期刊文献+
共找到291篇文章
< 1 2 15 >
每页显示 20 50 100
Learning Bayesian network structure with immune algorithm 被引量:4
1
作者 Zhiqiang Cai Shubin Si +1 位作者 Shudong Sun Hongyan Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期282-291,共10页
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith... Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently. 展开更多
关键词 structure learning Bayesian network immune algorithm local optimal structure VACCINATION
在线阅读 下载PDF
Learning Bayesian networks using genetic algorithm 被引量:3
2
作者 Chen Fei Wang Xiufeng Rao Yimei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期142-147,共6页
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while th... A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach. 展开更多
关键词 Bayesian networks Genetic algorithm Structure learning Equivalent class
在线阅读 下载PDF
Dual-Stream Deep Learning for Health Monitoring of HDPE Geomembranes in Landfill Containment Systems
3
作者 Yuhao Zhang Peiqiang Zhao +2 位作者 Xing Chen Shaoxuan Zhang Xinglin Zhang 《Structural Durability & Health Monitoring》 2025年第5期1343-1365,共23页
The structural integrity monitoring of high-density polyethylene(HDPE)geomembranes in landfill containment systems presents a critical engineering challenge due to the material’s vulnerability to mechanical degradati... The structural integrity monitoring of high-density polyethylene(HDPE)geomembranes in landfill containment systems presents a critical engineering challenge due to the material’s vulnerability to mechanical degradation and the complex vibration propagation characteristics in large-scale installations.This study proposes a dual-stream deep learning framework that synergistically integrates raw vibration signal analysis with physics-guided feature extraction to achieve precise rupture detection and localization.Themethodology employs a hierarchical neural architecture comprising two parallel branches:a 1D convolutional network processing raw accelerometer signals to capture multi-scale temporal patterns,and a physics-informed branch extracting material-specific resonance features through continuous wavelet transform(CWT)and energy ratio quantification.A novel gated attention mechanism dynamically fuses these heterogeneous modalities,adaptively weighting their contributions based on localized signal characteristics—prioritizing high-frequency transient features near damage zones while emphasizing physics-derived energy anomalies in intact regions.Spatial correlations among distributed sensors aremodeled via graph convolutional networks(GCNs)that incorporate geometric topology and vibration transmission dynamics,enabling robust anomaly propagation analysis. 展开更多
关键词 Infrastructure detection machine learning data analysis hybrid intelligent algorithm structural health analysis
在线阅读 下载PDF
基于覆盖的构造性学习算法SLA及在股票预测中的应用 被引量:18
4
作者 张燕平 张铃 +3 位作者 吴涛 徐锋 张 王伦文 《计算机研究与发展》 EI CSCD 北大核心 2004年第6期979-984,共6页
