi rst freshening period.In addition,the contribution of horizontal advection is mainly in zonal direction controlled by Kuroshio intrusion.Further analysis shows the upper-layer salinity variations have a Pacifi c Decadal Oscillation(PDO)-like signal,with freshening during the negative PDO years,and salinifi cation during the positive PDO years.PDO mainly infl uences the upper-layer salinity changes through both atmospheric bridge and oceanic bridge.
文摘The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series at boundaries, river geometry, and adjusted coefficients. Therefore, an artificial neural network (ANN) technique using a back-propagation neural network (BPNN) and a radial basis function neural network (RBFNN) is adopted as an effective alternative in salinity simulation studies. The present study focuses on comparing the performance of BPNN, RBFNN, and three-dimensional hydrodynamic models as applied to a tidal estuarine system. The observed salinity data sets collected from 18 to 22 May, 16 to 22 October, and 26 to 30 October 2002 (totaling 4320 data points) were used for BPNN and RBFNN model training and for hydrodynamic model calibration. The data sets collected from 30 May to 2 June and 11 to 15 November 2002 (totaling 2592 data points) were adopted for BPNN and RBFNN model verification and for hydrodynamic model verification. The results revealed that the ANN (BPNN and RBFNN) models were capable of predicting the nonlinear time series behavior of salinity to the multiple forcing signals of water stages at different stations and freshwater input at upstream boundaries. The salinity predicted by the ANN models was better than that predicted by the physically based hydrodynamic model. This study suggests that BPNN and RBFNN models are easy-to-use modeling tools for simulating the salinity variation in a tidal estuarine system.
基金Supported by National Water Pollution Control and Management Science & Technology Specific Projects of China(2008ZX07207-006-04)Innovation Foundation Projects for Doctoral Students of Donghua University in 2011(11D11311)
文摘[Objective] The aim was to study the dynamic variation characteristics of phosphorus in paddy field runoff in saline land and its potential environmental effect. [Method] Taking Qianguo irrigation district in soda-saline land in Songnen Plain as study object, the dynamic variation law of phosphorus in paddy field runoff under different irrigation conditions and its potential environmental effect were discussed. [Result] Surface water in paddy field was alkaline, and scattered soil had poor fertilizer conservation capacity. Phosphorus accumulated in soil surface, which could increase the risk of phosphorus loss. Phosphorus loss in paddy field mainly occurred in irrigation period and runoff period caused by rainstorm. The concentration of total phosphorus (TP), particulate phosphorus (PP), total dissolved phosphorus (TDP) and dissolved reactive phosphorus (DRP) in paddy field runoff decreased with time, especially PP. Phosphorus concentration exceeded critical value and resulted to eutrophication, which threatened the water quality security of Chagan Lake. Phosphorus concentration in water recession canal increased with time, and eutrophication with different degrees appeared under high temperature. TP concentration in surface water of paddy field was highly negatively correlated with that in water recession canal, and the correlation coefficients R2(α=0.05)in three paddy fields were 0.850 9, 0.896 4 and 0.915 3, respectively. The pollution load of phosphorus in paddy field with the best irrigation condition was higher, and its pollution risk was the highest. Thus, such fields should be monitored and controlled mainly as the critical source area of phosphorus loss. [Conclusion] The study could provide theoretical foundations for developing saline land rationally, establishing optimal management measure of phosphorus in saline land and controlling phosphorus loss from farmland to protect local water resources.
基金The Key Scientific Research Project of National Science and Technology Commission,No.K89-01-32National Natural Science Foundation of China,No.4907010123+1 种基金Special Scientific Research Projects in Public Welfare Profession of Ministry of Land and Resources of the People’s Republic of China,No.201011001Basic Research Fund,No.K1418
文摘The lake hydrological and meteorological data of the Tibetan Plateau are not rich. This research reports the observed climatic data and measured water levels of saline lakes from the local meteorological stations in the Zabuye salt lake, the Dangqiong Co salt lake and the Bankog Co salt lake in recent two decades. Combining with satellite remote sensing maps, we have analyzed the changes of the water level of these three lakes in recent years and discussed the origins of the changes induced by the meteorological factors. The results show that the annual mean temperature and the water level reflect a general ascending trend in these three lakes during the observation period. The rising rates of the annual mean temperature were 0.08°C/yr during 1991-2014 and 0.07°C/yr during 2004-2014, and of the water level, were 0.032 m/yr and 0.24 m/yr, respectively. Analysis of changes of the meteorological factors shows the main cause for the increase of lake water quantity are the reduced lake evaporation and the increased precipitation in the lake basins by the rise of average temperature. Seasonal variation of lake water level is powered largely by the supply of lake water types and the seasonal change of regional climate.
