期刊文献+
共找到1,040,282篇文章
< 1 2 250 >
每页显示 20 50 100
Short-term silicone oil tamponade on retinal structure and function in rhegmatogenous retinal detachment:a randomized controlled trial
1
作者 Zi-Ye Chen Yu-Qing Wu +7 位作者 Bao-Yi Liu Yuan Ma Zhuang-Ling Lin Run-Ping Duan Lan Jiang Chinling Tsai Zhuo-Jun Xu Tao Li 《International Journal of Ophthalmology(English edition)》 2026年第1期83-89,共7页
AIM:To investigate the effects of shortening the duration of silicone oil tamponade on retinal structure and function in patients undergoing silicone oil removal(SOR)after surgery for primary rhegmatogenous retinal de... AIM:To investigate the effects of shortening the duration of silicone oil tamponade on retinal structure and function in patients undergoing silicone oil removal(SOR)after surgery for primary rhegmatogenous retinal detachment(RRD).METHODS:A total of 58 eligible patients were enrolled and randomly assigned to two groups based on tamponade duration:the short-term group(30-45d)and the conventional group(≥90d).Comprehensive evaluations were performed before and after SOR,including slitlamp examination,best-corrected visual acuity(BCVA)measurement,intraocular pressure(IOP)testing,optical coherence tomography(OCT),optical coherence tomography angiography(OCTA),microperimetry,electroretinography(ERG),and visual evoked potential(VEP)assessment.RESULTS:A total of 33 patients(23 males and 10 females;33 eyes)were enrolled in the short-term SO tamponade group with mean age of 52.45±9.35y,and 25 patients(15 males and 10 females;25 eyes)were enrolled in the conventional SO tamponade group with mean age of 50.80±12.06y.Compared with the conventional group,the short-term silicone oil tamponade group had a significantly lower incidence of silicone oil emulsification and cataract progression,with no significant difference in retinal reattachment success rate.Structurally,short-term tamponade was associated with increased thickness of the retinal ganglion cell layer(RGCL)in the nasal and superior macular regions and improved recovery of superficial retinal vascular density in these areas.Functionally,the shortterm group showed better BCVA and retinal sensitivity both before and 1mo after SOR;additionally,the P100 amplitude in VEP tests was significantly increased in this group.CONCLUSION:Shortening the duration of silicone oil tamponade effectively reduces damage to retinal structure and function without compromising the success rate of retinal reattachment in patients with primary RRD. 展开更多
关键词 silicone oil tamponade rhegmatogenous retinal detachment silicone oil removal retinal structure retinal function PROGNOSIS
原文传递
The Analysis of Gauss Radial Basis Functions and Its Application in Locating Olivine on the Moon
2
作者 SONG Shicang SONG Xiaoyuan SONG Shuhan 《应用数学》 北大核心 2026年第1期173-181,共9页
Gauss radial basis functions(GRBF)are frequently employed in data fitting and machine learning.Their linear independence property can theoretically guarantee the avoidance of data redundancy.In this paper,one of the m... Gauss radial basis functions(GRBF)are frequently employed in data fitting and machine learning.Their linear independence property can theoretically guarantee the avoidance of data redundancy.In this paper,one of the main contributions is proving this property using linear algebra instead of profound knowledge.This makes it easy to read and understand this fundamental fact.The proof of linear independence of a set of Gauss functions relies on the constructing method for one-dimensional space and on the deducing method for higher dimensions.Additionally,under the condition of preserving the same moments between the original function and interpolating function,both the interpolating existence and uniqueness are proven for GRBF in one-dimensional space.The final work demonstrates the application of the GRBF method to locate lunar olivine.By combining preprocessed data using GRBF with the removing envelope curve method,a program is created to find the position of lunar olivine based on spectrum data,and the numerical experiment shows that it is an effective scheme. 展开更多
关键词 Gauss function Radial basis function Machine learning Lunar olivine locating Data fitting
在线阅读 下载PDF