覆盖算法是神经网络学习算法中的一个十分有效的方法 ,它克服了基于搜索机制的学习方法和规划学习方法计算复杂性高 ,难以用于处理海量数据的不足 ,为神经网络提供一个构造性的学习方法 但该方法是建立在所有训练样本都是精确的假设上... 覆盖算法是神经网络学习算法中的一个十分有效的方法 ,它克服了基于搜索机制的学习方法和规划学习方法计算复杂性高 ,难以用于处理海量数据的不足 ,为神经网络提供一个构造性的学习方法 但该方法是建立在所有训练样本都是精确的假设上的 ,未考虑到所讨论的数据具有不精确的情况 ,若直接将该方法应用于数据不精确情况 ,所得到效果不理想 主要讨论数据具有不精确情况下的时间序列的预测问题 为此将原有的覆盖算法进行改进 ,引入“覆盖强度”和“拒识样本”的概念 ,并结合这些新概念给出相应的覆盖学习算法 (简称SLA) ,最后将SLA算法 ,应用于金融股市的预测 ,具体应用到以上 (海 )证 (券 )综合指数构成的时间序列的预测 ,取得了较好的结果 。 展开更多
关键词 覆盖算法 构造性学习算法(sla) 股市预测 时间序列
在线阅读 下载PDF
基于Q-learning的轻量化填充结构3D打印路径规划 被引量:2
5
作者 徐文鹏 王东晓 +3 位作者 付林朋 张鹏 侯守明 曾艳阳 《传感器与微系统》 CSCD 北大核心 2023年第12期44-47,共4页
针对轻量化填充结构模型,提出了一种基于Q-learning算法的3D打印路径规划方法,来改善该结构路径规划中转弯与启停次数较多的问题。首先对填充和分层处理后的模型切片进行预处理,然后以减少打印头转弯和启停动作为目标,构建相对应的马尔... 针对轻量化填充结构模型,提出了一种基于Q-learning算法的3D打印路径规划方法,来改善该结构路径规划中转弯与启停次数较多的问题。首先对填充和分层处理后的模型切片进行预处理,然后以减少打印头转弯和启停动作为目标,构建相对应的马尔可夫决策过程数学模型,多次迭代动作价值函数至其收敛,求解出一组取得最大回报值的动作策略,按照所设定的数学模型将该策略转义输出为打印路径,最后通过对比实验进行验证。实验结果表明:该方法能有效减少打印头的转弯和启停次数,增加打印路径的连续性,节省打印时间,同时可以在一定程度上提升打印质量。 展开更多
关键词 3D打印 路径规划 Q-learning算法 轻量化填充结构
在线阅读 下载PDF
基于“同辈协同学习”的SLA嵌入式教学研究——以FSU《管理会计》课程为例 被引量:1
6
作者 周艳 《长沙民政职业技术学院学报》 2013年第3期79-81,共3页
针对部分学生难以通过部分难度较大的课程而导致辍学和生源流失的问题,费力斯州立大学于1993年开始推行基于"同辈学习"的SLA工作室项目,通过专业教师、学生助教、学生导师形成一个老师辅导、同辈学生之间的学习交流群体,形成... 针对部分学生难以通过部分难度较大的课程而导致辍学和生源流失的问题,费力斯州立大学于1993年开始推行基于"同辈学习"的SLA工作室项目,通过专业教师、学生助教、学生导师形成一个老师辅导、同辈学生之间的学习交流群体,形成稳定的学习伙伴关系,协助GPA2.0以下学生掌握学习方法、加强预习、辅导、答疑、日常测评,建立有效的测评、反馈、分析机制,成功地帮助学生克服学习障碍,提高学习成绩。本文通过SLA项目与一帮一、班级导师制度的对比分析,寻求提高学生成绩的解决方法。 展开更多
关键词 sla(Structured learning Assistance)结构化学习辅助 学生助教 学生导师 专业核心课程
在线阅读 下载PDF
A Multi-Layered Gravitational Search Algorithm for Function Optimization and Real-World Problems 被引量:12
7
作者 Yirui Wang Shangce Gao +1 位作者 Mengchu Zhou Yang Yu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期94-109,共16页
A gravitational search algorithm(GSA)uses gravitational force among individuals to evolve population.Though GSA is an effective population-based algorithm,it exhibits low search performance and premature convergence.T... A gravitational search algorithm(GSA)uses gravitational force among individuals to evolve population.Though GSA is an effective population-based algorithm,it exhibits low search performance and premature convergence.To ameliorate these issues,this work proposes a multi-layered GSA called MLGSA.Inspired by the two-layered structure of GSA,four layers consisting of population,iteration-best,personal-best and global-best layers are constructed.Hierarchical interactions among four layers are dynamically implemented in different search stages to greatly improve both exploration and exploitation abilities of population.Performance comparison between MLGSA and nine existing GSA variants on twenty-nine CEC2017 test functions with low,medium and high dimensions demonstrates that MLGSA is the most competitive one.It is also compared with four particle swarm optimization variants to verify its excellent performance.Moreover,the analysis of hierarchical interactions is discussed to illustrate the influence of a complete hierarchy on its performance.The relationship between its population diversity and fitness diversity is analyzed to clarify its search performance.Its computational complexity is given to show its efficiency.Finally,it is applied to twenty-two CEC2011 real-world optimization problems to show its practicality. 展开更多