基金supported by the National Natural Science Foundation of China (31401407)
文摘Salt stress is one of the major abiotic stresses affecting soybean growth. Genetic improvement for salt tolerance is an effective way to protect soybean yield under salt stress conditions. Successful improvement of salt tolerance in soybean relies on identifying genetic variation that confers tolerance in soybean germplasm and subsequently incorporating these genetic resources into cultivars. In this review, we summarize the progress in genetic diversity and genetics of salt tolerance in soybean, which includes identifying genetic diversity for salt tolerant germplasm; mapping QTLs conferring salt tolerance; map-based cloning; and conducting genome-wide association study(GWAS) analysis in soybean. Future research avenues are also discussed, including high throughput phenotyping technology, the CRISPR/Cas9 Genome-Editing System, and genomic selection technology for molecular breeding of salt tolerance.
基金funded by the National Natural Science Foundation of China (41601213)the National Key Research and Development Program of China (2017YFD0700501)the Major Science and Technology Projects of Henan, China (171100110600)
文摘Over the past five decades, increased pressure caused by the rapidly growing population has resulted in a reclamation of agricultural and urban buffer zones along China's coastline. However, information about the spatio–temporal variation of soil salinity in these reclaimed regions is limited. As such, obtaining this information is crucial for mapping the variation in saline areas and to identify suitable salinity management strategies. In this study, we employed EM38 data to conduct digital soil mapping of spatio–temporal variation and map these variations of different site-specific zones. The results indicated that the distribution of soil salinity was heterogeneous in the middle of, and that the leaching of salts was significant at the edges of, the study field. Afterwards, fuzzy-k means algorithm was used to divide the site-specific management zones within the time series apparent soil electrical conductivity(ECa) data and the spatial correlations of variation. We concluded that two management zones are optimal to guide precision management. Zone A had an average salinity level of about 165 mS m–1, in which salt-tolerant crops, such as cotton and barley can grow normally, while crops such as soybean and cowpeas may be planted using leaching and increasing the mulching film methods to reduce the accumulation of salt in surface soil. In Zone B, there was a low salinity level with a mean of 89 mS m–1 for ECa, which allows for rice, wheat, and a wide range of vegetables to be grown normally. In such situations, measures such as an optimized combination of irrigation and drainage, as well as soil amendment can be taken to adjust and control the salt content. Particularly, flattening the land with a large-scale machine was used to improve the ability of micro-topography to influence salt migration; rice and other dry, land crops were planted in rotation in combination with utilizing salt-leaching multiple times to speed up desalinization.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest of China(No.200903001-3)the National Natural Science Foundation of China(No.41301231)the Recruitment Program of High-Level Talents of Xinjiang,China
文摘Located in the inland arid area of central Asia, salt-affected farmlands take up one third of the total irrigated land area in Xinjiang of Northwest China. Spatio-temporal variability of soil salinity and the underlying mechanism are fundamental problems challenging the sustainability of oasis agriculture in China. In this study, the data of total dissolved solids(TDS) measured for soil samples collected from 27 representative study areas in the oasis areas of Xinjiang were analyzed and the coefficient of variation(CV) and stratification ratio(SR) of TDS were used to describe the lateral and vertical soil salinity variations, respectively. Weekly, monthly,and annual changes in soil salinity were also summarized. Results showed that the top(0–20 cm) soil salinity was highly variable(CV> 75%) for most studied areas. Lateral variation of soil salinity was significantly correlated with the sampling interval; as a result, a maximum sampling interval of 0.9 m was found for reducing evaluation uncertainty. The top 0–20 cm soil salt accounted for about25.2% of the total salt in the 0–100 cm soil profile. The stratification ratio values(the ratio of TDS at the 20–40 cm depth to that at the 0–20 cm depth) were mostly smaller than 1 and on average 0.92, illustrating that the top 0–20 cm soil contained slightly more salt and a considerable amount of salt still existed in subsurface and deep horizons. Irrigation reduced top soil salinity by 0.52 g kg-1, or14.6%, within the first week. On average, the relative range of soil salinity, calculated to indicate monthly changes in soil salinity, was58.2% from May to September. A 27-year experiment indicated that cultivation increased soil salinity by 44.4% at a rate of 0.14 g kg-1year-1. At small spatio-temporal scales, soil salinity variation was mainly affected by anthropogenic factors, such as irrigation and land use. However, natural factors, including groundwater, topography, and climate conditions, mainly influenced soil salinity variation at large spatio-temporal scales. This study displayed the highly variable nature of soil salinity in space and time. Those driving factors identified in this study could provide guidelines for developing sustainable agriculture in the oasis areas and combating salinization in arid regions of China.
