The Tazhong paleouplift is divided into the upper and the lower structural layers, bounded by the unconformity surface at the top of the Ordovician carbonate rock. The reservoirs in the two layers from different parts...The Tazhong paleouplift is divided into the upper and the lower structural layers, bounded by the unconformity surface at the top of the Ordovician carbonate rock. The reservoirs in the two layers from different parts vary in number, type and reserves, but the mechanism was rarely researched before. Therefore, an explanation of the mechanism will promote petroleum exploration in Tazhong paleouplift. After studying the evolution and reservoir distribution of the Tazhong paleouplift, it is concluded that the evolution in late Caledonian, late Hercynian and Himalayan periods resulted in the upper and the lower structural layers. It is also defined that in the upper structural layer, structural and stratigraphic overlap reservoirs are developed at the top and the upper part of the paleouplift, which are dominated by oil reservoirs, while for the lower structural layer, lithological reservoirs are developed in the lower part of the paleouplift, which are dominated by gas reservoirs, and more reserves are discovered in the lower structural layer than the upper. Through a comparative analysis of accumulation conditions of the upper and the lower structural layers, the mechanism of enrichment differences is clearly explained. The reservoir and seal conditions of the lower structural layer are better than those of the upper layer, which is the reason why more reservoirs have been found in the former. The differences in the carrier system types, trap types and charging periods between the upper and the lower structural layers lead to differences in the reservoir types and distribution. An accumulation model is established for the Tazhong paleouplift. For the upper structural layer, the structural reservoirs and the stratigraphic overlap reservoirs are formed at the upper part of the paleouplift, while for the lower structural layer, the weathering crust reservoirs are formed at the top, the reef-flat reservoirs are formed on the lateral margin, the karst and inside reservoirs are formed in the lower part of the paleouplift.展开更多
The coupling agents content and thickness on glass fiber (GF) surfaces which have been treated with silanes and titanates under different conditions are tested by means of XRF (X-Ray Fluorescent spectrometry). And the...The coupling agents content and thickness on glass fiber (GF) surfaces which have been treated with silanes and titanates under different conditions are tested by means of XRF (X-Ray Fluorescent spectrometry). And the rheological characteristics of the dispersed systems prepared from the above glass fibers combined with unsaturated polyester resin (UP) are discussed. The results show that the rigidity of the internal layers of silane coupling agent absorbed by glass surfaces is greater than the one of the external layers; while the effect of the titanate coupling agents on the rheolo- gical characteristics of the system is approximately the same in each structural layer, that is due to the fact that both the internal and external layers of titanates on glass surfaces have the similar flexible structures.展开更多
The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In th...The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.展开更多
More and more attention has been paid to the aggregation behavior of nanoparticles, but little research has been done on the effect of particle size. Therefore, this study systematically evaluated the aggregation beha...More and more attention has been paid to the aggregation behavior of nanoparticles, but little research has been done on the effect of particle size. Therefore, this study systematically evaluated the aggregation behavior of nano-silica particles with diameter 130–480 nm at different initial particle concentration, pH, ionic strength, and ionic valence of electrolytes. The modified Smoluchowski theory failed to describe the aggregation kinetics for nano-silica particles with diameters less than 190 nm. Besides, ionic strength, cation species and p H all affected fast aggregation rate coefficients of 130 nm nanoparticles. Through incorporating structural hydration force into the modified Smoluchowski theory, it is found that the reason for all the anomalous aggregation behavior was the different structural hydration layer thickness of nanoparticles with various sizes. The thickness decreased with increasing of particle size, and remained basically unchanged for particles larger than 190 nm. Only when the distance at primary minimum was twice the thickness of structural hydration layer, the structural hydration force dominated, leading to the higher stability of nanoparticles. This study clearly clarified the unique aggregation mechanism of nanoparticles with smaller size, which provided reference for predicting transport and fate of nanoparticles and could help facilitate the evaluation of their environment risks.展开更多
The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe2-xTex (0≤x≤2.0) are characterized by Cs-corrected transmission electron microscopy ...The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe2-xTex (0≤x≤2.0) are characterized by Cs-corrected transmission electron microscopy measurements. Notable changes of both average structure and the CDW state arising from Te substitution for Se are clearly demonstrated in samples with x〉0.3. The commensurate CDW state characterized by the known star-of-David clustering in the 1T-TaSe2 crystal becomes visibly unstable with Te substitution and vanishes when x=0.3. The 1T-TaSe2-xTex (0.3≤x≤1.3) samples generally adopt a remarkable incommensurate CDW state with monoclinic distortion, which could be fundamentally in correlation with the strong qq-dependent electron-phonon coupling-induced period-lattice-distortion as identified in TaTe22. Systematic analysis demonstrates that the occurrence of superconductivity is related to the suppression of the commensurate CDW phase and the presence of discommensuration is an evident structural feature observed in the superconducting samples.展开更多
