Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This s...Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This study develops a fractional-order nonlinear creep constitutive model that incorporates the double damage effect and implements a non-linear creep subroutine for soft rock using the threedimensional finite difference method on the FLAC3D platform.Comparative analysis of the theoretical,numerical,and experimental results reveals that the fractional-order constitutive model,which incorporates the double damage effect,accurately reflects the distinct deformation stages of green mudstone during creep failure and effectively captures the non-linear deformation in the accelerated creep phase.The numerical results show a fitting accuracy exceeding 97%with the creep test curves,significantly outperforming the 61%accuracy of traditional creep models.展开更多
The Zika virus(ZIKV),a member of the Flaviviridae family,attracted worldwide attention for its connection to severe neurological effects,notably microcephaly in newborns,first reported during the 2015 epidemic in Braz...The Zika virus(ZIKV),a member of the Flaviviridae family,attracted worldwide attention for its connection to severe neurological effects,notably microcephaly in newborns,first reported during the 2015 epidemic in Brazil.Yet,its impact goes beyond fetal and neonatal abnormalities,also affecting the central nervous system(CNS)in both children and adults,leading to enduring cognitive and behavioral impairments.展开更多
The DDR(DNA damage response)is an essential cellular mechanism that detects and repairs DNA lesions to maintain genomic stability.Dysregulation of DDR pathways is frequently observed in human tumors,leading to increas...The DDR(DNA damage response)is an essential cellular mechanism that detects and repairs DNA lesions to maintain genomic stability.Dysregulation of DDR pathways is frequently observed in human tumors,leading to increased genomic instability and promoting tumor progression.Consequently,targeting DDR mechanisms has emerged as a promising therapeutic strategy in oncology.This review provides an overview of the major DDR pathways,highlighting the roles of key proteins involved in various DDR processes.A detailed understanding of these molecular mechanisms has paved the way for the development of targeted antitumor agents,including inhibitors of PARP1,ATM,ATR,CHK1,CHK2,DNA-PK,and WEE1.Additionally,the significant challenges in the development of DDR inhibitors are examined,including tumor microenvironment heterogeneity,resistance mechanisms,issues with selectivity and toxicity,and the complexities associated with clinical trial design.Finally,future directions and emerging strategies to improve DDR-targeted therapies are discussed.These strategies include biomarker-driven precision medicine,novel combination therapies,advanced drug delivery systems,and the potential application of artificial intelligence to optimize treatment outcomes.展开更多
The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagra...The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagration coupling damage model is developed to predict the penetration depth and cratering diameter.Four type of aluminum-polytetrafluoroethylene-copper(Al-PTFE-Cu)reactive liners with densities of 2.3,2.7,3.5,and 4.5 g·cm^(-3) are selected to conduct the penetration experiments.The comparison results show that model predictions are in good agreement with the experimental data.By comparing the penetration depth and cratering diameter in the inert penetration mode and the penetration-deflagration coupling mode,the influence mechanism that the penetration-induced chemical response is unfavorable to penetration but has an enhanced cratering effect is revealed.From the formation characteristics,penetration effect and penetration-induced chemical reaction be-haviors,the influence of reactive liner density on the penetration-deflagration performance is further analyzed.The results show that increasing the density of reactive liner significantly increases both the kinetic energy and length of the reactive penetrator,meanwhile effectively reduces the weakened effect of penetration-induced chemical response,resulting in an enhanced penetration capability.However,due to the decreased diameter and potential energy content of reactive penetrator,the cratering capa-bility is weakened significantly.展开更多
This study examines the slug-induced vibration(SIV)response and fatigue behavior of offshore risers subjected to internal slug flow.A structural model incorporating internal slug flow dynamics is developed using the A...This study examines the slug-induced vibration(SIV)response and fatigue behavior of offshore risers subjected to internal slug flow.A structural model incorporating internal slug flow dynamics is developed using the Absolute Nodal Coordinate Formulation(ANCF)and a spatial-temporal density variation equation to analyze how slug flow parameters affect the SIV response of risers.Structural displacement,stress,and fatigue responses are systematically evaluated to characterize the structural behavior under SIV conditions.Longer slugs induce more pronounced traveling wave characteristics,while shorter slugs facilitate a mixed traveling-standing wave mode.Moreover,higher slug frequencies lead to increased fatigue accumulation,especially over an extended touchdown zone,thereby compromising the structural integrity of the riser.The findings yield valuable insights into the dynamic interactions between slug flow and riser response.This research advances the understanding of SIV mechanisms and provides a theoretical foundation for fatigue assessment and structural optimization,contributing to the safe and efficient design of offshore risers in deepwater environments.展开更多
Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target dama...Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target damage due to the challenge of maintaining high peak power density over long distances.We note that a potential solution lies in leveraging the air filament generated by femtosecond laser,which can transmit peak power densities higher than 1014 W/cm^(2)under the power clamping effect.To address this,a concept of a femtosecond laser induced air filament-CW CPL for surface damage of ceramics was introduced.We found no surface changes in ceramic targets when irradiated with a CW laser alone.By way of contrast,the target can be penetrated in a very short time(20 ms)with the assistance of the femtosecond laser induced air filament.In this context,we employ high-speed shadow imaging,cross-timescale simulation models and macro-microscopic characterization,to elucidate the CPL damage mechanism.The optimal CPL,combining a 1 mJ femtosecond laser and a 500 W CW laser,yields a damage rate of 1.51×10^(7)μm^(3)/J,representing an improvement of approximately 175%compared to single femtosecond laser ablation and around 59%enhancement compared to coating-assisted CW laser ablation.Furthermore,the efficacy of the proposed femtosecond-CW CPL method is demonstrated in causing penetration damage of ceramic/metal composite material or direct damage of sapphire,showcasing its versatility in damaging applications.Consequently,the femtosecond-CW CPL ablation method presented in this paper holds great promise as a new type of damage method for transparent hard and brittle materials.展开更多