Microglia overexpressing brain-derived neurotrophic factor promote vascular repair and functional recovery in mice after spinal cord injury 被引量:2
3
作者 Fanzhuo Zeng Yuxin Li +6 位作者 Xiaoyu Li Xinyang Gu Yue Cao Shuai Cheng He Tian Rongcheng Mei Xifan Mei 《Neural Regeneration Research》 2026年第1期365-376,共12页
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s... Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury. 展开更多
关键词 ANGIOGENESIS apoptosis brain-derived neurotrophic factor colony stimulating factor 1 receptor inflammation MICROGLIA motor function spinal cord injury vascular endothelial growth factor
暂未订购
Silent cardiac burden:Echocardiographic abnormalities and their predictors in kidney transplant candidates and their impact on graft function
4
作者 Nihal Mohammed Sadagah Muhammad Abdul Mabood Khalil +3 位作者 Hinda Hassan Khideer Mahmood Ibtisam Ali Alghamdi Ghada Abdulrahman Buridi Salem H Al-Qurashi 《World Journal of Transplantation》 2026年第1期167-181,共15页
BACKGROUND An echocardiogram is an essential tool in the evaluation of potential kidney transplant recipients(KTRs).Despite cardiac clearance,potential KTRs still have structural and functional abnormalities.Identifyi... BACKGROUND An echocardiogram is an essential tool in the evaluation of potential kidney transplant recipients(KTRs).Despite cardiac clearance,potential KTRs still have structural and functional abnormalities.Identifying the prevalence of these abnormalities and understanding their predictors is vital for optimizing pretransplant risk stratification and improving post-transplant outcomes.AIM To determine the prevalence of left ventricular hypertrophy(LVH),left ventricular systolic dysfunction(LVSD),diastolic dysfunction(DD),pulmonary hypertension(PH),and their predictors,and to assess their impact on graft function in pre-transplant candidates.METHODS The study included all successful transplant candidates older than 14 who had a baseline echocardiogram.Binary logistic regression models were constructed to identify factors associated with LVH,LVSD,DD,and PH.RESULTS Out of 259 patients,LVH was present in 64%(166),12%(31)had LVSD,27.5%(71)had DD,and 66(25.5%)had PH.Independent predictors of LVH included male gender[odds ratio(OR):2.51;95%CI:1.17-5.41 P=0.02],PH(OR=2.07;95%CI:1.11-3.86;P=0.02),DD(OR:2.47;95%CI:1.29-4.73;P=0.006),and dyslipidemia(OR=1.94;95%CI:1.07-3.53;P=0.03).Predictors for LVSD included patients with DD(OR=3.3,95%CI:1.41-7.81;P=0.006)and a family history of coronary artery disease(OR=4.50,95%CI:1.33-15.20;P=0.015).Peritoneal dialysis was an independent predictor for DD(OR=10.03;95%CI:1.71-58.94,P=0.011).The presence of LVH(OR=3.32,95%CI:1.05-10.55,P=0.04)and mild to moderate or moderate to severe mitral regurgitation(OR=4.63,95%CI:1.45-14.78,P=0.01)were significant factors associated with PH.These abnormalities had no significant impact on estimated glomerular filtration at discharge,6 months,1 year,or 2 years post-transplant.CONCLUSION Significant echocardiographic abnormalities persist in a potential transplant candidate despite cardiac clearance,although they don’t affect future graft function.Understanding the risk factors associated with these abnormalities may help clinicians address these factors pre-and post-transplant to achieve better outcomes. 展开更多
关键词 Echocardiographic abnormalities Kidney transplant PREDICTORS Graft function
暂未订购
Aberrant resting-state functional connectivity in amygdala subregions among adolescents with depression and suicide attempts
5
作者 Shao-Chen Cheng Yong-Ming Wang +5 位作者 Yu-Tong Li Qian-Nan Yao Xin-Lin Huang Jian Ji Xiao-Bin Zhang Hong-Yan Sun 《World Journal of Psychiatry》 2026年第1期91-103,共13页
BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major ... BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD. 展开更多
关键词 Suicide attempt ADOLESCENT Major depressive disorder AMYGDALA functional connectivity
暂未订购
Correlation of ocular surface function with sleep quality,anxiety,and depression in patients with dry eye disease
6
作者 Yi-Long Lin Hai-Hua Liu +2 位作者 Shu-Jin Chen Qi-Hua Wan Kai-Ping Zhang 《World Journal of Psychiatry》 2026年第1期256-266,共11页
BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly... BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly impact the quality of life of patients.AIM To explore the correlations between ocular surface function,sleep quality,and anxiety/depression in patients with DED.METHODS This was a cross-sectional investigative study that included 358 patients with DED between January 2022 and January 2025.Ocular surface was assessed using the ocular surface disease index(OSDI),tear film break-up time,fluorescein staining score,and Schirmer I test.The Pittsburgh Sleep Quality Index(PSQI),Self-Rating Anxiety Scale(SAS),and Self-Rating Depression Scale(SDS)were used to evaluate sleep quality and anxiety/depression levels.Correlation and linear regression analyses were used to explore the relationships.RESULTS The mean PSQI score of the patients was 9.94±2.18;the mean SAS score was 47.30±4.90,and the mean SDS score was 50.08±5.52.These suggested a prevalence of sleep and psychological abnormalities.There was a significant correlation between the indicators of ocular surface function(OSDI,tear film break-up time,fluorescein staining,and Schirmer I test)and PSQI,SAS,and SDS scores(P<0.05).Moreover,multiple regression revealed that age≥50 years(β=1.55,P=0.029),PSQI scores(β=0.58,P<0.001),SAS scores(β=0.17,P=0.017),and SDS scores(β=0.15,P=0.019)were independent predictors of the OSDI scores.CONCLUSION Ocular surface function in patients with DED is closely related to sleep quality and anxiety/depression,emphasizing the need for holistic clinical management. 展开更多
关键词 Dry eye disease Ocular surface function Sleep quality ANXIETY DEPRESSION
暂未订购
In situ constructing lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x) as bifunctional electrocatalyst for high-current-density water splitting 被引量:1
7
作者 Yue Deng Jin Wang +6 位作者 Shao-Fei Zhang Zhi-Jia Zhang Jin-Feng Sun Tian-Tian Li Jian-Li Kang Hao Liu Shi Bai 《Rare Metals》 2025年第2期1053-1066,共14页
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-... The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting. 展开更多
关键词 Lamellar nanoporous structure Electronic structure regulation High current density Theoretical calculation Overall water splitting
原文传递
Effects of SiO_(2)/Al_(2)O_(3)Ratios on Microstructure,Properties and Elastic Modulus of SiO_(2)-Al_(2)O_(3)-CaO-MgO Alkali-Free Glass
8
作者 DONG Peng TENG Zhou +3 位作者 XIE Jun ZHANG Jihong XIONG Dehua CHEN Dequan 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期45-53,共9页
Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes... Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes with SiO_(2)and Al_(2)O_(3)ratios were investigated using various techniques.It is found that when SiO_(2)is replaced by Al_(2)O_(3),the Q^(4) to Q^(3) transition of silicon-oxygen network decreases while the aluminum-oxygen network increases,which result in the transformation of Si-O-Si bonds to Si-O-Al bonds and an increase in glass network connectivity even though the intermolecular bond strength decreases.The glass transition temperature(T_(g))increases continuously,while the thermal expansion coefficient increases and high-temperature viscosity first decreases and then increases.Meanwhile,the elastic modulus values increase from 93 to 102 GPa.This indicates that the elastic modulus is mainly affected by packing factor and dissociation energy,and elements with higher packing factors and dissociation energies supplant those with lower values,resulting in increased rigidity within the glass. 展开更多
关键词 alkali free glass glass network structure VISCOSITY elastic modulus
原文传递
Deterioration and Pore Structure Evolution of GO Modified Polymer Cement Mortar under Salt-freeze-thaw Coupling Effects
9
作者 ZHAO Xinyuan WEI Zhiqiang +3 位作者 QIAO Hongxia LI Shaofei CAO Hui XI Lingling 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期234-246,共13页
To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with g... To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively. 展开更多
关键词 graphene oxide polymer cement mortar pore structure fractal dimension
原文传递
GEMIN5 and neurodevelopmental diseases: From functional insights to disease perception
10
作者 Encarnacion Martinez-Salas Rosario Francisco-Velilla 《Neural Regeneration Research》 2026年第1期187-194,共8页
GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a ... GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein–protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins. This protein exerts a different role in translation regulation depending on its physiological state, such that while GEMIN5 down-regulates global RNA translation, the C-terminal half of the protein promotes translation of its mRNA. Additionally, GEMIN5 is responsible for the preferential partitioning of mRNAs into polysomes. Besides selective translation, GEMIN5 forms part of distinct ribonucleoprotein complexes, reflecting the dynamic organization of macromolecular complexes in response to internal and external signals. In accordance with its contribution to fundamental cellular processes, recent reports described clinical loss of function mutants suggesting that GEMIN5 deficiency is detrimental to cell growth and survival. Remarkably, patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. Molecular analyses of individual variants, which are defective in protein dimerization, display decreased levels of ribosome association, reinforcing the involvement of the protein in translation regulation. Importantly, the number of clinical variants and the phenotypic spectrum associated with GEMIN5 disorders is increasing as the knowledge of the protein functions and the pathways linked to its activity augments. Here we discuss relevant advances concerning the functional and structural features of GEMIN5 and its separate domains in RNA-binding, protein interactome, and translation regulation, and how these data can help to understand the involvement of protein malfunction in clinical variants found in patients developing neurodevelopmental disorders. 展开更多
关键词 Gemin5 variants modular organization neurodevelopmental diseases RNA-binding proteins selective translation structural domains
暂未订购
Extreme Attitude Prediction of Amphibious Vehicles Based on Improved Transformer Model and Extreme Loss Function
11
作者 Qinghuai Zhang Boru Jia +3 位作者 Zhengdao Zhu Jianhua Xiang Yue Liu Mengwei Li 《哈尔滨工程大学学报(英文版)》 2026年第1期228-238,共11页
Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instabili... Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics. 展开更多
关键词 Amphibious vehicle Attitude prediction Extreme value loss function Enhanced transformer architecture External information embedding
在线阅读 下载PDF
Insights into microbial actions on hydraulic concrete structures:Effects of ammonia and sulfate on community structure,function and biofilm morphology
12
作者 Longfei Wang Wentao Zhuo +6 位作者 Tao He Zongyi Peng You Mou Minyue Wan Xinnan Pan Yi Li Zhengjian Yang 《Journal of Environmental Sciences》 2025年第11期430-442,共13页
Microbial corrosion of hydraulic concrete structures(HCSs)has received increasing research concerns.However,knowledge on the morphology of attached biofilms,as well as the community structures and functions cultivated... Microbial corrosion of hydraulic concrete structures(HCSs)has received increasing research concerns.However,knowledge on the morphology of attached biofilms,as well as the community structures and functions cultivated under variable nutrient levels is lacking.Here,biofilm colonization patterns and community structures responding to variable levels of ammonia and sulfate were explored.From field sampling,NH_(4)^(+)-N was proven key factor governing community structure in attached biofilms,verifying the reliability of selecting target nutrient species in batch experiments.Biofilms exhibited significant compositional differences in field sampling and incubation experiments.As the nutrient increased in batch experiments,the growth of biofilms gradually slowed down and uneven distribution was detected.The proportions of proteins and β-d-glucose polysaccharides in biofilms experienced a decrease in response to elevated levels of nutrients.With the increased of nutrients,themass losses of concretes exhibited an increase,reaching a highest value of 2.37%in the presence of 20 mg/L of ammonia.Microbial communities underwent a significant transition in structure and metabolic functions to ammonia gradient.The highest activity of nitrification was observed in biofilms colonized in the presence of 20 mg/L of ammonia.While the communities and their functions remained relativelymore stable responding to sulfate gradient.Our research provides novel insights into the structures of biofilms attached on HCSs and the metabolic functions in the presence of high level of nutrients,which is of significance for the operation and maintenance of hydraulic engineering structures. 展开更多