Discontinuous Galerkin(DG) method is known to have several advantages for flow simulations,in particular,in fiexible accuracy management and adaptability to mesh refinement. In the present work,the DG method is deve...Discontinuous Galerkin(DG) method is known to have several advantages for flow simulations,in particular,in fiexible accuracy management and adaptability to mesh refinement. In the present work,the DG method is developed for numerical simulations of both temporally and spatially developing mixing layers. For the temporally developing mixing layer,both the instantaneous fiow field and time evolution of momentum thickness agree very well with the previous results. Shocklets are observed at higher convective Mach numbers and the vortex paring manner is changed for high compressibility. For the spatially developing mixing layer,large-scale coherent structures and self-similar behavior for mean profiles are investigated. The instantaneous fiow field for a three-dimensional compressible mixing layer is also reported,which shows the development of largescale coherent structures in the streamwise direction. All numerical results suggest that the DG method is effective in performing accurate numerical simulations for compressible shear fiows.展开更多
We describe here a one-step method for the synthesis of Au/TiO2 nanosphere materials,which were formed by layered deposition of multiple anatase TiO2 nanosheets.The Au nanoparticles were stabilized by structural defec...We describe here a one-step method for the synthesis of Au/TiO2 nanosphere materials,which were formed by layered deposition of multiple anatase TiO2 nanosheets.The Au nanoparticles were stabilized by structural defects in each TiO2 nanosheet,including crystal steps and edges,thereby fixing the Au-TiO2 perimeter interface.Reactant transfer occurred along the gaps between these TiO2 nanosheet layers and in contact with catalytically active sites at the Au-TiO2 interface.The doped Au induced the formation of oxygen vacancies in the Au-TiO2 interface.Such vacancies are essential for generating active oxygen species(-*O^-) on the TiO2 surface and Ti^3+ ions in bulk TiO2.These ions can then form Ti^3+-O^--Ti^4+species,which are known to enhance the catalytic activity of formaldehyde(HCHO) oxidation.These studies on structural and oxygen vacancy defects in Au/TiO2 samples provide a theoretical foundation for the catalytic mechanism of HCHO oxidation on oxide-supported Au materials.展开更多
The velocity ratio of a free shear layer has an important influence on the spatial development of the large scale coherent structures in the layer. In this study, numerical simulations are performed to get an insight ...The velocity ratio of a free shear layer has an important influence on the spatial development of the large scale coherent structures in the layer. In this study, numerical simulations are performed to get an insight into this problem. The obtained numerical results agree quite well with those of a linear inviscid stability theory and the available experimental data.展开更多
A new computational algorithm is introduced for solving scattering problem in periodic structure. The PML technique is used to deal with the difficulty on truncating the unbounded domain while the DSC algorithm is uti...A new computational algorithm is introduced for solving scattering problem in periodic structure. The PML technique is used to deal with the difficulty on truncating the unbounded domain while the DSC algorithm is utilized for the spatial discretization. The present study reveals that the method is efficient for solving the problem.展开更多
The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electrom...The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electromagnetic component regulation,layered arrangement structure,and gradient concentration distribution was used to optimize impedance matching and enhance electromagnetic loss.On the microscale,the incorporation of magnetic Ni nanoparticles into MXene nanosheets(Ni@MXene)endows suitable intrinsic permittivity and permeability.On the macroscale,the layered arrangement of Ni@MXene increases the effective interaction area with electromagnetic waves,inducing multiple reflection/scattering effects.On this basis,according to the analysis of absorption,reflection,and transmission(A-R-T)power coefficients of layered composites,the gradient concentration distribution was constructed to realize the impedance matching at low-concentration surface layer,electromagnetic loss at middle concentration interlayer and microwave reflection at high-concentration bottom layer.Consequently,the layered gradient composite(LG5-10-15)achieves complete absorption coverage of X-band at thickness of 2.00-2.20 mm with RL_(min) of-68.67 dB at 9.85 GHz in 2.05 mm,which is 199.0%,12.6%,and 50.6%higher than non-layered,layered and layered descending gradient composites,respectively.Therefore,this work confirms the importance of layered gradient structure in improving absorption performance and broadens the design of high-performance microwave absorption materials.展开更多
Magnesium and its alloys offer lightweight advantage and have extensive development prospects,particularly in aerospace.However,their flammability poses a significant barrier on the development of Mg alloys.The igniti...Magnesium and its alloys offer lightweight advantage and have extensive development prospects,particularly in aerospace.However,their flammability poses a significant barrier on the development of Mg alloys.The ignition resistance of these alloys often depends on the protectiveness of the oxide film formed on the surface.This paper elucidates the formation mechanism of oxide film from thermodynamics and kinetics,classifying oxide films based on their layered structure to assess their protective properties.Furthermore,it comprehensively reviews the impact of characteristics on the protective effectiveness such as compactness,continuity,thickness,and mechanical properties.The paper also introduces various characterization methods for the microstructure and properties of oxide film.The primary objective of this paper is to enhance the comprehension of oxide film concerning the ignition resistance of Mg alloys and to furnish references for future advancements and research in Mg alloys with heightened ignition resistance.展开更多