The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ...The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ultimate strength.In this study,both the acoustic emission method(AEM)and the ultrasonic testing method(UTM)were used to examine the characteristics of AE parameters(b-value,peak frequency,frequency-band energy ratio,and fractal dimension)and ultrasonic(ULT)properties(velocity,amplitude,energy attenuation,and scattering attenuation)of bedded shale at CI,CD,and ultimate strength.The comparison involved analyzing the strain-based method(SBM),AEM,and UTM to determine the thresholds for damage stress.A fuzzy comprehensive evaluation model(FCEM)was created to describe the damage thresholds and hazard assessment.The results indicate that the optimal AE and ULT parameters for identifying CI and CD stress are ringing count,ultrasonic amplitude,energy attenuation,and scattering attenuation of the S-wave.Besides,damage thresholds were detected earlier by AE monitoring,ranging from 3 MPa to 10 MPa.CI and CD identified by UTM occurred later than SBM and AEM,and were in the range of 12 MPa.The b-value,peak frequency,energy ratio in the low-frequency band(0e62.5 kHz),correlation dimension,and sandbox dimension showed low values at the peak stress,while the energy ratio in a moderate-frequency band(187.5e281.25 kHz)and amplitude showed high values.The successful application of FCEM to laboratory testing of shales has demonstrated its ability to quantitatively identify AE/ULT precursors of seismic hazards associated with rock failure.展开更多
Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent y...Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent yet remain challenge to achieve.Herein,we propose a robust,universal and efficient fluorescence-based strategy for hierarchical warning of coating damage and metal corrosion by introducing the concepts of damage-induced fluorescence enhancement effect(DIE)and ionic-recognition induced quenching effect(RIQ).The coatings with dualresponsiveness for coating defect and steel corrosion are constructed by incorporating synthesized nanoprobes composed of metal organic frameworks(Ni–Zn-MOFs)loaded with Rhodamine B(RhB@MOFs).The initial damage to the coating causes an immediate intensification of fluorescence,while the specific ionic-recognition characteristic of RhB with Fe3t results in an evident fluorescence quenching,enabling the detection of coating damage and corrosion.Importantly,this nanoprobes are insensitive to the coating matrix and exhibit stable corrosion warning capability across various coating systems.Meanwhile,electrochemical investigations indicate that the impedance values of RM/EP maintain above 10^(8)Ωcm^(2)even after 60 days of immersion.Therefore,the incorporation of fluorescent nanoprobes greatly inhibits the intrusion of electrolytes into polymer and improves the corrosion protection performance of the coating.This powerful strategy towards dual-level damage warning provides insights for the development of long-term smart protective materials.展开更多
The paper presents experimental investigation results of crack pattern change in cement pastes caused by external sulfate attack(ESA).To visualize the formation and development of cracks in cement pastes under ESA,an ...The paper presents experimental investigation results of crack pattern change in cement pastes caused by external sulfate attack(ESA).To visualize the formation and development of cracks in cement pastes under ESA,an X-ray computed tomography(X-ray CT)was used,i e,the tomography system of Zeiss Xradia 510 versa.The results indicate that X-CT can monitor the development process and distribution characteristics of the internal cracks of cement pastes under ESA with attack time.In addition,the C3A content in the cement significantly affects the damage mode of cement paste specimens during sulfate erosion.The damage of ordinary Portland cement(OPC)pastes subjected to sulfate attack with high C3A content are severe,while the damage of sulfate resistant Portland cement(SRPC)pastes is much smaller than that of OPC pastes.Furthermore,a quadratic function describes the correlation between the crack volume fraction and development depth for two cement pastes immermed in sulfate solution.展开更多
A deep-sea mining riser is a crucial component of the system used to lift seafloor mineral resources to the vessel.It is prone to damage and failure because of harsh environmental conditions and internal fluid erosion...A deep-sea mining riser is a crucial component of the system used to lift seafloor mineral resources to the vessel.It is prone to damage and failure because of harsh environmental conditions and internal fluid erosion.Furthermore,damage can impact the response characteristics of the riser,but varying environmental loadings easily mask it.Thus,distin-guishing between riser damage and environmental effects poses a considerable challenge.To address this issue,a cantilevered model is created for a deep-sea mining riser via the concentrated mass method,and a time-domain analytical strategy is developed.The vortex-induced vibration(VIV)response characteristics of the riser are initially examined,considering various damage conditions and flow velocities.The study results revealed four primary observations:(a)effective tension can serve as a reliable indicator for identifying damage at lower velocities;(b)there are noticeable differences in displacement between the healthy and damaged risers in the in-line direction rather than the cross-flow direction;(c)frequency characteristics can more effectively distinguish the damage conditions at high flow velocities,with the mean square frequency and frequency variance being more effective than the centroid frequency and root variance frequency;(d)displacement differences are more sensitive to damage occurring near the top and bottom of the riser,while both velocity variations and structural damage can influence displacements,especially in regions between modal nodes.The vibrational behavior and damage indicators are clarified for structural health monitoring of deep-sea mining risers during lifting operations.展开更多
Arsenic-related oxidative stress and resultant diseases have attracted global concern,while longitudinal studies are scarce.To assess the relationship between arsenic exposure and systemic oxidative damage,we performe...Arsenic-related oxidative stress and resultant diseases have attracted global concern,while longitudinal studies are scarce.To assess the relationship between arsenic exposure and systemic oxidative damage,we performed two repeatedmeasures among 5236 observations(4067 participants)in theWuhan-Zhuhai cohort at the baseline and follow-up after 3 years.Urinary total arsenic,biomarkers of DNA oxidative damage(8-hydroxy-2-deoxyguanosine(8-OHdG)),lipid peroxidation(8-isoprostaglandin F2alpha(8-isoPGF2α)),and protein oxidative damage(protein carbonyls(PCO))were detected for all observations.Here we used linearmixed models to estimate the cross-sectional and longitudinal associations between arsenic exposure and oxidative damage.Exposure-response curves were constructed by utilizing the generalized additive mixed models with thin plate regressions.After adjusting for potential confounders,arsenic level was significantly and positively related to the levels of global oxidative damage and their annual increased rates in dose-response manners.In cross-sectional analyses,each 1%increase in arsenic levelwas associated with a 0.406%(95%confidence interval(CI):0.379%to 0.433%),0.360%(0.301%to 0.420%),and 0.079%(0.055%to 0.103%)increase in 8-isoPGF2α,8-OHdG,and PCO,respectively.More importantly,arsenic was further found to be associated with increased annual change rates of 8-isoPGF2α(β:0.147;95%CI:0.130 to 0.164),8-OHdG(0.155;0.118 to 0.192),and PCO(0.050;0.035 to 0.064)in the longitudinal analyses.Our study suggested that arsenic exposurewas not only positively related with global oxidative damage to lipid,DNA,and protein in cross-sectional analyses,but also associated with annual increased rates of these biomarkers in dose-dependent manners.展开更多
Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature ...Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature treatment were conducted with a ϕ75 mm split Hopkinson tension bar (SHTB) to investigate the mesoscopic fracture and damage properties of rock. An improved scanning electron microscopy (SEM) experimental method was used to analyze the tensile fracture surfaces of rock samples. Qualitative and quantitative analyses were performed to assess evolution of mesoscopic damage of heat-damaged rock under tensile loading. A constitutive model describing the mesoscopic fractal damage under thermo-mechanical coupling was established. The results showed that the high temperatures significantly reduced the tensile strength and fracture surface roughness of the red sandstone. The three-dimensional (3D) reconstruction of the fracture surface of the samples that experienced tensile failure at 900 °C showed a flat surface. The standard deviation of elevation and slope angle of specimen fracture surface first increased and then decreased with increasing temperature. The threshold for brittle fracture of the heat-damaged red sandstone specimens was 600 °C. Beyond this threshold temperature, local ductile fracture occurred, resulting in plastic deformation of the fracture surface during tensile fracturing. With increase of temperature, the internal meso-structure of samples was strengthened slightly at first and then deteriorated gradually, which was consistent with the change of macroscopic mechanical properties of red sandstone. The mesoscopic characteristics, such as the number, mean side length, maximum area, porosity, and fractal dimension of crack, exhibited an initial decline, followed by a gradual increase. The development of microcracks in samples had significant influence on mesoscopic fractal dimension. The mesoscopic fractal characteristics were used to establish a mesoscopic fractal damage constitutive model for red sandstone, and the agreement between the theoretical and experimental results validated the proposed model.展开更多
Overview of the DNA damage response(DDR)in tumor cells.DDR is a highly coordinated signaling network that repairs DNA damage caused by intrinsic cellular processes and extrinsic insults,thereby preventing genome insta...Overview of the DNA damage response(DDR)in tumor cells.DDR is a highly coordinated signaling network that repairs DNA damage caused by intrinsic cellular processes and extrinsic insults,thereby preventing genome instability.Depending on the type of damage,distinct DNA damage repair and DNA damage tolerance(DDT)pathways are involved and coordinately regulated.展开更多
Nuclear DNA, which is essential for the transmission of genetic information, is constantly damaged by external stresses and is subsequently repaired by the removal of the damaged region, followed by resynthesis of the...Nuclear DNA, which is essential for the transmission of genetic information, is constantly damaged by external stresses and is subsequently repaired by the removal of the damaged region, followed by resynthesis of the excised region. Accumulation of DNA damage with failure of repair processes leads to fatal diseases such as cancer. Recent studies have suggested that intra- and extra-nuclear environments play essential roles in DNA damage. However, numerous questions regarding the role of the nuclear mechanical environment in DNA damage remain unanswered. In this study, we investigated the effects of cell confluency (cell crowding) on the morphology of cell nuclei, and cytoskeletal structures, and DNA damage in NIH3T3 skin fibroblasts and HeLa cervical cancer cells. Although nuclear downsizing was observed in both NIH3T3 and HeLa cells with cell crowding, intracellular mechanical changes in the two cell types displayed opposite tendencies. Cell crowding in NIH3T3 cells induced reinforcement of actin filament structures, cell stiffening, and nuclear downsizing, resulting in a significant decrease in endogenous DNA damage, whereas cell crowding in HeLa cells caused partial depolymerization of actin filaments and cell softening, inducing endogenous DNA damage. Ultraviolet (UV) radiation significantly increased DNA damage in NIH3T3;however, this response did not change with cell crowding. In contrast, UV radiation did not cause DNA damage in HeLa cells under either sparse or confluent conditions. These results suggested that cell crowding significantly influenced endogenous DNA damage in cells and was quite different in NIH3T3 and HeLa cells. However, cell crowding did not affect the UV-induced DNA damage in either cell type.展开更多
Polymer gels are widely used in water control and enhanced oil recovery in oil fields.However,the damage mechanism of polymer gels to layers with remaining oil and not requiring plugging and corresponding protective m...Polymer gels are widely used in water control and enhanced oil recovery in oil fields.However,the damage mechanism of polymer gels to layers with remaining oil and not requiring plugging and corresponding protective measures are unclear.In this paper,we investigated polymer gels'damage and protection performance through static gel-breaking experiments and dynamic plugging and oil recovery evaluations on rock cores.Moreover,nuclear magnetic resonance(NMR)technology was combined to analyze the damage performance of polymer gels on cores from the pore scale.In addition,a protective technique based on gel breakers for layers with remaining oil and not requiring plugging was proposed.Results showed that when polymer gels were injected into heterogeneous cores,they plugged high-permeability layers while also penetrating low-permeability layers.When the damage to the low-permeability layers was not alleviated,the conformance and oil displacement efficiency were significantly reduced.When the concentration of ammonium persulfate was 2%–5%,the gel-breaking time was shortest and the residue was very minimal.Therefore,ammonium persulfate could be used as a gel breaker and reservoir protective material.Furthermore,after injecting ammonium persulfate into heterogeneous reservoir cores,the gel damage on the face of low-permeability layers was relieved.Consequently,the improvement in sweep efficiency was achieved,showing the re-activation of the remaining oil in medium-low permeability layers.Therefore,the low-permeability layer protection process and core experiment study based on gel-breaking agents proposed in this study were suggested to provide a new technique for the field application of conformance modification agents,aiming to achieve higher recovery degrees.展开更多
