期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
Surface structural engineering of carbonyl iron powder for enhancing microwave absorption and anti-oxidation performance 被引量:2
1
作者 Ming-Lu Huang Cheng-Long Luo +3 位作者 Chang Sun Kun-Yan Zhao Yingqing Ou Ming Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第11期201-209,共9页
Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP abs... Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP absorbers are designed via surface coating with zinc oxide(ZnO)nanoparticles and then a thermal annealing treatment.The morphology of ZnO nanoparticles which can be easily regulated by controlling the annealing temperature ultimately affects the MA performance of CIP coating with ZnO nanoparticles(CIP@ZnO).The core-shell CIP@ZnO particles with cubic cone ZnO nanoparticles exhibit ex-cellent MA performance and thermal stability in comparison to the original CIP.Specifically,the CIP@ZnO annealed at 350 ℃(CIP@ZnO-350)samples which have the cubic cone ZnO nanoparticles exhibit a min-imum reflection loss(RLmin)of-55.35 dB at a thickness of 2.1 mm and a maximum effective absorp-tion bandwidth(EAB)of 7.09 GHz at a thickness of 2.0 mm.In addition,the antioxidant property of the CIP@ZnO composite particles is abruptly enhanced,which breaks the restriction of the application of CIP at high temperatures.The superior MA performance of CIP@ZnO particles with cubic cone ZnO nanoparti-cles comes from the enhancement in surface shape-dependent multiple microwave scattering,interfacial polarization,and electromagnetic-dielectric synergism between ZnO and CIP. 展开更多
关键词 Microwave absorption Carbonyl iron powder ANTI-OXIDATION Interfacial polarization surface structural engineering
原文传递
Anodic Oxidation on Structural Evolution and Tensile Properties of Polyacrylonitrile Based Carbon Fibers with Different Surface Morphology 被引量:5
2
作者 Zhaorui Li Jianbin Wang Yuanjian Tong Lianghua Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第12期1123-1129,共7页
Polyacrylonitrile (PAN) based carbon fibers with different surface morphology were electrochemically treated in 3 wt% NH4HCO3 aqueous solution with current density up to 3.47 A/m 2 at room temperature, and surface s... Polyacrylonitrile (PAN) based carbon fibers with different surface morphology were electrochemically treated in 3 wt% NH4HCO3 aqueous solution with current density up to 3.47 A/m 2 at room temperature, and surface structures, surface morphology and residual mechanical properties were characterized. The crystallite size (La) of carbon fibers would be interrupted due to excessive electrochemical etching, while the crystallite spacing (d(002)) increased as increasing current density. The disordered structures on the surface of carbon fiber with rough surface increased at the initial oxidation stage and then removed by further electrochemical etching, which resulting in continuous increase of the extent of graphitization on the fiber surface. However, the electrochemical etching was beneficial to getting ordered morphology on the surface for carbon fiber with smooth surface, especially when the current density was lower than 1.77 A/m 2 . The tensile strength and tensile modulus could be improved by 17.27% and 5.75%, respectively, and was dependent of surface morphology. The decreasing density of carbon fibers probably resulted from the volume expansion of carbon fibers caused by the abundant oxygen functional groups intercalated between the adjacent graphite layers. 展开更多
关键词 Carbon fibers Anodic oxidation structural evolution Tensile property surface morphology
原文传递
Experimental Study of Static Contact-angle on Peak-like Microstructural Surfaces Produced by PIII Technology
3
作者 YANG Runhua YANG Lixin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2018年第3期241-248,共8页
Plasma immersion ion implantation(PIII) was used to fabricate micro/nano structures on monocrystalline Si surfaces with different ratios of mixed gases(SF_6/O_2). The micro/nano structures on the surfaces of the sampl... Plasma immersion ion implantation(PIII) was used to fabricate micro/nano structures on monocrystalline Si surfaces with different ratios of mixed gases(SF_6/O_2). The micro/nano structures on the surfaces of the sample were characterized by scanning electron microscopy(SEM) and atomic force microscopy(AFM). The results showed that with increasing ratio of mixed gases(SF_6/O_2), the height of the micro/nano structures first increased and then decreased. Contact-angle measurements indicated that the surfaces' micro/nano structures have an obvious effect on the contact-angle, and could cause a change in surface wettability. The theoretical analysis of contact-angle showed that the Wenzel and Cassie theories cannot predict the contact-angle of a roughened surface accurately, and should be corrected for practical applications using an actual model. Moreover, the contact-angle first increased and then decreased with increasing ratio of mixed gases(SF_6/O_2), which is in accordance with the change of the height of micro/nano structures. 展开更多