Due to excellent thermal insulation performance at room temperature and ultralow density,silica aero-gels are candidates for thermal insulation.However,at high temperatures,the thermal insulation prop-erty of silica a...Due to excellent thermal insulation performance at room temperature and ultralow density,silica aero-gels are candidates for thermal insulation.However,at high temperatures,the thermal insulation prop-erty of silica aerogels decreased greatly caused by transparency to heat radiation.Opacifiers introduced into silica sol can block heat radiation yet destroy the uniformity of aerogels.Herein,we designed and prepared a silica aerogel composite with oriented and layered silica fibers(SFs),SiC nanowires(SiC_(NWs)),and silica aerogels,which were prepared by papermaking,chemical vapor infiltration(CVI),and sol-gel respectively.Firstly,oriented and layered SFs made still air a wall to block heat transfer by the solid phase.Secondly,SiC_(NWs) were grown in situ on the surface of SFs evenly to weave into the network,and the network reduced the gaseous thermal conductivity by dividing cracks in SFs/SiC_(NWs)/SA.Thirdly,SiC_(NWs) weakened the heat transfer by radiation at high temperatures.Therefore,SFs/SiC_(NWs)/SA presented remarkable thermal insulation(0.017 W(m K)^(-1) at 25℃,0.0287 W(m K)^(-1) at 500℃,and 0.094 W(m K)^(-1) at 1000℃).Besides,SFs/SiC_(NWs)/SA exhibited remarkable thermal stability(no size transform after being heat treated at 1000℃ for 1800 s)and tensile strength(0.75 MPa).These integrated properties made SFs/SiC_(NWs)/SA a promising candidate for highly efficient thermal insulators.展开更多
High-temperature piezoelectric vibration sensors are the preferred choice for structural health monitoring in harsh environments such as high temperatures and complex vibrations.Bismuth layer-structured CaBi_(4)Ti_(4)...High-temperature piezoelectric vibration sensors are the preferred choice for structural health monitoring in harsh environments such as high temperatures and complex vibrations.Bismuth layer-structured CaBi_(4)Ti_(4)O_(15)(CBT)high-temperature piezoelectric ceramics,with high Curie temperature(TC),are the key components for piezoelectric vibration sensors operating at temperatures exceeding 500℃.However,their low piezoelectric coefficient(d_(33))greatly limits their high-temperature applications.In this work,a novel Bi^(3+)self-doping strategy was employed to enhance the piezoelectric performance of CBT ceramics.The enhancement is attributed to an increase in the number of grain boundaries,providing more sites for space charge accumulation and promoting formation of space charge polarization.Furthermore,given that space charge polarization predominantly occurs at low frequencies,dielectric temperature spectra at different frequencies were used to elucidate the mechanism by which space charge polarization enhances piezoelectric properties of CBT ceramics.Excellent overall performance was achieved for the CBT-based high-temperature piezoelectric ceramics.Among them,TC reached 778℃,d_(33) increased by more than 30%,reaching 20.1 pC/N,and the electrical resistivity improved by one order of magnitude(reaching 6.33×10^(6)Ω·cm at 500℃).These advancements provide a key functional material with excellent performance for practical applications of piezoelectric vibration sensors at 500℃and above.展开更多
The limited metal-polymer interlaminar property is a significant obstacle to the advancement of Ti/Carbon Fiber(CF)/Polyether Ether Ketone(PEEK)hybrid laminates.We report for the first time a novel method by utilizing...The limited metal-polymer interlaminar property is a significant obstacle to the advancement of Ti/Carbon Fiber(CF)/Polyether Ether Ketone(PEEK)hybrid laminates.We report for the first time a novel method by utilizing the mussel-inspired Polydopamine(PDA)to introduce a strong chemical-physical bonding between titanium and PEEK.The enhanced Fiber-Metal Laminate(FML)exhibits a significant 48.82%enhancement in Interlaminar Shear Strength(ILSS).In addition,it alters the failure mode of the FML from single metal-resin interlaminar delamination to a multi-mechanism,including debonding,delamination of different composite layers,leading to a 28.57%improvement in maximum displacement.展开更多
Carbonaceous material has attracted much attention in the application of sodium-ion batteries(SIBs)anode.However,sluggish reaction kinetics and structure stability impede the application.Therefore,a stacked layered su...Carbonaceous material has attracted much attention in the application of sodium-ion batteries(SIBs)anode.However,sluggish reaction kinetics and structure stability impede the application.Therefore,a stacked layered sulfur-carbon complex with long-chain C–S_(x)–C bond(M-SC-S)is prepared.The layered structure ensures structural stability,and long-chain C–S_(x)–C bond expanding interlayer spacing boosts facile Na+diffusion.When assembled into cells,a high-quality solid-electrolyte interphase film would be formed due to a good match between the M-SC-S electrode and ether electrolyte.Moreover,an electrochemical activation process would happen between the Cu current collector and proper S-doped electrode material to in-situ form Cu_(2)S.The formation of Cu_(2)S in active material can not only provide more active sites for sodium storage and enhance pseudo-capacitance,but also reinforce the electrode/current collector interface and decrease the interfacial transfer resistance for rapid Na+kinetics.The synergistic effect of structure design and interface engineering optimizes the sodium storage system.Thus,the M-SC-S electrode delivers an excellent cyclic performance(321.6 mAh g^(−1)after 1000 cycles at 2 A g^(−1)with a capacity retention rate of 97.4%)and good rate capability(282.8 mAh g^(−1)after 4000 cycles even at a high current density of 10 A g^(−1)).The full cell also has an impressive cyclic performance(151.4 mAh g^(−1)after 500 cycles at 0.5 A g^(−1)).展开更多
To meet the evolving demands of aeroengine development,the structural and performance requirements for ceramic cores have become increasingly stringent.Vat photopolymerization 3D printing,owing to its moldless,fiexibl...To meet the evolving demands of aeroengine development,the structural and performance requirements for ceramic cores have become increasingly stringent.Vat photopolymerization 3D printing,owing to its moldless,fiexible manufacturing,and other advantages,demonstrates significant potential in the preparation of ceramic cores with intricate structures.However,its practical application still faces multiple challenges,including layered structures and property anisotropy,defects such as cracks and collapse during printing and sintering,forming inaccuracies,and difficulties in controlling surface roughness.Recent advances have focused on optimizing slurry formulation and rheology,improving curing behavior,introducing auxiliary powders and additives,tailoring forming parameters,and optimizing the sintering process.Nevertheless,effectively suppressing lamellar defects,achieving superior dimensional accuracy,and maintaining high surface quality in complex structures remain the core scientific and technical issues to be solved.Future research should concentrate on refining curing mechanisms,advancing powder design and organic system optimization,and regulating the coupled processes of forming,debinding,and sintering to accelerate the application of VPP 3D printed ceramic cores in aerospace manufacturing.展开更多