The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of c...The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of composite structures in a certain type of aircraft were investigated. The time-varying damage distribution model was established and verified based on the damage of a 16-aircraft fleet. The results show that the quantitative proportions of structural damage are 74% for skin delamination, 22% for stringer delamination and 3% for stringer-skin interface debonding. The amount of structural damages increases linearly with service time while the proportion of different damages does not change. As the service time increases, the geometric parameter distribution of damage for the same type of aircraft gradually converges, which can be approximated using the same function. There are certain differences in the proportion and geometric parameter distribution of damages among different components and locations, and the differences do not change over time.展开更多
The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.Howe...The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.However,A current limitation lies in the absence of a comprehensive quantitative approach to assess the capabilities of LaWS.To address this issue,a damage effectiveness characterization model for LaWS is established,taking into account the properties of laser transmission through the atmosphere and the thermal damage effects.By employing this model,key parameters pertaining to the effectiveness of laser damage are determined.The impact of various spatial positions and atmospheric conditions on the damage effectiveness of LaWS have been examined,employing simulation experiments with diverse parameters.The conclusions indicate that the damage effectiveness of LaWS is contingent upon the spatial position of the target,resulting in a diminished effectiveness to damage on distant,low-altitude targets.Additionally,the damage effectiveness of LaWS is heavily reliant on the atmospheric condition,particularly in complex settings such as midday and low visibility conditions,where the damage effectiveness is substantially reduced.This paper provides an accurate and effective calculation method for the rapid decisionmaking of the operators.展开更多
Silicon carbide(SiC)ceramics are extensively utilized in aerospace,national defense,and petrochemical industries due to their superior physical and chemical properties.The processing of bulk SiC ceramics necessitates ...Silicon carbide(SiC)ceramics are extensively utilized in aerospace,national defense,and petrochemical industries due to their superior physical and chemical properties.The processing of bulk SiC ceramics necessitates precise and efficient grinding techniques to produce components with satisfactory functionality.However,the inherent high hardness and brittleness of SiC ceramics present significant challenges during grinding,leading to severe brittle fracture and tool wear that compromise both surface integrity and production efficiency.Although ductile-regime grinding of SiC ceramics can be achieved by enhancing machine tool accuracy and stiffness while optimizing wheel performance alongside appropriate selection of process parameters,a comprehensive summary of the mechanisms underlying damage evolution during grinding is lacking,and a mature grinding process for SiC ceramics has yet to be developed.To bridge this gap,the sintering technologies,mechanical properties,and microstructures of SiC ceramics were briefly covered.The grinding-induced damage mechanism and low-damage grinding technologies of SiC ceramics were summarized.The fundamental science underlying the ductile deformation and removal mechanisms of brittle solids was emphasized.Additionally,attention was directed towards the critical role of hybrid energy field grinding in minimizing brittle damages and promoting removal efficiency.This review not only elucidates the intrinsic interactions between the work material and abrasives,but also offers valuable insights for optimizing the grinding processes of brittle solids.展开更多
The deterioration of rock mass in the Three Gorges reservoir area results from the coupled damage effects of macro-micro cracks and dry-wet cycles,and the coupled damage progression can be characterized by energy rele...The deterioration of rock mass in the Three Gorges reservoir area results from the coupled damage effects of macro-micro cracks and dry-wet cycles,and the coupled damage progression can be characterized by energy release rate.In this study,a series of dry-wet cycle uniaxial compression tests was conducted on fractured sandstone,and a method was developed for calculating macro-micro damage(D_(R))and energy release rates(Y_(R))of fractured sandstone subjected to dry-wet cycles by considering energy release rate,dry-wet damage and macro-micro damage.Therewith,the damage mechanisms and complex microcrack propagation patterns of rocks were investigated.Research indicates that sandstone degradation after a limited cycle count primarily exhibits exsolution of internal fillers,progressing to grain skeleton alteration and erosion with increased cycles.Compared with conventional methods,the D_(R) and Y_(R) methodologies exhibit heightened sensitivity to microcrack closure during compaction and abrupt energy release at the point of failure.Based on D_(R) and Y_(R),the failure process of fractured sandstone can be classified into six stages:stress adjustment(I),microcracks equal closure(II),nonlinear slow closure(III),low-speed extension(IV),rapid extension(V),and macroscopic main fracture emergence(VI).The abrupt change in damage energy release rate during stage V may serve as a reliable precursor for inducing failure.The stage-based classification may enhance traditional methods by tracking damage progression and accurately identifying rock failure precursors.The findings are expected to provide a scientific basis for understanding damage mechanisms and enabling early warning of reservoir-bank slope failure.展开更多
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金support from the National Natural Science Foundation of China(No.52308316)the Scientific Research Foundation of Weifang University(Grant No.2024BS42)+2 种基金China Postdoctoral Science Foundation(No.2022M721885)the Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province(No.ZJRMG-2022-01)supported by Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(NO.SKLGME023017).
文摘Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This study develops a fractional-order nonlinear creep constitutive model that incorporates the double damage effect and implements a non-linear creep subroutine for soft rock using the threedimensional finite difference method on the FLAC3D platform.Comparative analysis of the theoretical,numerical,and experimental results reveals that the fractional-order constitutive model,which incorporates the double damage effect,accurately reflects the distinct deformation stages of green mudstone during creep failure and effectively captures the non-linear deformation in the accelerated creep phase.The numerical results show a fitting accuracy exceeding 97%with the creep test curves,significantly outperforming the 61%accuracy of traditional creep models.