关键词 Plasma Immersion Ion Implantation (PIII) Scanning Electron Microscopy (SEM) Atomic Frce Microscopy (AFM) Micro/nano Structure surface CONTACT-ANGLE
原文传递
Structural transformation of Ge dimers on Ge(001) surfaces induced by bias voltage
4
作者 秦志辉 时东霞 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第12期4580-4584,共5页
Scanning tunnelling microscopy is utilized to investigate the local bias voltage tunnelling dependent transformation between (2×1) and c(4×2) structures on Ge(001) surfaces, which is reversibly observe... Scanning tunnelling microscopy is utilized to investigate the local bias voltage tunnelling dependent transformation between (2×1) and c(4×2) structures on Ge(001) surfaces, which is reversibly observed at room temperature and a critical bias voltage of -0.80 V. Similar transformation is also found on an epitaxial Ce islands but at a slightly different critical bias voltage of -1.00V. It is found that the interaction between the topmost atoms on the STM tip and the atoms of the dimers, and the pinning effect induced by Sb atoms, the nacancies or the epitaxial clusters, can drive the structural transformation at the critical bias voltage. 展开更多
关键词 scanning tunnelling microscopy surface structures Ge structural transition
原文传递
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
5
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold Functional surface structure Tissue regeneration BIOMATERIALS
在线阅读 下载PDF
The Formation of Colored Film on Stainless Steel and the Study for Surface Structure
6
作者 张征林 余琨 +2 位作者 王怡红 宋苇 冯东丹 《Journal of Southeast University(English Edition)》 EI CAS 1998年第2期61-66,共6页
This paper discusses the coloration process on the stainless steel and the properties of the film. The compositions, morphology and structure of colored films on stainless steel are studied by using SEM,AES,AFM,STM. ... This paper discusses the coloration process on the stainless steel and the properties of the film. The compositions, morphology and structure of colored films on stainless steel are studied by using SEM,AES,AFM,STM. The diffusion controlled mechanisms of films and calculation formula of surface electropotential difference are discussed. 展开更多
关键词 chemical coloration on stainless steel analysis of surface structure
在线阅读 下载PDF
Laser cleaning of steel structure surface for paint removal and repaint adhesion 被引量:28
7
作者 Xiaoguang Li Tingting Huang +3 位作者 Ang Wei Chong Rui Zhou Yoo Sang Choo Minghui Hong 《光电工程》 CAS CSCD 北大核心 2017年第3期340-344,共5页
Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is propo... Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is proposed as a substituting method.By absorbing high energy of the 1064 nm pulsed laser, the paint is vaporized quickly.The ablated debris is then collected by using a suction pump.Initial metal surface of the steel is exposed when laser beam irradiates perpendicularly and scans over it.The cleaned surface fulfills the requirements of surface preparation standards ISO 8501 of SA2.The adhesion is further characterized with pull-off test after carrying out painting with Jotamastic 87 aluminum paint.The repainting can be embedded onto the laser cleaned surface to bond much more tightly.The excellent adhesion strength of 20 MPa between repainted coating and the substrate is achieved, which is higher than what is required by shipyards applications. 展开更多
关键词 LASER steel structure surface paint removal repainting adhesion
在线阅读 下载PDF
Structural Characteristics and Eco-adaptability of Heteromorphic Leaves of Populus euphratica 被引量:18
8
作者 LiZhao-xia ZhengCai-xia 《Forestry Studies in China》 CAS 2005年第1期11-15,共5页
The microstructural and ultrastructural traits of three kinds of typical leaves of Populus euphratica Olive, including lanceolate, broad-ovate and dentate broad-ovate leaves, were studied by using electron microscope... The microstructural and ultrastructural traits of three kinds of typical leaves of Populus euphratica Olive, including lanceolate, broad-ovate and dentate broad-ovate leaves, were studied by using electron microscope and optical microscope. The re- sults showed that with the leaves changing from lanceolate shape to dentate broad-ovate shape, their structure obviously tended to be xeromorph: developed palisade tissue, undeveloped spongy tissue, thick cutin layer and sunken stomas. The amount of mitochondria tended to be increased, and the shape of chloroplasts varied from regular spindle to irregular rotundity or oval. The leaves were cov- ered with wax without cilium, and the stomas on the upper and lower epidermis of the leaves opened unevenly. The stomas on the lower epidermis were deeper than those on the upper epidermis under the scanning electron microscope. The results implied that the structural characteristics of the diversiform-leaves of P. euphratica are related to its eco-adaptability. 展开更多