关键词 Artificial intelligence exploration and exploitation gravitational search algorithm hierarchical interaction HIERARCHY machine learning population structure
在线阅读 下载PDF
Deep-Learning-Empowered 3D Reconstruction for Dehazed Images in IoT-Enhanced Smart Cities 被引量:2
8
作者 Jing Zhang Xin Qi +1 位作者 San Hlaing Myint Zheng Wen 《Computers, Materials & Continua》 SCIE EI 2021年第8期2807-2824,共18页
With increasingly more smart cameras deployed in infrastructure and commercial buildings,3D reconstruction can quickly obtain cities’information and improve the efficiency of government services.Images collected in o... With increasingly more smart cameras deployed in infrastructure and commercial buildings,3D reconstruction can quickly obtain cities’information and improve the efficiency of government services.Images collected in outdoor hazy environments are prone to color distortion and low contrast;thus,the desired visual effect cannot be achieved and the difficulty of target detection is increased.Artificial intelligence(AI)solutions provide great help for dehazy images,which can automatically identify patterns or monitor the environment.Therefore,we propose a 3D reconstruction method of dehazed images for smart cities based on deep learning.First,we propose a fine transmission image deep convolutional regression network(FT-DCRN)dehazing algorithm that uses fine transmission image and atmospheric light value to compute dehazed image.The DCRN is used to obtain the coarse transmission image,which can not only expand the receptive field of the network but also retain the features to maintain the nonlinearity of the overall network.The fine transmission image is obtained by refining the coarse transmission image using a guided filter.The atmospheric light value is estimated according to the position and brightness of the pixels in the original hazy image.Second,we use the dehazed images generated by the FT-DCRN dehazing algorithm for 3D reconstruction.An advanced relaxed iterative fine matching based on the structure from motion(ARI-SFM)algorithm is proposed.The ARISFM algorithm,which obtains the fine matching corner pairs and reduces the number of iterations,establishes an accurate one-to-one matching corner relationship.The experimental results show that our FT-DCRN dehazing algorithm improves the accuracy compared to other representative algorithms.In addition,the ARI-SFM algorithm guarantees the precision and improves the efficiency. 展开更多
关键词 3D reconstruction dehazed image deep learning fine transmission image structure from motion algorithm
在线阅读 下载PDF
Structural Damage Identification Using Ensemble Deep Convolutional Neural Network Models 被引量:1
9
作者 Mohammad Sadegh Barkhordari Danial Jahed Armaghani Panagiotis G.Asteris 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期835-855,共21页