The recently reported silicon/graphite(Si/Gr)composite electrode with a layered structure is a promising approach to achieve high capacity and stable cycling of Si-based electrodes in lithium-ion batteries.However,the...The recently reported silicon/graphite(Si/Gr)composite electrode with a layered structure is a promising approach to achieve high capacity and stable cycling of Si-based electrodes in lithium-ion batteries.However,there is still a need to clarify why particular layered structures are effective and why others are ineffective or even detrimental.In this work,an unreported mechanism dominated by the porosity evolution of electrodes is proposed for the degradation behavior of layered Si/Gr electrodes.First,the effect of layering sequence on the overall electrode performance is investigated experimentally,and the results suggest that the cycling performance of the silicon-on-graphite(SG)electrode is much superior to that of the graphite-on-silicon electrode.To explain this phenomenon,a coupled mechanical-electrochemical porous electrode model is developed,in which the porosity is affected by the silicon expansion and the local constraints.The modeling results suggest that the weaker constraint of the silicon layer in the SG electrode leads to a more insignificant decrease in porosity,and consequently,the more stable cycling performance.The findings of this work provide new insights into the structural design of Si-based electrodes.展开更多
With the rapid development of the internet of things(IoT)and wearable electronics,the role of flexible sensors is becoming increasingly irreplaceable,due to their ability to process and convert information acquisition...With the rapid development of the internet of things(IoT)and wearable electronics,the role of flexible sensors is becoming increasingly irreplaceable,due to their ability to process and convert information acquisition.Two-dimensional(2D)materials have been widely welcomed by researchers as sensitive layers,which broadens the range and application of flexible sensors due to the advantages of their large specific surface area,tunable energy bands,controllable thickness at the atomic level,stable mechanical properties,and excellent optoelectronic properties.This review focuses on five different types of 2D materials for monitoring pressure,humidity,sound,gas,and so on,to realize the recognition and conversion of human body and environmental signals.Meanwhile,the main problems and possible solutions of flexible sensors based on 2D materials as sensitive layers are summarized.展开更多
Cement occupies a significant proportion in construction,serving as the primary material for components such as bricks and walls.However,its role is largely limited to load-bearing functions,with little exploration of...Cement occupies a significant proportion in construction,serving as the primary material for components such as bricks and walls.However,its role is largely limited to load-bearing functions,with little exploration of additional applications.Simultaneously,buildings remain a major contributor to global energy consumption,accounting for 40%of total energy use.Here,we for the first time endow cement with energy storage functionality by developing cement-based solid-state energy storage wallboards(CSESWs),which can utilize the ample idle surface areas of building walls to seamlessly store renewable energy from distributed photovoltaics without compromising building safety or requiring additional space.Owing to unprecedented microstructures and composition interactions,these CSESWs not only achieve a superionic conductivity of 101.1 mS cm^(−1)but also demonstrate multifunctionality,such as significant toughness,thermal insulation,lightweight,and adhesion.When integrated with asymmetrical electrodes,the CSESWs exhibit a remarkable capacitance(2778.9 mF cm^(−2))and high areal energy density(10.8 mWhcm^(−2)).Moreover,existing residential buildings renovated with our CSESWs can supply 98%of daily electricity needs,demonstrating their outstanding potential for realizing zero-carbon buildings.This study pioneers the use of cement in energy storage,providing a scalable and cost-effective pathway for sustainable construction.展开更多
基金supported by the National 973 Key Development Program for Basic Research of China(S/N: 2006CB202308)the National Natural Science Foundation of China(Grant No.40972088)
文摘The Tazhong paleouplift is divided into the upper and the lower structural layers, bounded by the unconformity surface at the top of the Ordovician carbonate rock. The reservoirs in the two layers from different parts vary in number, type and reserves, but the mechanism was rarely researched before. Therefore, an explanation of the mechanism will promote petroleum exploration in Tazhong paleouplift. After studying the evolution and reservoir distribution of the Tazhong paleouplift, it is concluded that the evolution in late Caledonian, late Hercynian and Himalayan periods resulted in the upper and the lower structural layers. It is also defined that in the upper structural layer, structural and stratigraphic overlap reservoirs are developed at the top and the upper part of the paleouplift, which are dominated by oil reservoirs, while for the lower structural layer, lithological reservoirs are developed in the lower part of the paleouplift, which are dominated by gas reservoirs, and more reserves are discovered in the lower structural layer than the upper. Through a comparative analysis of accumulation conditions of the upper and the lower structural layers, the mechanism of enrichment differences is clearly explained. The reservoir and seal conditions of the lower structural layer are better than those of the upper layer, which is the reason why more reservoirs have been found in the former. The differences in the carrier system types, trap types and charging periods between the upper and the lower structural layers lead to differences in the reservoir types and distribution. An accumulation model is established for the Tazhong paleouplift. For the upper structural layer, the structural reservoirs and the stratigraphic overlap reservoirs are formed at the upper part of the paleouplift, while for the lower structural layer, the weathering crust reservoirs are formed at the top, the reef-flat reservoirs are formed on the lateral margin, the karst and inside reservoirs are formed in the lower part of the paleouplift.