关键词 Populus euphratica diversiform-leaves MICROSTRUCTURE ULTRASTRUCTURE surface structure eco-adaptability
在线阅读 下载PDF
An automatic grid generation approach over free-form surface for architectural design 被引量:11
9
作者 苏亮 祝顺来 +1 位作者 肖南 高博青 《Journal of Central South University》 SCIE EI CAS 2014年第6期2444-2453,共10页
An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the ma... An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the main stress trajectories as the representation of force flows on a free-form surface,an automatic grid generation approach is proposed for the architectural design.The algorithm automatically plots the main stress trajectories on a 3D free-form surface,and adopts a modified advancing front meshing technique to generate the structural grid.Based on the proposed algorithm,an automatic grid generator named "St-Surmesh" is developed for the practical architectural design of free-form surface structure.The surface geometry of one of the Sun Valleys in Expo Axis for the Expo Shanghai 2010 is selected as a numerical example for validating the proposed approach.Comparative studies are performed to demonstrate how different structural grids affect the design of a free-form surface structure. 展开更多
关键词 grid generation free-form surface structure architectural geometry stress trajectory advancing front meshing technique
在线阅读 下载PDF
Large-area straight,regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens 被引量:10
10
作者 Long Chen Kaiqiang Cao +5 位作者 Yanli Li Jukun Liu Shian Zhang Donghai Feng Zhenrong Sun Tianqing Jia 《Opto-Electronic Advances》 SCIE EI 2021年第12期34-42,共9页
Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtos... Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos. 展开更多
关键词 laser-induced periodic surface structures two-beam interference structural coloring fused silica cylindrical lens
在线阅读 下载PDF
Soil Microbial Responses to Biochars Varying in Particle Size,Surface and Pore Properties 被引量:13
11
作者 Noraini M.JAAFAR Peta L.CLODE Lynette K.ABBOTT 《Pedosphere》 SCIE CAS CSCD 2015年第5期770-780,共11页
Biochars are known for their heterogeneity, especially in pore and surface structure associated with pyrolysis processes and sources of feedstocks. The surface area of biochar is likely to be an important determinant ... Biochars are known for their heterogeneity, especially in pore and surface structure associated with pyrolysis processes and sources of feedstocks. The surface area of biochar is likely to be an important determinant of the extent of soil microbial attachment, whereas the porous structure of biochar is expected to provide protection for soil microorganisms. Potential interactions between biochars from different sources and with different particle sizes were investigated in relation to soil microbial properties in a short-term incubation study. Three particle size (sieved) fractions (0.5-1.0, 1.0-2.0 and 2.0-4.0 mm) from three woody biochars produced from jarrah wood, jarrah and wandoo wood and Australian wattle branches, respectively, were incubated in soil at 25 ℃ for 56 d. Observation by scanning electron microscopy (SEM) and characterisation of pore and surface area showed that all three woody biochars provided potential habitats for soil microorganisms due to their high porosity and surface areas. The biochars were structurally heterogeneous, varying in porosity and surface structure both within and between the biochar sources. After the 56-d incubation, hyphal colonisation was observed on biochar surfaces and in larger biochar pores. Soil clumping occurred on biochar particles, cementing and covering exposed biochar pores. This may have altered surface area and pore availability for microbial colonisation. Transient changes in soil microbial biomass, without a consistent trend, were observed among biochars during the 56-d incubation. 展开更多
关键词 microbial biomass microbial colonisation microbial habitats porosity scanning electron microscopy surface structure
原文传递
Investigations on femtosecond laser-induced surface modification and periodic micropatterning with anti-friction properties on Ti6Al4V titanium alloy 被引量:4
12
作者 Xinlei PAN Weifeng HE +4 位作者 Zhenbing CAI Xuede WANG Ping LIU Sihai LUO Liucheng ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期521-537,共17页