The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subje... The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise.As a result,a robust,reliable,and repeatable method of damage identification is required.Ensemble learning algorithms for identifying structural damage are evaluated in this article,which use deep convolutional neural networks,including simple averaging,integrated stacking,separate stacking,and hybridweighted averaging ensemble and differential evolution(WAE-DE)ensemblemodels.Damage identification is carried out on three types of damage.The proposed algorithms are used to analyze the damage of 4585 structural images.The effectiveness of the ensemble learning techniques is evaluated using the confusion matrix.For the testing dataset,the confusion matrix achieved an accuracy of 94 percent and a minimum recall of 92 percent for the best model(WAE-DE)in distinguishing damage types as flexural,shear,combined,or undamaged. 展开更多
关键词 Machine learning ensemble learning algorithms convolutional neural network damage assessment structural damage
在线阅读 下载PDF
Causal constraint pruning for exact learning of Bayesian network structure 被引量:1
10
作者 TAN Xiangyuan GAO Xiaoguang +1 位作者 HE Chuchao WANG Zidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期854-872,共19页
How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible p... How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms. 展开更多
关键词 Bayesian network structure learning exact learning algorithm causal constraint
在线阅读 下载PDF
Fuzzy adaptive learning control network with sigmoid membership function 被引量:1
11
作者 邢杰 Xiao Deyun 《High Technology Letters》 EI CAS 2007年第3期225-229,共5页
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership functi... To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells. 展开更多
关键词 fuzzy adaptive learning control network (FALCON) topological structure learning algorithm sigmoid function gaussian function simulated annealing (SA)
在线阅读 下载PDF
STUDIES OF THE DYNAMIC BEHAVIORS OF A CLASS OF LEARNING ASSOCIATIVE NEURAL NETWORKS
12
作者 曾黄麟 《Journal of Electronics(China)》 1994年第3期208-216,共9页
This paper investigates exponential stability and trajectory bounds of motions of equilibria of a class of associative neural networks under structural variations as learning a new pattern. Some conditions for the pos... This paper investigates exponential stability and trajectory bounds of motions of equilibria of a class of associative neural networks under structural variations as learning a new pattern. Some conditions for the possible maximum estimate of the domain of structural exponential stability are determined. The filtering ability of the associative neural networks contaminated by input noises is analyzed. Employing the obtained results as valuable guidelines, a systematic synthesis procedure for constructing a dynamical associative neural network that stores a given set of vectors as the stable equilibrium points as well as learns new patterns can be developed. Some new concepts defined here are expected to be the instruction for further studies of learning associative neural networks. 展开更多
关键词 ASSOCIATIVE NEURAL network learning algorithm Dynamic characteristics Structure EXPONENTIAL STABILITY