文摘The coupling agents content and thickness on glass fiber (GF) surfaces which have been treated with silanes and titanates under different conditions are tested by means of XRF (X-Ray Fluorescent spectrometry). And the rheological characteristics of the dispersed systems prepared from the above glass fibers combined with unsaturated polyester resin (UP) are discussed. The results show that the rigidity of the internal layers of silane coupling agent absorbed by glass surfaces is greater than the one of the external layers; while the effect of the titanate coupling agents on the rheolo- gical characteristics of the system is approximately the same in each structural layer, that is due to the fact that both the internal and external layers of titanates on glass surfaces have the similar flexible structures.
基金This work was supported by the National Natural Science Foundation of China(No.U21A2093)the Anhui Provincial Natural Science Foundation(No.2308085QE146)the National Natural Science Foundation of Jiangsu Province(No.BK20210894).
文摘The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.
基金supported by the National Natural Science Foundation of China(Nos.51808530 and 51778604)。
文摘More and more attention has been paid to the aggregation behavior of nanoparticles, but little research has been done on the effect of particle size. Therefore, this study systematically evaluated the aggregation behavior of nano-silica particles with diameter 130–480 nm at different initial particle concentration, pH, ionic strength, and ionic valence of electrolytes. The modified Smoluchowski theory failed to describe the aggregation kinetics for nano-silica particles with diameters less than 190 nm. Besides, ionic strength, cation species and p H all affected fast aggregation rate coefficients of 130 nm nanoparticles. Through incorporating structural hydration force into the modified Smoluchowski theory, it is found that the reason for all the anomalous aggregation behavior was the different structural hydration layer thickness of nanoparticles with various sizes. The thickness decreased with increasing of particle size, and remained basically unchanged for particles larger than 190 nm. Only when the distance at primary minimum was twice the thickness of structural hydration layer, the structural hydration force dominated, leading to the higher stability of nanoparticles. This study clearly clarified the unique aggregation mechanism of nanoparticles with smaller size, which provided reference for predicting transport and fate of nanoparticles and could help facilitate the evaluation of their environment risks.
基金Supported by the National Basic Research Program of China under Grant Nos 2015CB921300 and 2012CB821404the National Key Research and Development Program of China under Grant Nos 2016YFA0300300 and 2016YFA0300404+1 种基金the National Natural Science Foundation of China under Grant Nos 11474323,11604372,11274368,91221102,11190022,11674326 and 91422303the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB07020000
文摘The structural features and three-dimensional nature of the charge density wave (CDW) state of the layered chalcogenide 1T-TaSe2-xTex (0≤x≤2.0) are characterized by Cs-corrected transmission electron microscopy measurements. Notable changes of both average structure and the CDW state arising from Te substitution for Se are clearly demonstrated in samples with x〉0.3. The commensurate CDW state characterized by the known star-of-David clustering in the 1T-TaSe2 crystal becomes visibly unstable with Te substitution and vanishes when x=0.3. The 1T-TaSe2-xTex (0.3≤x≤1.3) samples generally adopt a remarkable incommensurate CDW state with monoclinic distortion, which could be fundamentally in correlation with the strong qq-dependent electron-phonon coupling-induced period-lattice-distortion as identified in TaTe22. Systematic analysis demonstrates that the occurrence of superconductivity is related to the suppression of the commensurate CDW phase and the presence of discommensuration is an evident structural feature observed in the superconducting samples.