文摘The Zika virus(ZIKV),a member of the Flaviviridae family,attracted worldwide attention for its connection to severe neurological effects,notably microcephaly in newborns,first reported during the 2015 epidemic in Brazil.Yet,its impact goes beyond fetal and neonatal abnormalities,also affecting the central nervous system(CNS)in both children and adults,leading to enduring cognitive and behavioral impairments.
文摘The DDR(DNA damage response)is an essential cellular mechanism that detects and repairs DNA lesions to maintain genomic stability.Dysregulation of DDR pathways is frequently observed in human tumors,leading to increased genomic instability and promoting tumor progression.Consequently,targeting DDR mechanisms has emerged as a promising therapeutic strategy in oncology.This review provides an overview of the major DDR pathways,highlighting the roles of key proteins involved in various DDR processes.A detailed understanding of these molecular mechanisms has paved the way for the development of targeted antitumor agents,including inhibitors of PARP1,ATM,ATR,CHK1,CHK2,DNA-PK,and WEE1.Additionally,the significant challenges in the development of DDR inhibitors are examined,including tumor microenvironment heterogeneity,resistance mechanisms,issues with selectivity and toxicity,and the complexities associated with clinical trial design.Finally,future directions and emerging strategies to improve DDR-targeted therapies are discussed.These strategies include biomarker-driven precision medicine,novel combination therapies,advanced drug delivery systems,and the potential application of artificial intelligence to optimize treatment outcomes.
基金supported by the National Natural Science Foundation of China(Grant No.12172052)the Foundation of State Key Laboratory of Explosion Science and Safety Protection(Grant No.QKKT24-02).
文摘The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagration coupling damage model is developed to predict the penetration depth and cratering diameter.Four type of aluminum-polytetrafluoroethylene-copper(Al-PTFE-Cu)reactive liners with densities of 2.3,2.7,3.5,and 4.5 g·cm^(-3) are selected to conduct the penetration experiments.The comparison results show that model predictions are in good agreement with the experimental data.By comparing the penetration depth and cratering diameter in the inert penetration mode and the penetration-deflagration coupling mode,the influence mechanism that the penetration-induced chemical response is unfavorable to penetration but has an enhanced cratering effect is revealed.From the formation characteristics,penetration effect and penetration-induced chemical reaction be-haviors,the influence of reactive liner density on the penetration-deflagration performance is further analyzed.The results show that increasing the density of reactive liner significantly increases both the kinetic energy and length of the reactive penetrator,meanwhile effectively reduces the weakened effect of penetration-induced chemical response,resulting in an enhanced penetration capability.However,due to the decreased diameter and potential energy content of reactive penetrator,the cratering capa-bility is weakened significantly.
基金financially supported by the National Natural Science Foundation of China(Grant No.52222111)the Science Foundation of China University of Petroleum,Beijing(Grant No.2462025SZBH002)。
文摘This study examines the slug-induced vibration(SIV)response and fatigue behavior of offshore risers subjected to internal slug flow.A structural model incorporating internal slug flow dynamics is developed using the Absolute Nodal Coordinate Formulation(ANCF)and a spatial-temporal density variation equation to analyze how slug flow parameters affect the SIV response of risers.Structural displacement,stress,and fatigue responses are systematically evaluated to characterize the structural behavior under SIV conditions.Longer slugs induce more pronounced traveling wave characteristics,while shorter slugs facilitate a mixed traveling-standing wave mode.Moreover,higher slug frequencies lead to increased fatigue accumulation,especially over an extended touchdown zone,thereby compromising the structural integrity of the riser.The findings yield valuable insights into the dynamic interactions between slug flow and riser response.This research advances the understanding of SIV mechanisms and provides a theoretical foundation for fatigue assessment and structural optimization,contributing to the safe and efficient design of offshore risers in deepwater environments.
基金supports from National Natural Science Foundation of China(Grant No.52105498)The science and technology innovation Program of Hunan Province(Grant No.2021RC3074)+2 种基金Advanced Laser Technology Laboratory of Anhui Province(AHL2022KF04)National Key R&D Program of China(Grant No.2023YFB14605500)Changsha Natural Science Foundation(kq2402089).
文摘Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target damage due to the challenge of maintaining high peak power density over long distances.We note that a potential solution lies in leveraging the air filament generated by femtosecond laser,which can transmit peak power densities higher than 1014 W/cm^(2)under the power clamping effect.To address this,a concept of a femtosecond laser induced air filament-CW CPL for surface damage of ceramics was introduced.We found no surface changes in ceramic targets when irradiated with a CW laser alone.By way of contrast,the target can be penetrated in a very short time(20 ms)with the assistance of the femtosecond laser induced air filament.In this context,we employ high-speed shadow imaging,cross-timescale simulation models and macro-microscopic characterization,to elucidate the CPL damage mechanism.The optimal CPL,combining a 1 mJ femtosecond laser and a 500 W CW laser,yields a damage rate of 1.51×10^(7)μm^(3)/J,representing an improvement of approximately 175%compared to single femtosecond laser ablation and around 59%enhancement compared to coating-assisted CW laser ablation.Furthermore,the efficacy of the proposed femtosecond-CW CPL method is demonstrated in causing penetration damage of ceramic/metal composite material or direct damage of sapphire,showcasing its versatility in damaging applications.Consequently,the femtosecond-CW CPL ablation method presented in this paper holds great promise as a new type of damage method for transparent hard and brittle materials.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U20A20266 and 12302503)Scientific and technological research projects in Sichuan province(Grant No.2024NSFSC0973).