Titanium alloys have a wide application in aerospace industries as it has greater strength and low density, but it has poor tribological properties. To improve its friction and wear performance, in present work, a fem... Titanium alloys have a wide application in aerospace industries as it has greater strength and low density, but it has poor tribological properties. To improve its friction and wear performance, in present work, a femtosecond laser is used to directly irradiate the Ti6Al4V titanium alloy surface in air conditioning, which results in localized ablation and the formation of periodic microstructures but also a strong pressure wave, propagating the material inside. Through the optimization of processing parameters, surface modification and periodic micropatterning with effective anti-friction properties were successfully induced on the surface. After a treatment of femtosecond laser-induced surface modification(FsLSM), the surface microhardness was improved by 16.6% and compressive residual stress reached-746 MPa. Besides, laser-induced periodic surface structures(LIPSS) with a titanium oxide outer coating were fabricated uniformly on the titanium alloy surface. Rotary ball-on-disk wear experiments revealed that the average coefficient of friction(COF) and wear mass loss of the specimen with Fs LSM treatment were largely reduced by 68.9% and 90% as compared to that of untreated specimens, respectively. It was analyzed that the reason for the remarkable wear resistance was attributed to the comprehensive action of the generation of LIPSS, the titanium oxide outer coating, high amplitude compressive residual stress and gradient grain size distribution on the subsurface during the laser surface treatment. Since the findings here are broadly applicable to a wide spectrum of engineering metals and alloys, the present results offer unique pathways to enhancing the tribological performance of materials. 展开更多
关键词 Femtosecond laser-induced surface modification Laser-induced periodic surface structures Microstructure Titanium alloys Tribological performance
原文传递
Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses 被引量:5
13
作者 Shota Kawabata Shi Bai +2 位作者 Kotaro Obata Godai Miyaji Koji Sugioka 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期212-220,共9页
Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that canno... Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses(single-pulse mode).However,most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal.In this study,we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures(LIPSS)on silicon.It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction.In contrast,we find that the GHz burst mode femtosecond laser(wavelength:1030 nm,intra-pulse duration:220 fs,intra-pulse interval time(intra-pulse repetition rate):205 ps(4.88 GHz),burst pulse repetition rate:200 kHz)creates unique two-dimensional(2D)LIPSS.We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism.Specifically,generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS.Additionally,hydrodynamic instability including convection flow determines the final structure of 2D LIPSS. 展开更多
关键词 GHz burst laser-induced periodic surface structures(LIPSS) surface nanostructuring 2D nanostructures
在线阅读 下载PDF
The Influence of Various Structure Surface Boundary Conditions on Pressure Characteristics of Underwater Explosion 被引量:2
14
作者 Yezhi Qin Ying Wang +1 位作者 Zhikai Wang Xiongliang Yao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第3期1093-1123,共31页
The shock wave of the underwater explosion can cause severe damage to the ship structure.The propagation characteristics of shock waves near the structure surface are complex,involving lots of complex phenomena such a... The shock wave of the underwater explosion can cause severe damage to the ship structure.The propagation characteristics of shock waves near the structure surface are complex,involving lots of complex phenomena such as reflection,transmission,diffraction,and cavitation.However,different structure surface boundaries have a significant effect on the propagation characteristics of pressure.This paper focuses on investigating the behavior of shock wave propagation and cavitation from underwater explosions near various structure surfaces.A coupled Runge–Kutta discontinuous Galerkin(RKDG)and finite elementmethod(FEM)is utilized to solve the problem of the complex waves of fluids and structure dynamic response,considering the fluid compressibility.The level set(LS)method and the ghost fluid(GF)method are combined to capture the moving interface and deal with the stability of the coupling between the shock wave and structure surface.Besides,a cut-off cavitation model is introduced to the RKDG method.The validation of the numerical calculation model is discussed by comparing it with the known solution to verify the numerical solutions.Then,crucial kinds of structure surface boundary conditions include shallow-water single layer elasticity plate,double-layer crevasse elasticity plate,single layer curved elasticity plate,and double-layer curved elasticity plates are analyzed and discussed.The results and analysis can provide references for underwater explosion pressure characteristics,the impacting response of different boundary structures,and designing structures. 展开更多
关键词 Underwater explosion pressure characteristics structure surface CAVITATION RKDG-FEM
在线阅读 下载PDF
Experimental Study on Wear Performance and Oil Film Characteristics of Surface Textured Cylinder Liner in Marine Diesel Engine 被引量:6