在线阅读 下载PDF
Self-Organizing Genetic Algorithm Based Method for Constructing Bayesian Networks from Databases
13
作者 郑建军 刘玉树 陈立潮 《Journal of Beijing Institute of Technology》 EI CAS 2003年第1期23-27,共5页
The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learn... The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed. 展开更多
关键词 Bayesian networks structure learning from databases self-organizing genetic algorithm
在线阅读 下载PDF
Deep learning-driven interval uncertainty propagation for aeronautical structures
14
作者 Yan SHI Michael BEER 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期71-86,共16页
Interval Uncertainty Propagation(IUP)holds significant importance in quantifying uncertainties in structural outputs when confronted with interval input parameters.In the aviation field,the precise determination of pr... Interval Uncertainty Propagation(IUP)holds significant importance in quantifying uncertainties in structural outputs when confronted with interval input parameters.In the aviation field,the precise determination of probability models for input parameters of aeronautical structures entails substantial costs in both time and finances.As an alternative,the use of interval variables to describe input parameter uncertainty becomes a pragmatic approach.The complex task of solving the IUP for aeronautical structures,particularly in scenarios marked by pronounced nonlinearity and multiple outputs,necessitates innovative methodologies.This study introduces an efficient deep learning-driven approach to address the challenges associated with IUP.The proposed approach combines the Deep Neural Network(DNN)with intelligent optimization algorithms for dealing with the IUP in aeronautical structures.An inventive extremal value-oriented weighting technique is presented,assigning varying weights to different training samples within the loss function,thereby enhancing the computational accuracy of the DNN in predicting extremal values of structural outputs.Moreover,an adaptive framework is established to strategically balance the global exploration and local exploitation capabilities of the DNN,resulting in a predictive model that is both robust and accurate.To illustrate the effectiveness of the developed approach,various applications are explored,including a high-dimensional numerical example and two aeronautical structures.The obtained results highlight the high computational accuracy and efficiency achieved by the proposed approach,showcasing its potential for addressing complex IUP challenges in aeronautical engineering. 展开更多
关键词 Uncertainty propagation Interval variable Deep learning Optimization algorithm Aeronautical structure
原文传递
基于深度残差网络的多层多道焊缝识别 被引量:1
15
作者 何俊杰 王传睿 王天琪 《天津工业大学学报》 北大核心 2025年第1期91-96,共6页
为保证焊缝跟踪的精度并将激光条纹从强弧光、飞溅中分离出来,提出了一种基于深度残差(SRNU)网络的激光条纹分割算法。该算法是将带有弧光的图像送入SRNU模型,对内嵌于Resunet网络的编码层部分进行改进,添加SE模块和分组残差模块,对多... 为保证焊缝跟踪的精度并将激光条纹从强弧光、飞溅中分离出来,提出了一种基于深度残差(SRNU)网络的激光条纹分割算法。该算法是将带有弧光的图像送入SRNU模型,对内嵌于Resunet网络的编码层部分进行改进,添加SE模块和分组残差模块,对多层级特征信息进行提取和解析。结果表明:所提算法与Resunet算法相比,平均交并比、精确率、召回率与F1分数分别提升了0.79%、1.38%、0.50%和0.91%,说明该方法有较好的鲁棒性且具有较强的抗干扰能力,在复杂工况下也能将激光条纹从强弧光、飞溅中分离出来。 展开更多