关键词 Hydraulic concrete structures Community structure Nutrient levels functional prediction Microbial action
原文传递
Transplantation of human neural stem cells repairs neural circuits and restores neurological function in the stroke-injured brain
13
作者 Peipei Wang Peng Liu +7 位作者 Yingying Ding Guirong Zhang Nan Wang Xiaodong Sun Mingyue Li Mo Li Xinjie Bao Xiaowei Chen 《Neural Regeneration Research》 2026年第3期1162-1171,共10页
Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after inju... Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after injury,which limits the ability to observe long-term behavioral recovery.Here,we used a severe stroke rat model with 150 minutes of ischemia,which produced severe behavioral deficiencies that persisted at 12 weeks,to study the therapeutic effect of neural stem cells on neural restoration in chronic stroke.Our study showed that stroke model rats treated with human neural stem cells had long-term sustained recovery of motor function,reduced infarction volume,long-term human neural stem cell survival,and improved local inflammatory environment and angiogenesis.We also demonstrated that transplanted human neural stem cells differentiated into mature neurons in vivo,formed stable functional synaptic connections with host neurons,and exhibited the electrophysiological properties of functional mature neurons,indicating that they replaced the damaged host neurons.The findings showed that human fetal-derived neural stem cells had long-term effects for neurological recovery in a model of severe stroke,which suggests that human neural stem cells-based therapy may be effective for repairing damaged neural circuits in stroke patients. 展开更多
关键词 behavioral recovery circuit repair electrophysiological properties functional integration human neural stem cell transplantation infarction volume STROKE synaptic tracing
暂未订购
Converging assemblies:A putative building block for brain function and for interfacing with the brain
14
作者 Eran Stark Lidor Spivak 《Neural Regeneration Research》 2026年第3期1124-1125,共2页
The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they ... The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses. 展开更多
关键词 cortical neuron INTERCONNECTIVITY neuronal networks functional modules dense interconnectivity braitenburg artificial systemsthese converging assemblies biological neuronal networks
暂未订购
Ordered structures with Schottky heterojunction functional unit regulate immune response and osteogenesis
15
作者 Peng Yu Maofei Ran +7 位作者 Heying Ran Xuebin Yang Youzhun Fan Zhengao Wang Zhengnan Zhou Jinxia Zhai Zefeng Lin Chengyun Ning 《Journal of Materials Science & Technology》 2025年第10期276-287,共12页
Mimicking the electric microenvironment of natural tissue is a promising strategy for developing biomedical implants. However, current research has not taken biomimetic electrical functional units into consideration w... Mimicking the electric microenvironment of natural tissue is a promising strategy for developing biomedical implants. However, current research has not taken biomimetic electrical functional units into consideration when designing biomedical implants. In this research, ordered structures with Schottky heterojunction functional unit (OSSH) were constructed on titanium implant surfaces for bone regeneration regulation. The Schottky heterojunction functional unit is composed of periodically distributed titanium microdomain and titanium oxide microdomain with different carrier densities and surface potentials. The OSSH regulates the M2-type polarization of macrophages to a regenerative immune response by activating the PI3K-AKT-mTOR signal pathway and further promotes osteogenic differentiation of rat bone marrow mesenchymal stem cells. This work provides fundamental insights into the biological effects driven by the Schottky heterojunction functional units that can electrically modulate osteogenesis. 展开更多
关键词 Ordered structures with functional unit MACROPHAGE Implant OSTEOGENESIS Electric microenvironment
原文传递
Structure-function insights of natural Ganoderma polysaccharides:advances in biosynthesis and functional food applications
16