文摘The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ultimate strength.In this study,both the acoustic emission method(AEM)and the ultrasonic testing method(UTM)were used to examine the characteristics of AE parameters(b-value,peak frequency,frequency-band energy ratio,and fractal dimension)and ultrasonic(ULT)properties(velocity,amplitude,energy attenuation,and scattering attenuation)of bedded shale at CI,CD,and ultimate strength.The comparison involved analyzing the strain-based method(SBM),AEM,and UTM to determine the thresholds for damage stress.A fuzzy comprehensive evaluation model(FCEM)was created to describe the damage thresholds and hazard assessment.The results indicate that the optimal AE and ULT parameters for identifying CI and CD stress are ringing count,ultrasonic amplitude,energy attenuation,and scattering attenuation of the S-wave.Besides,damage thresholds were detected earlier by AE monitoring,ranging from 3 MPa to 10 MPa.CI and CD identified by UTM occurred later than SBM and AEM,and were in the range of 12 MPa.The b-value,peak frequency,energy ratio in the low-frequency band(0e62.5 kHz),correlation dimension,and sandbox dimension showed low values at the peak stress,while the energy ratio in a moderate-frequency band(187.5e281.25 kHz)and amplitude showed high values.The successful application of FCEM to laboratory testing of shales has demonstrated its ability to quantitatively identify AE/ULT precursors of seismic hazards associated with rock failure.
基金support by the National Natural Science Foundation of China(52201077)the Natural Science Foundation of Shandong Province(ZR2022QE191)+1 种基金Elite Scheme of Shandong University of Science and Technology(0104060541123)Talent introduction and Research Start-up Fund of Shandong University of Science and Technology(0104060510124).
文摘Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent yet remain challenge to achieve.Herein,we propose a robust,universal and efficient fluorescence-based strategy for hierarchical warning of coating damage and metal corrosion by introducing the concepts of damage-induced fluorescence enhancement effect(DIE)and ionic-recognition induced quenching effect(RIQ).The coatings with dualresponsiveness for coating defect and steel corrosion are constructed by incorporating synthesized nanoprobes composed of metal organic frameworks(Ni–Zn-MOFs)loaded with Rhodamine B(RhB@MOFs).The initial damage to the coating causes an immediate intensification of fluorescence,while the specific ionic-recognition characteristic of RhB with Fe3t results in an evident fluorescence quenching,enabling the detection of coating damage and corrosion.Importantly,this nanoprobes are insensitive to the coating matrix and exhibit stable corrosion warning capability across various coating systems.Meanwhile,electrochemical investigations indicate that the impedance values of RM/EP maintain above 10^(8)Ωcm^(2)even after 60 days of immersion.Therefore,the incorporation of fluorescent nanoprobes greatly inhibits the intrusion of electrolytes into polymer and improves the corrosion protection performance of the coating.This powerful strategy towards dual-level damage warning provides insights for the development of long-term smart protective materials.
基金Funded by Chinese National Natural Science Foundation of China(No.U2006224)。
文摘The paper presents experimental investigation results of crack pattern change in cement pastes caused by external sulfate attack(ESA).To visualize the formation and development of cracks in cement pastes under ESA,an X-ray computed tomography(X-ray CT)was used,i e,the tomography system of Zeiss Xradia 510 versa.The results indicate that X-CT can monitor the development process and distribution characteristics of the internal cracks of cement pastes under ESA with attack time.In addition,the C3A content in the cement significantly affects the damage mode of cement paste specimens during sulfate erosion.The damage of ordinary Portland cement(OPC)pastes subjected to sulfate attack with high C3A content are severe,while the damage of sulfate resistant Portland cement(SRPC)pastes is much smaller than that of OPC pastes.Furthermore,a quadratic function describes the correlation between the crack volume fraction and development depth for two cement pastes immermed in sulfate solution.
基金financially supported by the National Key Research and Development Program of China(Grant No.2023YFC2811600)the National Natural Science Foundation of China(Grant Nos.52301349 and 52088102)+1 种基金the Qingdao Post-Doctorate Science Fund(No.QDBSH20220202070)the Major Scientific and Technological Innovation Project of Shandong Province(Grant No.2019JZZY010820).
文摘A deep-sea mining riser is a crucial component of the system used to lift seafloor mineral resources to the vessel.It is prone to damage and failure because of harsh environmental conditions and internal fluid erosion.Furthermore,damage can impact the response characteristics of the riser,but varying environmental loadings easily mask it.Thus,distin-guishing between riser damage and environmental effects poses a considerable challenge.To address this issue,a cantilevered model is created for a deep-sea mining riser via the concentrated mass method,and a time-domain analytical strategy is developed.The vortex-induced vibration(VIV)response characteristics of the riser are initially examined,considering various damage conditions and flow velocities.The study results revealed four primary observations:(a)effective tension can serve as a reliable indicator for identifying damage at lower velocities;(b)there are noticeable differences in displacement between the healthy and damaged risers in the in-line direction rather than the cross-flow direction;(c)frequency characteristics can more effectively distinguish the damage conditions at high flow velocities,with the mean square frequency and frequency variance being more effective than the centroid frequency and root variance frequency;(d)displacement differences are more sensitive to damage occurring near the top and bottom of the riser,while both velocity variations and structural damage can influence displacements,especially in regions between modal nodes.The vibrational behavior and damage indicators are clarified for structural health monitoring of deep-sea mining risers during lifting operations.
基金supported by the National Natural Science Foundation of China(Nos.82241088 and 82203996)the China Postdoctoral Science Foundation(Nos.2022T150230 and 2021M691131).