基金supported by the National Natural Science Foundation of China (90716008,10572004 and 10921202)MOST 973 Project (2009CB724100) and CSSA
文摘Discontinuous Galerkin(DG) method is known to have several advantages for flow simulations,in particular,in fiexible accuracy management and adaptability to mesh refinement. In the present work,the DG method is developed for numerical simulations of both temporally and spatially developing mixing layers. For the temporally developing mixing layer,both the instantaneous fiow field and time evolution of momentum thickness agree very well with the previous results. Shocklets are observed at higher convective Mach numbers and the vortex paring manner is changed for high compressibility. For the spatially developing mixing layer,large-scale coherent structures and self-similar behavior for mean profiles are investigated. The instantaneous fiow field for a three-dimensional compressible mixing layer is also reported,which shows the development of largescale coherent structures in the streamwise direction. All numerical results suggest that the DG method is effective in performing accurate numerical simulations for compressible shear fiows.
基金supported by the National Natural Science Foundation of China (21107124, 21337003)the Youth Innovation Promotion Association (2011037)Science Promotion Program of Research Center for Eco-Environmental Sciences, Chinese Academic Sciences (No. 121311RCEES-QN-20130046F)
文摘We describe here a one-step method for the synthesis of Au/TiO2 nanosphere materials,which were formed by layered deposition of multiple anatase TiO2 nanosheets.The Au nanoparticles were stabilized by structural defects in each TiO2 nanosheet,including crystal steps and edges,thereby fixing the Au-TiO2 perimeter interface.Reactant transfer occurred along the gaps between these TiO2 nanosheet layers and in contact with catalytically active sites at the Au-TiO2 interface.The doped Au induced the formation of oxygen vacancies in the Au-TiO2 interface.Such vacancies are essential for generating active oxygen species(-*O^-) on the TiO2 surface and Ti^3+ ions in bulk TiO2.These ions can then form Ti^3+-O^--Ti^4+species,which are known to enhance the catalytic activity of formaldehyde(HCHO) oxidation.These studies on structural and oxygen vacancy defects in Au/TiO2 samples provide a theoretical foundation for the catalytic mechanism of HCHO oxidation on oxide-supported Au materials.
基金Project supported by the National Natural Science Foundation of china
文摘The velocity ratio of a free shear layer has an important influence on the spatial development of the large scale coherent structures in the layer. In this study, numerical simulations are performed to get an insight into this problem. The obtained numerical results agree quite well with those of a linear inviscid stability theory and the available experimental data.
基金Supported by the NNSF of China(10626017)the Science Foundation of the Education Committee of Heilongjiang Province(11511276)the Foundation of Heilongjiang Province(LBH-Q05114).
文摘A new computational algorithm is introduced for solving scattering problem in periodic structure. The PML technique is used to deal with the difficulty on truncating the unbounded domain while the DSC algorithm is utilized for the spatial discretization. The present study reveals that the method is efficient for solving the problem.
基金support for this work by Key Research and Development Project of Henan Province(Grant.No.241111232300)the National Natural Science Foundation of China(Grant.No.52273085 and 52303113)the Open Fund of Yaoshan Laboratory(Grant.No.2024003).
文摘The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electromagnetic component regulation,layered arrangement structure,and gradient concentration distribution was used to optimize impedance matching and enhance electromagnetic loss.On the microscale,the incorporation of magnetic Ni nanoparticles into MXene nanosheets(Ni@MXene)endows suitable intrinsic permittivity and permeability.On the macroscale,the layered arrangement of Ni@MXene increases the effective interaction area with electromagnetic waves,inducing multiple reflection/scattering effects.On this basis,according to the analysis of absorption,reflection,and transmission(A-R-T)power coefficients of layered composites,the gradient concentration distribution was constructed to realize the impedance matching at low-concentration surface layer,electromagnetic loss at middle concentration interlayer and microwave reflection at high-concentration bottom layer.Consequently,the layered gradient composite(LG5-10-15)achieves complete absorption coverage of X-band at thickness of 2.00-2.20 mm with RL_(min) of-68.67 dB at 9.85 GHz in 2.05 mm,which is 199.0%,12.6%,and 50.6%higher than non-layered,layered and layered descending gradient composites,respectively.Therefore,this work confirms the importance of layered gradient structure in improving absorption performance and broadens the design of high-performance microwave absorption materials.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB3501002)the National Natural Science Foundation of China(Grant No.52301059,No.52271009)the Shanghai Post-doctoral Excellence Program(Grant No.2023372).
文摘Magnesium and its alloys offer lightweight advantage and have extensive development prospects,particularly in aerospace.However,their flammability poses a significant barrier on the development of Mg alloys.The ignition resistance of these alloys often depends on the protectiveness of the oxide film formed on the surface.This paper elucidates the formation mechanism of oxide film from thermodynamics and kinetics,classifying oxide films based on their layered structure to assess their protective properties.Furthermore,it comprehensively reviews the impact of characteristics on the protective effectiveness such as compactness,continuity,thickness,and mechanical properties.The paper also introduces various characterization methods for the microstructure and properties of oxide film.The primary objective of this paper is to enhance the comprehension of oxide film concerning the ignition resistance of Mg alloys and to furnish references for future advancements and research in Mg alloys with heightened ignition resistance.
基金supported by the National Natural Science Foun-dation of China(Grant No.U2167214).