15
作者 Zhi-Wei Guo Cheng-Qing Yuan +1 位作者 Xiu-Qin Bai Xin-Ping Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第3期158-167,共10页
It is of a vital importance to reduce the frictional losses in marine diesel engines. Advanced surface textures have provided an e ective solution to friction performance of rubbing pairs due to the rapid development ... It is of a vital importance to reduce the frictional losses in marine diesel engines. Advanced surface textures have provided an e ective solution to friction performance of rubbing pairs due to the rapid development of surface engineering techniques. However,the mechanisms through which textured patterns and texturing methods prove beneficial remains unclear. To address this issue,the tribological system of the cylinder liner?piston ring(CLPR) is investigated in this work. Two types of surface textures(Micro concave,Micro V?groove) are processed on the cylinder specimen using di erent processing methods. Comparative study on the friction coe cients,worn surface texture features and oil film characteristics are performed. The results demonstrate that the processing method of surface texture a ect the performance of the CLPR pairs under the specific testing conditions. In addition the micro V?groove processed by CNCPM is more favorable for improving the wear performances at the low load,while the micro?con?cave processed by CE is more favorable for improving the wear performances at the high load. These findings are in helping to understand the e ect of surface texture on wear performance of CLPR. 展开更多
关键词 Cylinder liner?piston ring(CLPR) surface texture structure Frictional and wear characteristic Oil film characteristic
在线阅读 下载PDF
Surface Texture Analysis after Hydrostatic Burnishing on X38CrMoV5-1 Steel 被引量:3
16
作者 Slawomir Swirad 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期164-173,共10页
Ball burnishing is a plastic deformation process used as a surface smoothing and surface improvement finishing treatment after turning or milling processes. This process changes the surface stereometrics of the previo... Ball burnishing is a plastic deformation process used as a surface smoothing and surface improvement finishing treatment after turning or milling processes. This process changes the surface stereometrics of the previously machining surface. Burnishing with hydrostatic tools can be easily and effectively used on both conventional and Computer Numeric Control(CNC) machines. The existing research of the burnishing process mainly focuses on the functional surface characterization, for example, surface roughness, wear resistance, surface layer hardness, etc. There is a lack of references reporting a detailed analysis of 3D parameters calculation with a mathematical model to evaluate the results of the ball burnishing. This paper presents the effect of ball burnishing process parameters with hydrostatic tools on the resulting surface structure geometry. The surface topography parameters were calculated using the Taly Map software. Studies were conducted based on Hartley’s static, determined plan. Such a plan can be built on a hypersphere or hypercube. In this work, a hypercube was used. In the case of Hartley’s plan makes it possible to define the regression equation in the form of a polynomial of the second degree. The input process parameters considered in this study include the burnishing rate, applied pressure, and line-to-line pitch. The significant influence of these parameters was confirmed and described as a mathematical power model. The results also showed a positive effect of hydrostatic burnishing on the roughness and geometric structure of the surface. 展开更多
关键词 Ball burnishing Hydrostatic burnishing surface structure
在线阅读 下载PDF
Hydrothermal Desulfurization on Porous Sulfonated CFR-PEEK Surface Structure Used for Implant Application 被引量:2
17
作者 Jingdan Li Wen Qin +2 位作者 Patrick Osei Lartey Yulong Fu Jing Ma 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第2期748-761,共14页
The poor wear resistance and bio-inertness surface of polyetheretherketone(PEEK)limits the implant applications of PEEK and its composites.Carbon fiber(CFR)was used to boost the wear resistance of PEEK;however,the bio... The poor wear resistance and bio-inertness surface of polyetheretherketone(PEEK)limits the implant applications of PEEK and its composites.Carbon fiber(CFR)was used to boost the wear resistance of PEEK;however,the bioactivity of carbon fiber-reinforced polyetheretherketone(CFR-PEEK)composites is even worse.The bioactivity of CFR-PEEK can be enhanced by constructing 3D porous structure.Nevertheless,large number of sulfur component introduced by sulfonation shows cytotoxicity and can cause damage to human cells.Besides,the sulfur component affects the cytotoxicity and bioactivity of sulfonated CFR-PEEK(SCFR-PEEK).Hydrothermal treatment can