文摘Arsenic-related oxidative stress and resultant diseases have attracted global concern,while longitudinal studies are scarce.To assess the relationship between arsenic exposure and systemic oxidative damage,we performed two repeatedmeasures among 5236 observations(4067 participants)in theWuhan-Zhuhai cohort at the baseline and follow-up after 3 years.Urinary total arsenic,biomarkers of DNA oxidative damage(8-hydroxy-2-deoxyguanosine(8-OHdG)),lipid peroxidation(8-isoprostaglandin F2alpha(8-isoPGF2α)),and protein oxidative damage(protein carbonyls(PCO))were detected for all observations.Here we used linearmixed models to estimate the cross-sectional and longitudinal associations between arsenic exposure and oxidative damage.Exposure-response curves were constructed by utilizing the generalized additive mixed models with thin plate regressions.After adjusting for potential confounders,arsenic level was significantly and positively related to the levels of global oxidative damage and their annual increased rates in dose-response manners.In cross-sectional analyses,each 1%increase in arsenic levelwas associated with a 0.406%(95%confidence interval(CI):0.379%to 0.433%),0.360%(0.301%to 0.420%),and 0.079%(0.055%to 0.103%)increase in 8-isoPGF2α,8-OHdG,and PCO,respectively.More importantly,arsenic was further found to be associated with increased annual change rates of 8-isoPGF2α(β:0.147;95%CI:0.130 to 0.164),8-OHdG(0.155;0.118 to 0.192),and PCO(0.050;0.035 to 0.064)in the longitudinal analyses.Our study suggested that arsenic exposurewas not only positively related with global oxidative damage to lipid,DNA,and protein in cross-sectional analyses,but also associated with annual increased rates of these biomarkers in dose-dependent manners.
基金supported by The National Natural Science Foundation of China(Grant Nos.12272411 and 42007259).
文摘Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature treatment were conducted with a ϕ75 mm split Hopkinson tension bar (SHTB) to investigate the mesoscopic fracture and damage properties of rock. An improved scanning electron microscopy (SEM) experimental method was used to analyze the tensile fracture surfaces of rock samples. Qualitative and quantitative analyses were performed to assess evolution of mesoscopic damage of heat-damaged rock under tensile loading. A constitutive model describing the mesoscopic fractal damage under thermo-mechanical coupling was established. The results showed that the high temperatures significantly reduced the tensile strength and fracture surface roughness of the red sandstone. The three-dimensional (3D) reconstruction of the fracture surface of the samples that experienced tensile failure at 900 °C showed a flat surface. The standard deviation of elevation and slope angle of specimen fracture surface first increased and then decreased with increasing temperature. The threshold for brittle fracture of the heat-damaged red sandstone specimens was 600 °C. Beyond this threshold temperature, local ductile fracture occurred, resulting in plastic deformation of the fracture surface during tensile fracturing. With increase of temperature, the internal meso-structure of samples was strengthened slightly at first and then deteriorated gradually, which was consistent with the change of macroscopic mechanical properties of red sandstone. The mesoscopic characteristics, such as the number, mean side length, maximum area, porosity, and fractal dimension of crack, exhibited an initial decline, followed by a gradual increase. The development of microcracks in samples had significant influence on mesoscopic fractal dimension. The mesoscopic fractal characteristics were used to establish a mesoscopic fractal damage constitutive model for red sandstone, and the agreement between the theoretical and experimental results validated the proposed model.
基金the National Natural Science Foundation of China(Grant No.82330090 and Grant No.82341006 to C.G.)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA0460403 to C.G.)the Natural Science Foundation of Shanxi Province(Grant No.202203021211155 to X.M.).
文摘Overview of the DNA damage response(DDR)in tumor cells.DDR is a highly coordinated signaling network that repairs DNA damage caused by intrinsic cellular processes and extrinsic insults,thereby preventing genome instability.Depending on the type of damage,distinct DNA damage repair and DNA damage tolerance(DDT)pathways are involved and coordinately regulated.
文摘Nuclear DNA, which is essential for the transmission of genetic information, is constantly damaged by external stresses and is subsequently repaired by the removal of the damaged region, followed by resynthesis of the excised region. Accumulation of DNA damage with failure of repair processes leads to fatal diseases such as cancer. Recent studies have suggested that intra- and extra-nuclear environments play essential roles in DNA damage. However, numerous questions regarding the role of the nuclear mechanical environment in DNA damage remain unanswered. In this study, we investigated the effects of cell confluency (cell crowding) on the morphology of cell nuclei, and cytoskeletal structures, and DNA damage in NIH3T3 skin fibroblasts and HeLa cervical cancer cells. Although nuclear downsizing was observed in both NIH3T3 and HeLa cells with cell crowding, intracellular mechanical changes in the two cell types displayed opposite tendencies. Cell crowding in NIH3T3 cells induced reinforcement of actin filament structures, cell stiffening, and nuclear downsizing, resulting in a significant decrease in endogenous DNA damage, whereas cell crowding in HeLa cells caused partial depolymerization of actin filaments and cell softening, inducing endogenous DNA damage. Ultraviolet (UV) radiation significantly increased DNA damage in NIH3T3;however, this response did not change with cell crowding. In contrast, UV radiation did not cause DNA damage in HeLa cells under either sparse or confluent conditions. These results suggested that cell crowding significantly influenced endogenous DNA damage in cells and was quite different in NIH3T3 and HeLa cells. However, cell crowding did not affect the UV-induced DNA damage in either cell type.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01A250)the Karamay Innovative Environment Construction Plan(Innovative Talents)project(No.20212022hjcxrc0015).
文摘Polymer gels are widely used in water control and enhanced oil recovery in oil fields.However,the damage mechanism of polymer gels to layers with remaining oil and not requiring plugging and corresponding protective measures are unclear.In this paper,we investigated polymer gels'damage and protection performance through static gel-breaking experiments and dynamic plugging and oil recovery evaluations on rock cores.Moreover,nuclear magnetic resonance(NMR)technology was combined to analyze the damage performance of polymer gels on cores from the pore scale.In addition,a protective technique based on gel breakers for layers with remaining oil and not requiring plugging was proposed.Results showed that when polymer gels were injected into heterogeneous cores,they plugged high-permeability layers while also penetrating low-permeability layers.When the damage to the low-permeability layers was not alleviated,the conformance and oil displacement efficiency were significantly reduced.When the concentration of ammonium persulfate was 2%–5%,the gel-breaking time was shortest and the residue was very minimal.Therefore,ammonium persulfate could be used as a gel breaker and reservoir protective material.Furthermore,after injecting ammonium persulfate into heterogeneous reservoir cores,the gel damage on the face of low-permeability layers was relieved.Consequently,the improvement in sweep efficiency was achieved,showing the re-activation of the remaining oil in medium-low permeability layers.Therefore,the low-permeability layer protection process and core experiment study based on gel-breaking agents proposed in this study were suggested to provide a new technique for the field application of conformance modification agents,aiming to achieve higher recovery degrees.