文摘Due to excellent thermal insulation performance at room temperature and ultralow density,silica aero-gels are candidates for thermal insulation.However,at high temperatures,the thermal insulation prop-erty of silica aerogels decreased greatly caused by transparency to heat radiation.Opacifiers introduced into silica sol can block heat radiation yet destroy the uniformity of aerogels.Herein,we designed and prepared a silica aerogel composite with oriented and layered silica fibers(SFs),SiC nanowires(SiC_(NWs)),and silica aerogels,which were prepared by papermaking,chemical vapor infiltration(CVI),and sol-gel respectively.Firstly,oriented and layered SFs made still air a wall to block heat transfer by the solid phase.Secondly,SiC_(NWs) were grown in situ on the surface of SFs evenly to weave into the network,and the network reduced the gaseous thermal conductivity by dividing cracks in SFs/SiC_(NWs)/SA.Thirdly,SiC_(NWs) weakened the heat transfer by radiation at high temperatures.Therefore,SFs/SiC_(NWs)/SA presented remarkable thermal insulation(0.017 W(m K)^(-1) at 25℃,0.0287 W(m K)^(-1) at 500℃,and 0.094 W(m K)^(-1) at 1000℃).Besides,SFs/SiC_(NWs)/SA exhibited remarkable thermal stability(no size transform after being heat treated at 1000℃ for 1800 s)and tensile strength(0.75 MPa).These integrated properties made SFs/SiC_(NWs)/SA a promising candidate for highly efficient thermal insulators.
基金National Natural Science Foundation of China (51932010)。
文摘High-temperature piezoelectric vibration sensors are the preferred choice for structural health monitoring in harsh environments such as high temperatures and complex vibrations.Bismuth layer-structured CaBi_(4)Ti_(4)O_(15)(CBT)high-temperature piezoelectric ceramics,with high Curie temperature(TC),are the key components for piezoelectric vibration sensors operating at temperatures exceeding 500℃.However,their low piezoelectric coefficient(d_(33))greatly limits their high-temperature applications.In this work,a novel Bi^(3+)self-doping strategy was employed to enhance the piezoelectric performance of CBT ceramics.The enhancement is attributed to an increase in the number of grain boundaries,providing more sites for space charge accumulation and promoting formation of space charge polarization.Furthermore,given that space charge polarization predominantly occurs at low frequencies,dielectric temperature spectra at different frequencies were used to elucidate the mechanism by which space charge polarization enhances piezoelectric properties of CBT ceramics.Excellent overall performance was achieved for the CBT-based high-temperature piezoelectric ceramics.Among them,TC reached 778℃,d_(33) increased by more than 30%,reaching 20.1 pC/N,and the electrical resistivity improved by one order of magnitude(reaching 6.33×10^(6)Ω·cm at 500℃).These advancements provide a key functional material with excellent performance for practical applications of piezoelectric vibration sensors at 500℃and above.
基金the financial supports of Fundamental Research Funds for the Central Universities,China(Nos.YWF-23-L-1012,YWF-22-L-1017)。
文摘The limited metal-polymer interlaminar property is a significant obstacle to the advancement of Ti/Carbon Fiber(CF)/Polyether Ether Ketone(PEEK)hybrid laminates.We report for the first time a novel method by utilizing the mussel-inspired Polydopamine(PDA)to introduce a strong chemical-physical bonding between titanium and PEEK.The enhanced Fiber-Metal Laminate(FML)exhibits a significant 48.82%enhancement in Interlaminar Shear Strength(ILSS).In addition,it alters the failure mode of the FML from single metal-resin interlaminar delamination to a multi-mechanism,including debonding,delamination of different composite layers,leading to a 28.57%improvement in maximum displacement.
基金supported by the Key Research and Development Program of Wuhan(2025010102030005)the National Nature Science Foundation of Jiangsu Province(BK20221259)。
文摘Carbonaceous material has attracted much attention in the application of sodium-ion batteries(SIBs)anode.However,sluggish reaction kinetics and structure stability impede the application.Therefore,a stacked layered sulfur-carbon complex with long-chain C–S_(x)–C bond(M-SC-S)is prepared.The layered structure ensures structural stability,and long-chain C–S_(x)–C bond expanding interlayer spacing boosts facile Na+diffusion.When assembled into cells,a high-quality solid-electrolyte interphase film would be formed due to a good match between the M-SC-S electrode and ether electrolyte.Moreover,an electrochemical activation process would happen between the Cu current collector and proper S-doped electrode material to in-situ form Cu_(2)S.The formation of Cu_(2)S in active material can not only provide more active sites for sodium storage and enhance pseudo-capacitance,but also reinforce the electrode/current collector interface and decrease the interfacial transfer resistance for rapid Na+kinetics.The synergistic effect of structure design and interface engineering optimizes the sodium storage system.Thus,the M-SC-S electrode delivers an excellent cyclic performance(321.6 mAh g^(−1)after 1000 cycles at 2 A g^(−1)with a capacity retention rate of 97.4%)and good rate capability(282.8 mAh g^(−1)after 4000 cycles even at a high current density of 10 A g^(−1)).The full cell also has an impressive cyclic performance(151.4 mAh g^(−1)after 500 cycles at 0.5 A g^(−1)).