基金Project supported by the Indigenous 5000 Fellowship Program(Batch II)of the Higher Education Commission,Pakistan
文摘The okra germplasm was screened for salinity tolerance at the seedling stage and during plant ontogeny. Substantial variation existed in okra for salinity tolerance at the seedling stage. An 80 mmol/L NaCI concentration was suitable for discriminating tolerant and non-tolerant okra genotypes. The pooled ranking of the genotypes, based on individual rankings for each trait (root and shoot length, germination percentage, and relative Na^+ and K%+) in individual NaCI concentrations, was effective for selecting tolerant genotypes. Genotypes selected at the seedling stage maintained their tolerance to NaCI during plant ontogeny, suggesting that screening of the germplasm entries and advanced breeding materials for salt tolerance at the seedling stage is effective. Among 39 okra genotypes, five were identified as the most tolerant genotypes and showed potential for use in breeding programs that focus on the development of salt-tolerant, high-yield okra cultivars.
基金supported by JSPS RONPAKU Program FY2018,Japan(R11810)Bangladesh University Grants Commission(UGC/SciTech/Agri(Crop-47)-26/2017/4915)。
文摘Bruguiera sexangula(Lour.)Poir is an exclusive evergreen mangrove species to the Sundarbans of Bangladesh.It grows well in moderate saline zones with full sunlight.This study presents leaf morphological plasticity in B.sexangula to saline zones.Leaves were sampled from different saline zones and various morphological traits were measured.The results exposed a wide deviations of leaf size parameters:leaf length varied 6.6–17.3 cm;width 2.7–7.8 cm;upper quarter width 2.2–6.5 cm;down quarter width 2.5–7.3 cm;and petiole length 0.17–1.43 cm.Leaf length was significantly larger in fresh water than in other salinity zones,whereas,leaf width,upper and lower leaf quarters were significantly larger in medium saline zone.Leaf shape parameters showed a large variation among saline zones.Leaf base angle was significantly larger in both medium and strong salinity zones.Tip angle was significantly greater in medium salinity zone.Leaf perimeter was significantly larger in fresh water but leaf area was significantly bigger in medium saline zone.Leaf index and specific leaf area were maximum in moderate saline zone.Plasticity index was the highest in moderate saline for almost all the parameters presented.The ordination(PCA)showed clusters of leaf samples although there were some overlap among them which suggested a salt-stress relationship among salinity zones.The results indicate that B.sexangula had a plasticity strategy on leaf morphological parameters to salinity in the Sundarbans.This study will provide basic information of leaf plasticity of this species among saline zones which will help for site selection of coastal planting and will also provide information for policy makers to take necessary steps for its conservation.