作者 Zhou-Wei Wu Xue-Fang Zhao +5 位作者 Chen-Xi Quan Xiao-Cui Liu Xin-Yu Tao Yu-jie Li Xing-Rong Peng Ming-Hua Qiu 《Natural Products and Bioprospecting》 2025年第2期143-175,共33页
Ganoderma polysaccharides(GPs),derived from various species of the Ganoderma genus,exhibit diverse bioactivities,including immune modulation,anti-tumor effects,and gut microbiota regulation.These properties position G... Ganoderma polysaccharides(GPs),derived from various species of the Ganoderma genus,exhibit diverse bioactivities,including immune modulation,anti-tumor effects,and gut microbiota regulation.These properties position GPs as dual-purpose agents for medicinal and functional food development.This review comprehensively explores the structural complexity of six key GPs and their specific mechanisms of action,such as TLR signaling in immune modulation,apoptosis pathways in anti-tumor activity,and their prebiotic effects on gut microbiota.Additionally,the structure-activity relationships(SARs)of GPs are highlighted to elucidate their biological efficacy.Advances in green extraction techniques,including ultrasonic-assisted and enzymatic methods,are discussed for their roles in enhancing yield and aligning with sustainable production principles.Furthermore,the review addresses biotechnological innovations in polysaccharide biosynthesis,improving production efficiency and making large-scale production feasible.These insights,combined with ongoing research into their bioactivity,provide a solid foundation for developing health-promoting functional food products that incorporate GPs.Furthermore,future research directions are suggested to optimize biosynthesis pathways and fully harness the health benefits of these polysaccharides. 展开更多
关键词 Ganoderma polysaccharides extraction techniques structural characteristics Bioactivity biosynthetic pathways functional food applications
在线阅读 下载PDF
Investigation of Near-Surface S-Wave Velocity Structure beneath the Epicenter and adjacent Area of the Jishishan Earthquake by using the Receiver Function
17
作者 Fan-chang Meng Ruo-ge Xu +2 位作者 Hui Sun Bo Li Yun Long 《Applied Geophysics》 2025年第3期647-659,893,共14页
Based on the observational data from 60 short-period stations deployed in the Jishishan M6.2 earthquake epicenter and adjacent regions(Gansu Province,2023),this study inverted the near-surface S-wave velocity structur... Based on the observational data from 60 short-period stations deployed in the Jishishan M6.2 earthquake epicenter and adjacent regions(Gansu Province,2023),this study inverted the near-surface S-wave velocity structure through teleseismic receiver function analysis by using the amplitude of direct P-wave.The results reveal that the epicentral area(Liugou Township and surroundings)exhibits markedly low S-wave velocities of 400-600 m/s,with a mean value of(500±50)m/s.In contrast,intermountain basins-Guanting Basin and Dahejia Basin-demonstrate significantly elevated velocities,exceeding the epicentral zone by 100-300 m/s,with values concentrated at 600-900 m/s.Notably,localized areas such as Jintian Village and Caotan Village maintain stable S-wave velocities of(700±30)m/s.The western margin tectonic belt of Jishishan displays distinctive velocity differentiation:A pronounced velocity gradient zone along the 35.8°N latitude boundary separates northern areas(<550 m/s)from southern regions(>750 m/s).These findings demonstrate significant spatial heterogeneity in shallow S-wave velocity structures,primarily controlled by three factors:(1)topographic-geomorphic units,(2)stratigraphic lithological contrasts,and(3)anthropogenic modifications.The persistent low-velocity anomalies(<600 m/s)in the epicentral zone and northern Yellow River T2 terrace likely correlate with Quaternary unconsolidated sediments,enhanced groundwater circulation,and bedrock weathering.These results provide critical geophysical constraints for understanding both the seismogenic environment of the Jishishan earthquake and its damage distribution patterns.Furthermore,they establish a foundational framework for regional seismic intensity evaluation,site amplification analysis,and secondary hazard risk assessment. 展开更多
关键词 Jishishan Earthquake Dense Seismic Array Receiver function S-Wave Velocity structure
在线阅读 下载PDF
Research progress on the structure and physiological functions of PKG