基金supported by the National Key R&D Program of China(Grant Nos.2024YFB3714502,2024YFB3714501,2024YFB3714504)the National Natural Science Foundation of China(Grant Nos.52130204,52174376)+5 种基金the TQ Innovation Foundation(Grant No.23-TQ09-02-ZT-01-005)the Aeronautical Science Foundation of China(Grant No.20220042053001)the Ningbo Science and Technology Plan Project(Grant No.2025Z070)the Key R&D Project of Shaanxi Province(Grant Nos2024GX-YBXM-220,2024CY-GJHX-29,2024GX-ZDCYL-03-03,2024GX-YBXM-400)the National Advanced Rare Metal Materials Innovation Center Project[Grant No.2024 ZG-GCZX-01(1)-01]the Foundation of China Scholarship Council(Grant No.202406290136)。
文摘To meet the evolving demands of aeroengine development,the structural and performance requirements for ceramic cores have become increasingly stringent.Vat photopolymerization 3D printing,owing to its moldless,fiexible manufacturing,and other advantages,demonstrates significant potential in the preparation of ceramic cores with intricate structures.However,its practical application still faces multiple challenges,including layered structures and property anisotropy,defects such as cracks and collapse during printing and sintering,forming inaccuracies,and difficulties in controlling surface roughness.Recent advances have focused on optimizing slurry formulation and rheology,improving curing behavior,introducing auxiliary powders and additives,tailoring forming parameters,and optimizing the sintering process.Nevertheless,effectively suppressing lamellar defects,achieving superior dimensional accuracy,and maintaining high surface quality in complex structures remain the core scientific and technical issues to be solved.Future research should concentrate on refining curing mechanisms,advancing powder design and organic system optimization,and regulating the coupled processes of forming,debinding,and sintering to accelerate the application of VPP 3D printed ceramic cores in aerospace manufacturing.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072183,12472174,and 12421002).
文摘The recently reported silicon/graphite(Si/Gr)composite electrode with a layered structure is a promising approach to achieve high capacity and stable cycling of Si-based electrodes in lithium-ion batteries.However,there is still a need to clarify why particular layered structures are effective and why others are ineffective or even detrimental.In this work,an unreported mechanism dominated by the porosity evolution of electrodes is proposed for the degradation behavior of layered Si/Gr electrodes.First,the effect of layering sequence on the overall electrode performance is investigated experimentally,and the results suggest that the cycling performance of the silicon-on-graphite(SG)electrode is much superior to that of the graphite-on-silicon electrode.To explain this phenomenon,a coupled mechanical-electrochemical porous electrode model is developed,in which the porosity is affected by the silicon expansion and the local constraints.The modeling results suggest that the weaker constraint of the silicon layer in the SG electrode leads to a more insignificant decrease in porosity,and consequently,the more stable cycling performance.The findings of this work provide new insights into the structural design of Si-based electrodes.
基金support of National Natural Science Foundation of China(Nos.52192610,62422120,52371202,52203307,52125205,52202181,and 52102184)Natural Science Foundation of Beijing(Nos.L223006 and 2222088).
文摘With the rapid development of the internet of things(IoT)and wearable electronics,the role of flexible sensors is becoming increasingly irreplaceable,due to their ability to process and convert information acquisition.Two-dimensional(2D)materials have been widely welcomed by researchers as sensitive layers,which broadens the range and application of flexible sensors due to the advantages of their large specific surface area,tunable energy bands,controllable thickness at the atomic level,stable mechanical properties,and excellent optoelectronic properties.This review focuses on five different types of 2D materials for monitoring pressure,humidity,sound,gas,and so on,to realize the recognition and conversion of human body and environmental signals.Meanwhile,the main problems and possible solutions of flexible sensors based on 2D materials as sensitive layers are summarized.
基金supported by National Natural Science Foundation of China(52250010,52050128,52201242)the Natural Science Foundation of Jiangsu Province(BK20230086 and BK20240179).
文摘Cement occupies a significant proportion in construction,serving as the primary material for components such as bricks and walls.However,its role is largely limited to load-bearing functions,with little exploration of additional applications.Simultaneously,buildings remain a major contributor to global energy consumption,accounting for 40%of total energy use.Here,we for the first time endow cement with energy storage functionality by developing cement-based solid-state energy storage wallboards(CSESWs),which can utilize the ample idle surface areas of building walls to seamlessly store renewable energy from distributed photovoltaics without compromising building safety or requiring additional space.Owing to unprecedented microstructures and composition interactions,these CSESWs not only achieve a superionic conductivity of 101.1 mS cm^(−1)but also demonstrate multifunctionality,such as significant toughness,thermal insulation,lightweight,and adhesion.When integrated with asymmetrical electrodes,the CSESWs exhibit a remarkable capacitance(2778.9 mF cm^(−2))and high areal energy density(10.8 mWhcm^(−2)).Moreover,existing residential buildings renovated with our CSESWs can supply 98%of daily electricity needs,demonstrating their outstanding potential for realizing zero-carbon buildings.This study pioneers the use of cement in energy storage,providing a scalable and cost-effective pathway for sustainable construction.