文摘The temporal variations of the hydrology and light transmission at two fixed position observation stations in the East China Sea (ECS) during February to March 1997 were analyzed. The fixed position observations were conducted at 29°28’N, 124°45’E (Station 409), the center of the PN section, and at 32°N, 126°E (Station 111), the center of the ECS Cold Eddy. The results indicate: the semidiurnal tide generated semidiurnal variations of temperature, salinity and light transmission due to horizontal advection, but the re suspension effect of the semidiurnal tide still need to be analyzed; the sea surface diurnal temperature range was as large as 0.2℃ during low wind period; the resuspension due to wind disturbance at the two stations (with water depth of more than 80 m) seemed to be small; from late February to early March, the near bottom water temperature as well as light transmission at Station 111 sharply
基金Supported by the National Natural Science Foundation of China(Nos.41506008,41606107,41476002,41776012)ZHAI F.G.is also supported by the Shandong Provincial Natural Science Foundation(No.ZR2015DQ006)China Postdoctoral Science Foundation(No.2015M570609)
文摘The decadal variations of the North Pacifi c Tropical Water (NPTW) at 137°E in the western North Pacific Ocean are investigated based on the repeated hydrographic observations along with two global gridded ocean products. The results indicate that the maximum salinity of NPTW experiences signifi cant quasi-decadal variations, having maxima around 1979, 1987, 1995, 2004, and 2012, while minima around 1974, 1983, 1991, 1999, and 2008 during the period of interest. The NPTW area also shows similar quasidecadal variation, expanding/shrinking as its maximum salinity increases/decreases at the 137°E section. These variations are induced mainly by changes in the mixed layer salinity in the source region and largescale circulation in the northwestern tropical Pacific Ocean, both of which are related to the Pacific Decadal Oscillation. The underlying processes at work are further confi rmed through conducting the subsurface salinity budget analysis. Besides, short-term processes are also at work through nonlinear interactions, especially after 2000.
基金The National Key R&D Program of China under contract No.2018YFA0605702the National Natural Science Foundation of China under contract Nos 41876002 and 41776002the Fundamental Research Funds for the Central Universities under contract Nos 2017B04714 and 2017B4114
文摘Using a gridded array for real-time geostrophic oceanography(Argo)program float dataset,the features of upperocean salinity stratification in the tropical Pacific Ocean are studied.The salinity component of the squared Brunt-V?is?l?frequency N2(NS2)is used to represent salinity stratification.Layer-max NS2(LMN),defined as the NS2 maximum over the upper 300 m depth,and halocline depth(HD),defined as the depth where the NS2 maximum is located,are used to specifically describe the intensity of salinity stratification.Salinity stratification in the Topical Pacific Ocean has both spatial and temporal variability.Over the western and eastern equatorial Pacific,the LMN has a large magnitude with a shallow HD,and both have completely opposite distributions outside of the equatorial region.An obvious seasonal cycle in the LMN occurs in the north side of eastern equatorial Pacific and freshwater flux forcing dominates the seasonal variations,followed by subsurface forcing.At the eastern edge of the western Pacific warm pool around the dateline,significant interannual variation of salinity stratification occurs and is closely related to the El Ni?o Southern Oscillation event.When an El Ni?o event occurs,the precipitation anomaly freshens sea surface and the thermocline shoaling induced by the westerly wind anomaly lifts salty water upward,together contribute to the positive salinity stratification anomaly over the eastern edge of the warm pool.The interannual variations in ocean stratification can slightly affect the propagation of first baroclinic gravity waves.
文摘The spatial position, seasonal variability and intensity of the main flow and the cyclonic circulation of the Black Sea waters along the axis of the divergence were identified. Corresponding calculations were done with using of the dynamic method and based on the climate data set of temperature and salinity for the surface and intermediate layers of the Black Sea. The important role of spring floods on the rivers of the northern-western Black Sea in the development of the water circulation features was shown because this river's water and main Black Sea current interact with the periphery of the western and eastern cyclonic circulation. This process is dominated at the western part sea surface cyclone: in spring and at eastern, in summer and autumn. The flow rate and nature of seasonal migration cyclonic centers were estimated. The results of research are based on a relatively large scale (40' latitude and 60' longitude) averaging and we have identified the main area of water divergence. Small, localized areas of convergence and divergence of flow that are presented in the Black Sea were not included into the scope of our research.