18
作者 Meng-Jie Peng Chao Li +1 位作者 Xiang-Xiang Zhang Xiao-Jun Han 《Biomedical Engineering Communications》 2025年第3期13-22,共10页
Protein Kinase G(PKG)is an important intracellular signal transduction enzyme,and its activity is modulated by cyclic guanosine monophosphate(cGMP).PKG plays a pivotal role in various significant physiological process... Protein Kinase G(PKG)is an important intracellular signal transduction enzyme,and its activity is modulated by cyclic guanosine monophosphate(cGMP).PKG plays a pivotal role in various significant physiological processes,including vascular smooth muscle relaxation,myocardial cell function regulation,neuron growth,and synaptic plasticity,et al.In recent years,the role of PKG in diseases has gradually attracted attention,and the abnormalities in its signaling pathway are closely related to the occurrence and development of cardiovascular and neurological diseases.Although PKG has been widely studied,its complex functions in different physiological systems and potential innovative applications still need to be further explored.This article reviews the purification techniques for PKG,discusses the advantages and disadvantages of different extraction methods,summarizes the structure and activation mechanism of each domain of PKG,and analyzes the physiological functions of PKG in organisms,especially the well-established roles in the cardiovascular system,nervous system,and endocrine system.The emerging therapeutic applications of PKG are also reviewed.In addition,the challenges of this field are proposed at the end. 展开更多
关键词 protein kinase G plasmid expression technology structural domain activation mechanism physiological function
在线阅读 下载PDF
Stable crystal structure prediction using machine learning-based formation energy and empirical potential function
19
作者 Lu Li Jianing Shen +4 位作者 Qinkun Xiao Chaozheng He Jinzhou Zheng Chaoqin Chu Chen Chen 《Chinese Chemical Letters》 2025年第11期563-568,共6页
Crystal structure prediction aims to predict stable and easily experimentally synthesized materials,which accelerates the discovery of new materials.It is worth noting that the stability of materials is the basis for ... Crystal structure prediction aims to predict stable and easily experimentally synthesized materials,which accelerates the discovery of new materials.It is worth noting that the stability of materials is the basis for ensuring high performance and reliable application of materials.Among which,the thermodynamic and molecular dynamics stability is especially important.Therefore,this paper proposes a method to predict stable crystal structures using formation energy and Lennard-Jones potential as evaluation indicators.Specifically,we use graph neural network models to predict the formation energy of crystals,and employ empirical formulas to calculate the Lennard-Jones potential.Then,we apply Bayesian optimization algorithms to search for crystal structures with low formation energy and Lennard-Jones potential approaching zero,in order to ensure the thermodynamic stability and dynamics stability of materials.In addition,considering the impact of the bonding situation between atoms in the crystal on the structural stability,this article uses contact map to analyze the atomic bonding situation of each crystal to screen out more stable materials.Finally,the experimental results show that the method we proposed can not only reduce the time for crystal structure prediction,but also ensure the stability of crystal materials. 展开更多
关键词 Crystal structure prediction Machine learning Formation energy Empirical potential function Thermodynamic stability Dynamics stability
原文传递
Morphological characteristics and corresponding functional properties of homeostatic human microglia
20
作者 Pariya Khodabakhsh Olga Garaschuk 《Neural Regeneration Research》 2026年第3期1112-1113,共2页
Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological s... Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states. 展开更多
关键词 functional properties multi omics techniques protein expressionposttranslational modificationsmrna profilingand homeostatic human microglia morphological characteristics resident immune cells homeostatic microgliaare protein expression
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部