sweep away the sulfur component in the 3D porous structure of SCFR-PEEK.Meanwhile,the changes in crystallinity and hardness after hydrothermal treatment may also affect the wear resistance.Therefore,the effect of hydrothermal temperature on wear resistance,cytotoxicity and bioactivity of SCFR-PEEK were studied.In this work,the samples with hydrothermal temperature 90–120℃exhibited high wear resistance.The 3D pore structure of SCFR-PEEK unchanged after hydrothermal treatment,and the sulfur component in the 3D pore structure gradually decreased with increasing hydrothermal temperature by SEM images and EDS analysis.In addition,SCFR-PEEK treated in 90–120℃.Exhibited low cytotoxicity and high bioactivity,which is beneficial for the implant materials. 展开更多
关键词 BIOMATERIALS Hydrothermal treatment CYTOTOXICITY Microstructure surface structure
在线阅读 下载PDF
Tailoring the surface structure of iron compounds to optimize the selectivity of 3-nitrostyrene hydrogenation reaction over Pt catalyst 被引量:2
18
作者 Ying Zhang Tongtong Gao +5 位作者 Chengshan Dai Liyun Zhang Yiming Niu Junnan Chen Zhong-Wen Liu Bingsen Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第6期2911-2914,共4页
Selective hydrogenation of substituted nitroarenes is an important reaction to obtain amines.Supported metal catalysts are wildly used in this reaction because the surface structure of supports can tune the properties... Selective hydrogenation of substituted nitroarenes is an important reaction to obtain amines.Supported metal catalysts are wildly used in this reaction because the surface structure of supports can tune the properties of the supported metal nanoparticles(NPs)and promote the selectivity to amines.Herein,Pt NPs were immobilized on Fe OOH,Fe_(3)O_(4)andα-Fe_2O_(3)nanorods to synthesize a series of iron compounds supported Pt catalysts by liquid phase reduction method.Chemoselective hydrogenation of 3-nitrostyrene to 3-aminostyrene was used as probe reaction to evaluate the performance of the catalysts.The results show that Pt/Fe OOH exhibits the highest selectivity and activity.Fe OOH support with pores and-OH groups can tune the electronic structure of Pt NPs.The positive charge of Pt NPs supported on Fe OOH is key factor for improving the catalytic performance. 展开更多
关键词 PT Electronic structure surface structure Iron compounds Selective hydrogenation 3-Nitrostyrene
原文传递
Reconstruction of Surface Porous PEEK Decorated with Strontium-doped Calcium Phosphate Coatings for Enhancing Osteogenic Activity 被引量:2
19
作者 Chengcheng Liang Xiong Xiong +5 位作者 Rongwei Cui Yuanxiao Hong Xin Liu Guoru Zhao Lizi Ye Shuxin Qu 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第4期927-943,共17页
The aim of this study was to reconstruct surface porous structure with hundreds of micrometers and then bio-mineralize Sr-doped Calcium Phosphate(Sr-doped CaP)on Polyetheretherketone(PEEK)profile to enhance its bioact... The aim of this study was to reconstruct surface porous structure with hundreds of micrometers and then bio-mineralize Sr-doped Calcium Phosphate(Sr-doped CaP)on Polyetheretherketone(PEEK)profile to enhance its bioactivity.A surface porous structure was prepared on PEEK profile by embedding and acid-etching of SiO2 particles as porogen(SP-PEEK).Then the Sr-doped CaP was further decorated on the porous surface after sulfonation,introduction of Sr-doped CaP crystal seeds and bio-mineralization in 1.5 times simulated body fluid(BSSP-PEEK-CaP/Sr).It was feasible to reconstruct the surface porous structure with hundreds of micrometers on PEEK profile by the present method without damaging its mechanical properties.The Sr-doped CaP crystal seeds effectively promoted the bio-mineralization of bio-inertness PEEK.All as-prepared PEEK did not inhibit the proliferation of cells.ALP of bio-mineralized groups was significantly increased than that of the other groups.The BSSP-PEEK-CaP/Sr obviously affected the morphology and promoted the adhesion and spreading of cells.As a result,the cyto-biocompatibity and bioactivity of PEEK were improved after bio-mineralization.Sr-doped CaP on PEEK most likely was beneficial for cells,which was associated with the increasing of the hydrophilicity on PEEK.This study provided a candidate method to improve the osteogenesis of PEEK implants. 展开更多
关键词 PEEK surface porous structure bio-mineralization bioactivity Sr-doped Calcium phosphate
暂未订购
Review on the Fabrication of Surface Functional Structures for Enhancing Bioactivity of Titanium and Titanium Alloy Implants 被引量:2
20
作者 Heng Tang Jiaxiang Xu +4 位作者 Bin Guo Yansong Xie Yalong Sun Yanjun Lu Yong Tang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期23-49,共27页
Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ... Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented. 展开更多
关键词 surface functional structure Titanium implant Manufacturing technology Bioactivity
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部