期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Structural Parameter Optimization of Multilayer Conductors in HTS Cable 被引量:1
1
作者 Yan Mao Jie Qiu +6 位作者 Xin-Ying Liu Zhi-Xuan Wang Shu-Hong Wang Jian-Guo Zhu You-Guang Guo Zhi-Wei Lin Jian-Xun Jin 《Journal of Electronic Science and Technology of China》 2008年第2期112-118,共7页
In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm opti... In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm optimization (PSO), the genetic algorithm (GA), and a robust optimization method based on design for six sigma (DFSS), have been applied to realize uniform current distribution among the multilayer HTS conductors. The continuous and discrete variables, such as the winding angle, radius, and winding direction of each layer, are chosen as the design parameters. Under the constraints of the mechanical properties and critical current, PSO is proven to be a more powerful tool than GA for structural parameter optimization, and DFSS can not only achieve a uniform current distribution, but also improve significantly the reliability and robustness of the HTS cable quality. 展开更多
关键词 Current distribution design for sixsigma (DFSS) genetic algorithm (GA) high temperature superconducting (HTS) cable particle swarm optimization (PSO) structural parameter optimization.
在线阅读 下载PDF
Optimal design of structural parameters for shield cutterhead based on fuzzy mathematics and multi-objective genetic algorithm 被引量:12
2
作者 夏毅敏 唐露 +2 位作者 暨智勇 程永亮 卞章括 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期937-945,共9页
In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters ... In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%. 展开更多
关键词 shield tunneling machine cutterhead structural parameters fuzzy mathematics finite element optimization
在线阅读 下载PDF
Multi-objective robust design optimization of a novel negative Poisson's ratio bumper system
3
作者 ZHOU Guan ZHAO WanZhong +2 位作者 MA ZhengDong WANG ChunYan LI YuFang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第7期1103-1110,共8页
Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash b... Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash box and NPR structure, a novel NPR bumper system for improving the crashworthiness is first proposed in the work. The performances of the NPR bumper system are detailed studied by comparing to traditional bumper system and aluminum foam filled bumper system. To achieve the rapid design while considering perturbation induced by parameter uncertainties, a multi-objective robust design optimization method of the NPR bumper system is also proposed. The parametric model of the bumper system is constructed by combining the full parametric model of the traditional bumper system and the parametric model of the NPR structure. Optimal Latin hypercube sampling technique and dual response surface method are combined to construct the surrogate models. The multi-objective robust optimization results of the NPR bumper system are then obtained by applying the multi-objective particle swarm optimization algorithm and six sigma criteria. The results yielded from the optimizations indicate that the energy absorption capacity is improved significantly by the NPR bumper system and its performances are further optimized efficiently by the multi-objective robust design optimization method. 展开更多
关键词 negative Poisson's ratio structure bumper system multi-objective robust design optimization parameterized model crashworthiness
原文传递
Design of De-tumbling Device for Improving the De-tumbling Performance of Uncooperative Space Target
4
作者 Lei Du Zhen Chen +2 位作者 Hengzai Hu Xiangdong Liu Youguang Guo 《Space(Science & Technology)》 2024年第1期10-19,共10页
This article presents the design of an optimal coil structure for 2 de-tumbling devices, each is carried by a de-tumbling robot. The design is based on electromagnetic eddy current method and aims to reduce the angula... This article presents the design of an optimal coil structure for 2 de-tumbling devices, each is carried by a de-tumbling robot. The design is based on electromagnetic eddy current method and aims to reduce the angular velocity of uncooperative space targets. It proposes an optimization framework with the advantages of safety and high performance. The magnetic field analytical model is established by the designed coil’s structure parameters, and the optimal structure parameters of the coil are determined. To further ensure the maximum magnetic field at the target, the electromagnetic characteristics under different current directions in the 2 coils are analyzed based on magnetic field analytical model, and their accuracy is verified using finite element method (FEM). Additionally, an improved Maxwell’s stress tensor method is proposed to calculate the de-tumbling torque, and its accuracy is assessed using traditional Maxwell’s stress tensor and virtual displacement method. The proposed optimal coil structure and its optimization framework can de-tumble over 1 million targets of various sizes, demonstrating universality. 展开更多
关键词 uncooperative space target optimal structure parameters detumbling optimization framework electromagnetic eddy current reduce angular velocity electromagnetic eddy current method coil structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部