文摘The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of composite structures in a certain type of aircraft were investigated. The time-varying damage distribution model was established and verified based on the damage of a 16-aircraft fleet. The results show that the quantitative proportions of structural damage are 74% for skin delamination, 22% for stringer delamination and 3% for stringer-skin interface debonding. The amount of structural damages increases linearly with service time while the proportion of different damages does not change. As the service time increases, the geometric parameter distribution of damage for the same type of aircraft gradually converges, which can be approximated using the same function. There are certain differences in the proportion and geometric parameter distribution of damages among different components and locations, and the differences do not change over time.
基金supported by the National Social Science Foundation of China(2022-SKJJ-C-037)the National Natural Science Foundation of China General Program(72071209).
文摘The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.However,A current limitation lies in the absence of a comprehensive quantitative approach to assess the capabilities of LaWS.To address this issue,a damage effectiveness characterization model for LaWS is established,taking into account the properties of laser transmission through the atmosphere and the thermal damage effects.By employing this model,key parameters pertaining to the effectiveness of laser damage are determined.The impact of various spatial positions and atmospheric conditions on the damage effectiveness of LaWS have been examined,employing simulation experiments with diverse parameters.The conclusions indicate that the damage effectiveness of LaWS is contingent upon the spatial position of the target,resulting in a diminished effectiveness to damage on distant,low-altitude targets.Additionally,the damage effectiveness of LaWS is heavily reliant on the atmospheric condition,particularly in complex settings such as midday and low visibility conditions,where the damage effectiveness is substantially reduced.This paper provides an accurate and effective calculation method for the rapid decisionmaking of the operators.
基金supported by the National Natural Science Foundation of China(Grant Nos.52375420,52322510)Natural Science Foundation of Heilongjiang Province of China(Grant No.YQ2023E014)+6 种基金National Key Research and Development Program of China(Grant No.2021YFB3400403)Shenzhen Science and Technology Program(Grant No.GNCWSSJH20240032)Self-Planned Task(Grant No.SKLRS202214B)of State Key Laboratory of Robotics and System(HIT),China Postdoctoral Science Foundation(Grant No.2022T150163)Young Elite Scientists Sponsorship Program by CAST(Grant No.YESS20220463)Open Fund of Key Laboratory of Microsystems and Microstructures Manufacturing(HIT)(Grant No.2022KM004)Open Foundation of Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut Material(Grant No.E22445)Fundamental Research Funds for the Central Universities(Grant Nos.HIT.OCEF.2022024,FRFCU5710051122)。
文摘Silicon carbide(SiC)ceramics are extensively utilized in aerospace,national defense,and petrochemical industries due to their superior physical and chemical properties.The processing of bulk SiC ceramics necessitates precise and efficient grinding techniques to produce components with satisfactory functionality.However,the inherent high hardness and brittleness of SiC ceramics present significant challenges during grinding,leading to severe brittle fracture and tool wear that compromise both surface integrity and production efficiency.Although ductile-regime grinding of SiC ceramics can be achieved by enhancing machine tool accuracy and stiffness while optimizing wheel performance alongside appropriate selection of process parameters,a comprehensive summary of the mechanisms underlying damage evolution during grinding is lacking,and a mature grinding process for SiC ceramics has yet to be developed.To bridge this gap,the sintering technologies,mechanical properties,and microstructures of SiC ceramics were briefly covered.The grinding-induced damage mechanism and low-damage grinding technologies of SiC ceramics were summarized.The fundamental science underlying the ductile deformation and removal mechanisms of brittle solids was emphasized.Additionally,attention was directed towards the critical role of hybrid energy field grinding in minimizing brittle damages and promoting removal efficiency.This review not only elucidates the intrinsic interactions between the work material and abrasives,but also offers valuable insights for optimizing the grinding processes of brittle solids.
基金supported by the National Natural Science Foundation of China(Grant No.51978106)China Postdoctoral Science Foundation(Grant No.2022MD723831)Graduate Research and Innovation Foundation of Chongqing(Grant No.CYB240039).
文摘The deterioration of rock mass in the Three Gorges reservoir area results from the coupled damage effects of macro-micro cracks and dry-wet cycles,and the coupled damage progression can be characterized by energy release rate.In this study,a series of dry-wet cycle uniaxial compression tests was conducted on fractured sandstone,and a method was developed for calculating macro-micro damage(D_(R))and energy release rates(Y_(R))of fractured sandstone subjected to dry-wet cycles by considering energy release rate,dry-wet damage and macro-micro damage.Therewith,the damage mechanisms and complex microcrack propagation patterns of rocks were investigated.Research indicates that sandstone degradation after a limited cycle count primarily exhibits exsolution of internal fillers,progressing to grain skeleton alteration and erosion with increased cycles.Compared with conventional methods,the D_(R) and Y_(R) methodologies exhibit heightened sensitivity to microcrack closure during compaction and abrupt energy release at the point of failure.Based on D_(R) and Y_(R),the failure process of fractured sandstone can be classified into six stages:stress adjustment(I),microcracks equal closure(II),nonlinear slow closure(III),low-speed extension(IV),rapid extension(V),and macroscopic main fracture emergence(VI).The abrupt change in damage energy release rate during stage V may serve as a reliable precursor for inducing failure.The stage-based classification may enhance traditional methods by tracking damage progression and accurately identifying rock failure precursors.The findings are expected to provide a scientific basis for understanding damage mechanisms and enabling early warning of reservoir-bank slope failure.