关键词 结构光视觉传感器 深度学习 多层多道焊缝 焊缝识别 深度残差 激光条纹分割算法
在线阅读 下载PDF
湖南省衡南县古树资源结构特征及其影响因素
16
作者 陈政 王毅 +2 位作者 黄飞 陈国生 祁惠 《西北林学院学报》 北大核心 2025年第6期37-46,共10页
系统调查并深入分析湖南省衡南县古树资源的结构特征及其影响因素,旨在为该县古树资源保护方案的规划与制定提供参考。本研究基于实地调查数据,采用机器学习算法与ArcGIS软件技术,对古树结构、分布、生境和生长状况特征进行了量化统计,... 系统调查并深入分析湖南省衡南县古树资源的结构特征及其影响因素,旨在为该县古树资源保护方案的规划与制定提供参考。本研究基于实地调查数据,采用机器学习算法与ArcGIS软件技术,对古树结构、分布、生境和生长状况特征进行了量化统计,对树龄与结构特征相关性及特征因子重要性进行了分析。资源结构特征的分析结果表明,衡南县现存古树1996株,分属30科60属82种,樟树数量最多;年龄结构上,树龄整体偏小,三级古树占比达92.08%,呈金字塔型;径级结构方面,多数古树树高大于10 m,胸径0.5~1.0 m,冠幅5~20 m。影响因素分析显示,影响古树生长及分布的主要因子包括生境特征因子(坡度、土壤类型、海拔、生长位置)、生长势等其他特征因子。以优势种樟树为例,经斯皮尔曼和肯德尔相关性分析显示,树龄与胸径相关系数最高且呈显著正相关,冠幅次之;在樟树梯度提升树、随机森林算法的胸径生长模型中,树龄对胸径影响重要性最强,冠幅次之,二者结论趋同;土壤类型、生长位置和生长势重要性最小,占比总和不足2%。衡南县古树资源丰富,种间径级结构相差大。树龄和胸径增长呈正强相关关系,其次是冠幅。生境特征因子和其他特征因子能影响古树胸径,但影响较小。 展开更多
关键词 古树资源 结构特征 机器学习算法 衡南县
在线阅读 下载PDF
自适应人工蜂群算法求解柔性车间调度问题
17
作者 王玉芳 章殿清 +2 位作者 华晓麟 陈凡 姚彬彬 《计算机工程与设计》 北大核心 2025年第9期2667-2674,共8页
为解决柔性作业车间生产调度问题,提出了一种自适应人工蜂群算法。在雇佣蜂阶段,引入引导概率以提高全局搜索效率;在观察蜂阶段,采用基于多邻域结构的搜索策略以增强局部寻优能力。通过设计强化学习算子,实现了引导概率和邻域结构的自... 为解决柔性作业车间生产调度问题,提出了一种自适应人工蜂群算法。在雇佣蜂阶段,引入引导概率以提高全局搜索效率;在观察蜂阶段,采用基于多邻域结构的搜索策略以增强局部寻优能力。通过设计强化学习算子,实现了引导概率和邻域结构的自适应优化。通过在柔性作业车间通用测试集上的验证,仿真结果表明改进后的人工蜂群算法在局部搜索能力方面表现出色,具有良好的收敛性和鲁棒性。此外,利用电动汽车电池生产实例验证了该算法在解决实际调度问题的显著优势。 展开更多
关键词 柔性作业车间 自适应 人工蜂群算法 引导概率 多邻域结构 强化学习 电动汽车电池
在线阅读 下载PDF
基于极限学习机和晶体结构算法的污染食品早期检测
18
作者 祝福 刘瑞卿 +1 位作者 潘克锋 赵蕊 《食品与机械》 北大核心 2025年第6期68-74,共7页
[目的]提出一种基于极限学习机和晶体结构算法的污染食品早期检测方法。[方法]通过晶体结构算法优化特征选择,结合极限学习机进行快速高效的分类与检测,提升污染食品早期检测精度与效率。[结果]与传统方法相比,试验方法在准确率(94.5%)... [目的]提出一种基于极限学习机和晶体结构算法的污染食品早期检测方法。[方法]通过晶体结构算法优化特征选择,结合极限学习机进行快速高效的分类与检测,提升污染食品早期检测精度与效率。[结果]与传统方法相比,试验方法在准确率(94.5%)和F_(1)分数(93.2%)上均有显著提升,且在召回率和处理速度方面也表现出优于其他最新方法的优势。与最新的深度学习方法相比,试验方法的训练时间约缩短了30%,检测速度提高了25%。[结论]基于极限学习机与晶体结构算法的污染食品早期检测方法在提高检测精度、加快检测速度及优化计算效率方面表现出了明显优势,具有较好的实际应用前景,尤其适用于快速大规模食品安全检测。 展开更多
关键词 极限学习机 晶体结构算法 污染食品 早期检测 特征选择 食品安全
在线阅读 下载PDF
贝叶斯网络结构学习综述 被引量:3
19
作者 孟光磊 丛泽林 +3 位作者 宋彬 李婷珽 王晨光 周铭哲 《北京航空航天大学学报》 北大核心 2025年第9期2829-2849,共21页
贝叶斯网络作为概率论与图论结合的工具,具备高效处理不确定性推理和数据分析的能力,被广泛应用于各领域解决复杂工程问题。此外,还可以结合先验知识和训练样本学习模型,克服了单纯依靠专家知识建立模型的局限性。基于此,回顾了贝叶斯... 贝叶斯网络作为概率论与图论结合的工具,具备高效处理不确定性推理和数据分析的能力,被广泛应用于各领域解决复杂工程问题。此外,还可以结合先验知识和训练样本学习模型,克服了单纯依靠专家知识建立模型的局限性。基于此,回顾了贝叶斯网络的发展历程,分别从基于约束的方法、基于评分搜索的方法、混合约束和评分搜索的方法3个方面对已提出的贝叶斯网络结构学习方法进行分类归纳,并对各类方法研究的现状进行了总结分析。由于现实应用中的数据往往具有非完备性,从缺失数据处理和隐变量学习2个维度阐释了非完备贝叶斯网络结构学习的研究现状。对贝叶斯网络在不同领域中的应用情况进行阐述,并进行总结,讨论了未来贝叶斯网络结构学习方法研究的发展趋势。 展开更多
关键词 机器学习 人工智能算法 贝叶斯网络 结构学习 隐变量
原文传递
基于卷积神经网络的窄线宽光谱结构参数优化
20
作者 富小鸥 王原丽 +1 位作者 杜庆国 付琴 《江苏大学学报(自然科学版)》 北大核心 2025年第4期438-443,共6页
为了解决传统光学结构设计需要大量的建模计算和仿真优化时间的问题,提出了基于卷积神经网络和遗传算法相结合的窄线宽光谱结构参数优化方法.以Y形全介质超表面结构为试验对象,利用时域有限差分方法仿真生成4096组数据集,构建并训练正... 为了解决传统光学结构设计需要大量的建模计算和仿真优化时间的问题,提出了基于卷积神经网络和遗传算法相结合的窄线宽光谱结构参数优化方法.以Y形全介质超表面结构为试验对象,利用时域有限差分方法仿真生成4096组数据集,构建并训练正向预测网络;进一步将训练好的网络与遗传算法相结合,实现超表面结构参数优化.仿真结果表明:训练好的预测网络在测试集上的损失值仅为5.6×10^(-4),且结合优化算法寻优得到的结果比原始数据集中最小半高全宽减小了0.040 nm.新方法相较于传统方法提升了复杂超表面结构的优化效率和效果. 展开更多
关键词 超表面 微纳结构设计 Fano共振 深度学习 卷积神经网络 优化算法
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部